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Abstract

Location problems can be considered as multiple criteria models where for each client (spatial unit) there is de®ned

an individual objective function, which measures the e�ect of a location pattern with respect to the client satisfaction

(e.g., it expresses the distance or travel time between the client and the assigned facility). This results in a multiple

criteria model taking into account the entire distribution of individual e�ects (distances). Moreover, the model enables

us to introduce the concept of equitable e�ciency which links location problems with theories of inequality mea-

surement. In this paper special attention is paid to solution concepts based on the bicriteria optimization of the mean

distance and the absolute inequality measures. The restrictions for the trade-o�s are identi®ed which guarantee that the

bicriteria approaches comply with the concept of equitable e�ciency. These results are further generalized to bicriteria

approaches not using directly the trade-o� technique. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Public goods and services are typically provided
and managed by governments in response to per-
ceived and expressed need. The spatial distribution
of public goods and services is in¯uenced by fa-
cility location decisions. The generic location
problem that we consider may be stated as follows.
There is given a set I � f1; 2; . . . ;mg of m clients

(service recipients). Each client is represented by a
speci®c point in the geographical space. There is
also given a set Q of location patterns (location
decisions). For each client i (i 2 I) a function fi�x�
of the location pattern x has been de®ned. This
function, called the individual objective function,
measures the outcome (e�ect) yi � fi�x� of the lo-
cation pattern for client i (Marsh and Schilling,
1994). In the simplest problems an outcome usu-
ally expresses the distance. However, we empha-
size to the reader that we do not restrict our
considerations to the case of outcomes measured
as distances. They can be measured (modeled) as
travel time, travel costs as well as in a more
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subjective way as relative travel costs (e.g., travel
costs by client incomes) or ultimately as the levels
of client dissatisfaction (individual disutility) of
locations. In typical formulations of location
problems related to desirable facilities a smaller
value of the outcome (distance) means a better
e�ect (higher service quality or client satisfaction).
This remains valid for location of obnoxious fa-
cilities if the distances are replaced with their
complements to some large number. Therefore,
without loss of generality, we can assume that all
outcomes are nonnegative (yi P 0) and each indi-
vidual outcome yi is to be minimized.

Frequently, one may be interested in putting
into location model some additional client weights
vi > 0 to represent the service demand. Integer
weights can be interpreted as numbers of un-
weighted clients located at exactly the same place
(with distances 0 among them). For theoretical
considerations we will assume that the problem is
transformed (disaggregated) to the unweighted
one (that means all the client weights are equal to
1). Note that such a disaggregation is possible for
integer as well as rational client weights, but it
usually dramatically increases the problem size.
Therefore, we are interested in solution concepts
which can be applied directly to the weighted
problem. While discussing such solution concepts
we will use the normalized client weights,

�vi � vi

�Xm

i�1

vi for i � 1; 2; . . . ;m;

rather than the original quantities vi. Note that, in
the case of unweighted problem (all vi � 1), all the
normalized weights are given as �vi � 1=m.

A host of operational models has been devel-
oped to deal with facility location optimization (cf.
Love et al., 1988; Francis et al., 1992; Current
et al., 1990). Most classical location studies focus on
the minimization of the mean (or total) distance
(the median concept) or the minimization of the
maximum distance (the center concept) to the
service facilities (Morrill and Symons, 1977). Both
the median and the center solution concepts are
well de®ned for aggregated location models using
client weights vi > 0 to represent several clients
(service demand) at the same geographical point.

Exactly, for the weighted location problem, the
center solution concept is de®ned by the optimi-
zation problem

min max
i�1;...;m

fi�x�: x 2 Q
� �

�1�

and it is not a�ected by the client weights at all.
The median solution concept is de®ned by the
optimization problem

min
Xm

i�1

�vifi�x�: x 2 Q

( )
: �2�

In the above problem the objective function is
de®ned as the mean (average) outcome

l�y� �
Xm

i�1

�viyi

but the problem (2) itself is also equivalent to
minimization of the total outcome

Pm
i�1 yi. Both

concepts minimize only simple scalar characteris-
tics of the distribution: the maximal (the worst)
outcome and the mean outcome, respectively. In
this paper all the outcomes (distances) for the in-
dividual clients are considered as the set of multi-
ple uniform criteria to be minimized. This results
in a multiple criteria model taking into account the
entire distribution of distances. Moreover, the
model enables us to link location problems with
theories of inequality measurement (in particular
the Pigou±Dalton approach) (Sen, 1973).

While locating public facilities, the issue of eq-
uity is becoming important. Equity is, essentially,
an abstract socio-political concept that implies
fairness and justice (Young, 1994). Nevertheless,
equity is usually quanti®ed with the so-called in-
equality measures to be minimized. Inequality
measures were primarily studied in economics
(Sen, 1973). However, Marsh and Schilling (1994)
describe twenty di�erent measures proposed in the
literature to gauge the level of equity in facility
location alternatives. The simplest inequality
measures are based on the absolute measurement
of the spread of outcomes, like the mean (absolute)
di�erence
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D�y� � 1

2

Xm

i�1

Xm

j�1

j yi ÿ yj j �vi�vj �3�

or the maximum (absolute) di�erence

R�y� � 1

2
max

i;j�1;...;m
j yi ÿ yj j : �4�

In the location framework better intuitive appeal
may have inequality measures related to deviations
from the mean outcome (Mulligan, 1991) like the
mean (absolute) deviation

d�y� �
X

yi P l�y�
�yi ÿ l�y���vi � 1

2

Xm

i�1

j yi ÿ l�y� j �vi

�5�
or the maximum (upperside) deviation

D�y� � max
i�1;...;m

�yi ÿ l�y��: �6�

In economics one usually considers relative in-
equality measures normalized by mean outcome.
Among many inequality measures perhaps the
most commonly accepted by economists is the Gini
coe�cient, which has been recently also analyzed
in the location context (Mulligan, 1991; Erkut,
1993). The Gini coe�cient is the relative mean
di�erence (Kendall and Stuart, 1958):

G�y� � D�y�
l�y� �

Pm
i�1

Pm
j�1 j yi ÿ yj j �vi�vj

2
Pm

i�1 yi�vi
: �7�

It can be relatively easily introduced into the lo-
cation models with tools of linear programming
(Mandell, 1991). Similarly, one may consider the
relative mean deviation which is known as the
Schutz index (Schutz, 1951).

One can easily notice that direct minimization
of typical inequality measures (especially relative
ones) contradicts the minimization of individual
outcomes. As noticed by Erkut (1993), it is rather
a common ¯aw of all the relative inequality mea-
sures that while moving away from the spatial
units to be serviced one gets better values of the
measure as the relative distances become closer to
one another. As an extreme, one may consider an
unconstrained continuous (single-facility) location
problem and ®nd that the facility located at (or

near) in®nity will provide (almost) perfectly equal
service (in fact, rather lack of service) to all the
spatial units. Nevertheless, we show in this paper
that some absolute inequality measures, namely:
the maximum deviation (6), the mean deviation
(5) and the mean di�erence (3), can be e�ectively
used to incorporate equity factors into facility lo-
cation decision models.

The paper is organized as follows. In the next
section we introduce the equitable multiple criteria
location model with the preference structure that
complies with both the e�ciency (Pareto-opti-
mality) principle and with the Pigou±Dalton
principle of transfers. Further, in Section 3, the
concept of equitably e�cient location patterns is
formalized and there are developed general gen-
eration techniques based on the standard multiple
criteria optimization applied to the cumulative
ordered outcomes. Section 4 contains the main
results showing that, under the assumption of
bounded trade-o�s, the bicriteria mean/equity ap-
proaches for selected absolute inequality measures
(maximum deviation, mean deviation or mean
di�erence) comply with the rules of equitable
multiple criteria optimization. These results are, in
Section 5, further generalized to bicriteria ap-
proaches not using directly the trade-o� technique.

2. The model

Assuming that the generic location problem
that we consider has been disaggregated to the
unweighted form (all vi � 1), it may be stated as
the following multiple criteria minimization
problem:

min f�x� : x 2 Qf g; �8�
where:

f � �f1; . . . ; fm� is a vector-function that maps
the decision space X � Rn into the outcome
space Y � Rm,
Q � X denotes the feasible set of location pat-
terns,
x 2 X denotes the vector of decision variables
(the location pattern).
A wide gamut of location problems can be

considered within the framework of model (8).
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The following example illustrates how a typical
discrete location problem (Mirchandani and
Francis, 1990) can be modeled in the form (8).

Example 1. In a typical discrete location problem
there is given a set of m clients and a set of n po-
tential locations for the facilities. Further, the
number (or the maximal number) p of facilities to
be located is given (p6 n). The main decisions to
be made can be described with the binary variables
xj (j � 1; 2; . . . ; n) equal to 1 if location j is to be
used and equal to 0 otherwise. To meet the prob-
lem requirements, the decision variables xj have to
satisfy the following constraints:Xn

j�1

xj � p; xj 2 f0; 1g for j � 1; 2; . . . ; n; �9�

where the equation is replaced with the inequality
(6 ) if p speci®es the maximal number of facilities
to be located. Note that constraints (9) take a very
simple form of the binary knapsack problem with
all the constraint coe�cients equal to 1. However,
for most location problems the feasible set has a
more complex structure due to explicit consider-
ation of allocation decisions. These decisions are
usually modeled with the additional allocation
variables x0ij (i � 1; 2; . . . ;m; j � 1; 2; . . . ; n) equal
to 1 if location j is used to service client i and equal
to 0 otherwise. The allocation variables have to
satisfy the following constraints:Xn

j�1

x0ij � 1 for i � 1; 2; . . . ;m; �10�

x0ij6 xj for i � 1; 2; . . . ;m; j � 1; 2; . . . ; n; �11�
x0ij 2 f0; 1g for i � 1; 2; . . . ;m; j � 1; 2; . . . ; n:

�12�

In the capacitated location problem the capacities
of the potential facilities are given which implies
some additional constraints.

Let dij P 0 (i � 1; 2; . . . ;m; j � 1; 2; . . . ; n) ex-
press the distance between client i and location j
(or other e�ect of allocation client i to location j).
For the standard uncapacitated location problem
it is assumed that all the potential facilities provide
the same type of service and each client is serviced

by the nearest located facility. The individual ob-
jective functions then take the following form:

fi�x� � min
j�1;...;n

fdij : xj � 1g for i � 1; 2; . . . ;m:

With the explicit use of the allocation variables
and the corresponding constraints (10) and (11)
the individual objective functions fi can be written
in the linear form:

fi�x� �
Xn

j�1

dijx0ij for i � 1; 2; . . . ;m: �13�

These linear functions of the allocation variables
are applicable for the uncapacitated as well as for
the capacitated facility location problems.

In the case of location of desirable facilities a
smaller value of the individual objective function
means a better e�ect (smaller distance). This re-
mains valid for location of obnoxious facilities if
the distance coe�cients are replaced with their
complements to some large number: d 0ij � d ÿ dij,
where d > dij for all i � 1; 2; . . . ;m and
j � 1; 2; . . . ; n. Therefore, we can assume that each
function fi is to be minimized as stated in the
multiple criteria problem (8).

We do not assume any special form of the
feasible set while analyzing properties of the so-
lution concepts. We rather allow the feasible set to
be a general, possibly discrete (nonconvex), set.
Similarly, we do not assume any special form of
the individual objective functions nor their special
properties (like convexity) while analyzing prop-
erties of the solution concepts. Therefore, the re-
sults of our analysis apply to various location
problems.

Model (8) only says that we are interested in the
minimization of all objective functions fi for
i 2 fI � 1; 2; . . . ;mg In order to make it opera-
tional, one needs to assume some solution concept
specifying what it means to minimize multiple
objective functions. Vector-function f maps the
feasible set Q (as a subset of the decision space)
into the outcome space Y . The elements of the
outcome space we refer to as achievement vectors
An achievement vector y 2 Y is attainable if it
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expresses outcomes of a feasible solution
x 2 Q �y � f�x��.

Typical solution concepts for the location
problems are based on some scalar measures of the
achievement vectors. However, there are some
concepts, like the lexicographic center (Ogryczak,
1997), which do not introduce directly any scalar
measure, even though they rank the achievement
vectors with a complete preorder. Therefore, we
prefer to focus our analysis of solution concepts on
the properties of the corresponding preference
model. We assume that solution concepts depend
only on evaluation of the achievement vectors and
they do not take into account other solution
properties not represented within achievement
vectors. In fact, to the extent of our knowledge, all
the solution concepts for location problems pres-
ent in the literature satisfy this assumption. Thus,
we can limit our considerations to the preference
model in the outcome space Y.

The preference model is completely character-
ized by the relation of weak preference (Vincke,
1992), denoted hereafter with �. Namely, we say
that achievement vector y0 2 Y is (strictly) pre-
ferred to y00 2 Y (y0 � y00) i� y0 � y00 and y00�y0.
Similarly, we say that achievement vector y0 2 Y is
indi�erent or equally preferred to y00 2 Y (y0 � y00)
i� y0 � y00 and y00 � y0. If a solution concept is
de®ned by the minimization of some scalar func-
tion g�y�, then the corresponding preference model
is de®ned by the relation: y0 � y00 i� g�y0�6 g�y00�.

The standard preference model related to the
Pareto-optimal solution concept assumes that the
preference relation � is re¯exive,

y � y; �14�

transitive,

y0 � y00 and y00 � y000
ÿ � ) y0 � y000; �15�

and strictly monotonic,

yÿ eei � y for e > 0; i � 1; 2; . . . ;m; �16�

where ei denotes the ith unit vector in the criterion
space. The last assumption expresses that for each
individual objective function less is better (mini-
mization), i.e., in terms of typical location prob-

lems, for each spatial unit, closer to the service
means better.

The preference relations satisfying axioms
(14)±(16) are called hereafter rational preference
relations. The rational preference relations allow
us to formalize the Pareto-optimal solution con-
cept with the following de®nitions. We say that
achievement vector y0 rationally dominates y00

(y0 �r y00), i� y0 � y00 for all rational preference re-
lations �. We say that a location pattern x 2 Q is
an e�cient (Pareto-optimal) solution of the mul-
tiple criteria problem (8), i� y � f�x� is rationally
nondominated.

The relation of rational dominance may be
expressed in terms of the vector inequality. As a
consequence we can state that a location pattern
x0 2 Q is an e�cient solution of the multiple cri-
teria problem (8), if and only if, there does not
exist x 2 Q such that fi�x�6 fi�x0� for all i 2 I
where at least one strict inequality holds. The lat-
ter refers to the commonly used de®nition of the
e�cient solutions as feasible solutions for which
one cannot improve any criterion without
worsening another (e.g., Steuer, 1986). However, the
axiomatic de®nition of the rational preference re-
lation allows us to introduce additional properties
of the preferences related to the principles of
equity.

The concept of Pareto-optimal solutions is built
for typical multiple criteria problems where values
of the individual objective functions are assumed
to be incomparable (Steuer, 1986). The individual
objective functions in our multiple criteria location
model express the same quantity (usually the dis-
tance) for various clients. Thus, the functions are
uniform in the sense of the scale used and their
values are directly comparable. This is ultimately
true for all location models as long as the modeler
is capable to express the individual outcomes (and
the outcome coe�cients dij) in the unique scale of
client dissatisfaction (disutility). Moreover, espe-
cially when locating public facilities, we want to
consider all the clients impartially and equally.
Thus, the distribution of distances (outcomes)
among the clients is more important than the as-
signment of several distances (outcomes) to the
speci®c clients. In other words, a location pattern
generating individual distances: 4, 2 and 0 for cli-
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ents 1, 2 and 3, respectively, should be considered
equally good as a solution generating distances 0, 2
and 4. Moreover, according to the requirement of
equal treatment of all clients a location pattern
generating all distances equal to 2 should be con-
sidered better than both the above solutions.

For multiple criteria problems with uniform
and equally important objective functions we in-
troduce an e�ciency concept based rather on the
distribution of outcomes than on the achievement
vectors themselves. For this purpose, we assume
that the preference model satis®es the principle of
impartiality (anonymity)

�ys�1�; ys�2�; . . . ; ys�m�� � �y1; y2; . . . ; ym�
for any s 2 P�I�; �17�

where P�I� is the set of all permutations of the set
I. Condition (17) means that any permutation of
the achievement vector is equally good (indi�erent)
as the original achievement vector. Adding the
principle of impartiality to the domination relation
leads us to the concept of symmetric domination
which is not a�ected by any permutation of the
achievement vector coe�cients (Ogryczak, 1999).

While locating public facilities, the preference
model should take into account equity of the ef-
fects (distances). According to the theory of equity
measurement (Sen, 1973; Allison, 1978), the pref-
erence model should satisfy the (Pigou±Dalton)
principle of transfers. The principle of transfers
states that a transfer of small amount from an
outcome to any relatively worse-o� outcome re-
sults in a more preferred achievement vector. As a
property of the preference relation, the principle of
transfers takes the form of the following axiom:

yi0 > yi00 ) yÿ eei0 � eei00 � y

for 0 < e < yi0 ÿ yi00 ; i0; i00 2 I : �18�

Requirement of impartiality (17) and the principle
of transfers (18) do not contradict the multiple
criteria optimization axioms (14)±(16). Therefore,
we can consider equitable multiple criteria opti-
mization (Kostreva and Ogryczak, 1999a) based
on the equitable rational preference relations de-
®ned by axioms (14)±(18). The equitable rational
preference relations allow us to de®ne the concept

of equitably e�cient solution, similar to the stan-
dard e�cient (Pareto-optimal) solution de®ned
with the rational preference relations. We say that
achievement vector y0 equitably dominates y00

(y0 �e y00), i� y0 � y00 for all equitable rational
preference relations �. We say that a location
pattern (feasible solution) x 2 Q is equitably e�-
cient (is an equitably e�cient solution of the
multiple criteria problem (8)), if and only if there
does not exist any x0 2 Q such that f�x0� �e f�x�.
Note that each equitably e�cient solution is also
an e�cient solution but not vice versa.

Scale invariance is widely considered an addi-
tional axiom for equity measurement. We say that
a preference relation � is scale invariant (satis®es
the principle of scale invariance) if for any
achievement vectors y0; y00 2 Y and for any positive
constant c,

y0 � y00 ) cy0 � cy00:

We do not assume the principle of scale invariance
as an axiom for the preference model. Neverthe-
less, we pay attention if solution concepts comply
with it as such a principle is important for main-
taining stability of the solution, and for creating
well-de®ned models. In fact, all the concepts dis-
cussed here comply with the principle of scale
invariance.

3. Equitably e�cient solutions

The relation of equitable dominance can be
expressed as a vector inequality on the cumulative
ordered achievement vectors. This can be mathe-
matically formalized as follows. First, we intro-
duce the ordering map H : Rm ! Rm such that

H�y� � �h1�y�; h2�y�; . . . ; hm�y��;

where

h1�y�P h2�y�P � � � P hm�y�

and there exists a permutation s of set I such that
hi�y� � ys�i� for i � 1; 2; . . . ;m. This allows us to
focus on distributions of outcomes impartially.
Next, we apply to ordered achievement vectors
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H�y�, a linear cumulative map to get the cumula-
tive ordering map �H � ��h1; �h2; . . . ; �hm� de®ned as

�hi�y� �
Xi

j�1

hj�y� for i � 1; 2; . . . ;m: �19�

The coe�cients of vector �H�y� express, respec-
tively: the largest outcome, the total of the two
largest outcomes, the total of the three largest
outcomes, etc.

Directly from the de®nition of the map �H, it
follows that for any two achievement vectors
y0; y00 2 Y equation �H�y0� � �H�y00� holds, if and
only if y0 and y00 have the same distribution of
outcomes (i.e., H�y0� � H�y00�). Similarly, in-
equality H�y0�6H�y00� implies �H�y0�6 �H�y00� but
the reverse implication is not valid. For instance,
�H�2; 2; 2� � �2; 4; 6�6 �3; 5; 6� � �H�3; 2; 1� and si-
multaneously H�2; 2; 2�iH�3; 2; 1�.

The relation �H�y0�6 �H�y00� was extensively an-
alyzed within the theory of majorization (Marshall
and Olkin, 1979), where it is called the relation of
weak submajorization. The theory of majorization
includes the results which allow us to derive the
following theorem (Kostreva and Ogryczak,
1999a).

Theorem 1. Achievement vector y0 2 Y equitably
dominates y00 2 Y , if and only if �hi�y0�6 �hi�y00� for
all i 2 I where at least one strict inequality holds.

In income economics the Lorenz curve is a
popular tool to explain inequalities (Young, 1994).
In the context of income distribution, the Lorenz
curve is a cumulative population versus income
curve. First, all individuals are ranked by income,
from poorest to richest. For each rank, we com-
pute the proportion of the income earned by all
individuals at this rank and all ranks below this
rank. The relationship between the proportions of
population and income de®nes the Lorenz curve.
A perfectly equal distribution of income has the
diagonal line as the Lorenz curve. All other dis-
tributions generate convex Lorenz curves below
the diagonal line.

Note that the de®nition of values �hi�y� for
for i � 1; 2; . . . ;m is similar to the construction of
the Lorenz curve for the population of m clients

(outcomes). The main di�erence depends on in-
verse ordering, from the largest to the smallest
value. It is due to minimization problem (8) op-
posite to the incomes. If considered in connection
with some obnoxious quantity, we get the upper
Lorenz curves which are concave and fall above
the diagonal equity line. If the curve correspond-
ing to distribution A falls below the curve corre-
sponding to distribution B, then distribution A is
considered as less unequal than the latter one.

Vector �H�y� can be viewed graphically with the
Lorenz-type curve connecting point �0; 0� and
points �i=m; �hi�y�=m� for i � 1; 2; . . . ;m. In the case
of two achievement vectors y0; y00 2 Y with the
same total of outcomes (�hm�y0� � �hm�y00�), the in-
equality �H�y0�6 �H�y00� is equivalent to the domi-
nance y0 over y00 in the sense of upper Lorenz
curves. In the general case, the upper Lorenz
curves may be considered the graphs of vectors
�H�y�=�hm�y�. Graphs of vectors �H�y� take the form
of unnormalized concave curves (Fig. 1), the upper
absolute Lorenz curves. Note that in terms of the
Lorenz curves no achievement vector can be better
than the vector of equal outcomes. Equitable
dominance (and the absolute Lorenz curves) takes
into account also values of outcomes. Vectors of
equal outcomes are distinguished according to the
value of outcomes. They are graphically repre-
sented with various ascent lines in Fig. 1. With the
relation of equitable dominance an achievement
vector of small unequal outcomes may be pre-
ferred to an achievement vector with large equal
outcomes.

Fig. 1. �H�y� as upper absolute Lorenz curves.
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Example 2. In order to illustrate the concept of
equitable dominance, let us consider an example
(Ogryczak, 1997) of location two facilities among
10 spatial units, where each spatial unit can be
considered as a potential location. We assume that
the facilities have unlimited capacities and each
spatial unit represents one client (vi � 1) to be
served by the nearest facility. Thus, the problem
takes the form (9)±(13) from Example 1 with
m � n � 10 and p � 2. To make possible an easy
analysis of the problem without complex compu-
tations, we consider several units U1, U2,. . ., U10
as points on a line, say the X-axis, with coordi-
nates: 0, 4, 5, 6, 8, 17, 18, 19, 20 and 28,
respectively.

Table 1 contains (four) various solutions to the
location problem. The ®rst one corresponds to the
lexicographic center solution (Ogryczak, 1997),
where in addition to the largest distance we mini-
mize also the second largest distance, the third
largest and so on. This solution depends on loca-
tion facilities in spatial units U2 and U9. In the
second row of Table 1 there are presented dis-
tances for another, in our opinion the worst, center
solution. It is based on location facilities in spatial
units U1 and U9. Further, we have included the
median solution and the solution minimizing the
Gini coe�cient (7). The median solution is based
on locations in units U3 and U8, whereas the Gini
solution uses locations U1 and U10. Note that
among four solutions (achievement vectors) pre-

sented in Table 1 no one is dominated by any
other. In fact, all these solutions are e�cient as,
due to the problem speci®city, each feasible solu-
tion is e�cient.

Comparing cumulative ordered outcomes �H�y�
given in Table 2, one can see that cumulative or-
dered achievement vector of the second solution is
dominated by that of the ®rst one. The cumulative
ordered achievement vector of the fourth solution
is dominated by each of other three vectors. Thus,
both the second and the fourth solutions are not
equitably e�cient.

Note that Theorem 1 permits one to express the
relationship between equitable e�ciency for
problem (8) and the Pareto-optimality for the
multiple criteria problem with objectives �H�f�x��:

minf��h1�f�x��; �h2�f�x��; . . . ; �hm�f�x��� : x 2 Qg:
�20�

Corollary 1. A location pattern x 2 Q is an equi-
tably e�cient solution of the multiple criteria
problem (8), if and only if it is an e�cient solution
of the multiple criteria problem (20).

Corollary 1 allows one to generate equitably
e�cient solutions of problem (8) as e�cient so-
lutions of problem (20) (cf. Kostreva and
Ogryczak, 1999). The center solution concept (1)

Table 1

Outcomes of location solutions in Example 1

Solution Outcomes yi

U2 U9 4 0 1 2 4 3 2 1 0 8

U1 U9 0 4 5 6 8 3 2 1 0 8

U3 U8 5 1 0 1 3 2 1 0 1 9

U1 U10 0 4 5 6 8 11 10 9 8 0

Table 2

Cumulative ordered outcomes in Example 1

Solution Cumulative ordered outcomes �hi�y�
U2 U9 8 12 16 19 21 23 24 25 25 25

U1 U9 8 16 22 27 31 34 36 37 37 37

U3 U8 9 14 17 19 20 21 22 23 23 23

U1 U10 11 21 30 38 46 52 57 61 61 61
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corresponds to minimization of the ®rst objective
in problem (20). Similarly, the median solution
concept (2), minimizing the mean outcome, cor-
responds to minimization of the last (mth) objec-
tive in problem (20). Thus, both the concepts use
only one objective in the multiple criteria problem
(20). This is enough to guarantee that the unique
center and the unique median are equitably e�-
cient solutions. However, in the general case of
multiple optimal solutions of the corresponding
problem (1) or (2), respectively, some of center or
median solutions may be equitably dominated. In
fact, neither center nor median solution concept
complies with the principle of transfers.

In the case of e�ciency one may use the
weighted sum of objective functions to generate
various e�cient solutions (Steuer, 1986). In the
case of equitable multiple criteria programming
one cannot assign various weights to individual
objective functions, as that violates the require-
ment of impartiality (17). However, due to Cor-
ollary 1, the weighting approach can be applied to
problem (20) resulting in the scalarization

min
Xm

i�1

wi
�hi�f�x�� : x 2 Q

( )
: �21�

Note that, due to the de®nition of map �H with Eq.
(19), the above problem can be expressed in the
form with weights �wi �

Pm
j�i wj (i � 1; 2; . . . ;m)

allocated to coe�cients of the ordered achieve-
ment vector. Such an approach to multiple criteria
optimization was introduced by Yager (1988) as
the so-called ordered weighted averaging (OWA).
When applying OWA to problem (8) we get

min
Xm

i�1

wihi�f�x�� : x 2 Q

( )
: �22�

If weights wi are strictly decreasing and positive,
i.e.,

w1 > w2 > � � � > wmÿ1 > wm > 0; �23�

then each optimal solution of the OWA problem
(22) is an equitably e�cient solution of location
problem (8). Thus, the OWA approach de®nes a

parametric family of equitably e�cient solution
concepts for location problem (8).

As the limiting case of the OWA problem (22),
when the di�erences among weights wi tend to
in®nity, we get the lexicographic problem

lex minf�h1�f�x��; h2�f�x��; . . . ; hm�f�x��� : x 2 Qg;
�24�

where ®rst h1�f�x�� is minimized, next h2�f�x�� and
so on. Problem (24) represents the lexicographic
minimax approach to the original multiple criteria
problem (8). In the location context this solution
concept is called the lexicographic center (Ogryc-
zak, 1997). The lexicographic center is indeed a
re®nement (regularization) of the center solution
concept (1), but in the former, in addition to the
largest outcome, we minimize also the second
largest outcome (provided that the largest one re-
mains as small as possible), minimize the third
largest (provided that the two largest remain as
small as possible), and so on. Due to Eq. (19),
problem (24) is equivalent to the problem

lex minf��h1�f�x��; �h2�f�x��; . . . ; �hm�f�x��� : x 2 Qg;
which can be considered the standard lexico-
graphic optimization applied to problem (20). As
the lexicographic optimization generates e�cient
solutions, thus due to Corollary 1, the optimal
solution of the lexicographic minimax problem
(24) is an equitably e�cient solution of the multi-
ple criteria problem (8).

Similarly, as the limiting case of the OWA
problem (22), when the di�erences among weights
wi tend to zero, we get the lexicographic problem

lex minf��hm�f�x��; �hmÿ1�f�x��; . . . ; �h1�f�x��� : x 2 Qg;
�25�

where ®rst �hm�f�x�� is minimized, next �hmÿ1�f�x��
and so on. The problem (25) de®nes the solution
concept of lexicographic median which is an equi-
tably e�cient re®nement of the median (2).

The OWA model (22) de®nes the multidimen-
sional continuum of equitably e�cient location
concepts spanning the space between the (lexico-
graphic) center and the (lexicographic) median.
Although rich with equitably e�cient solutions,
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the OWA approach, in general, is very hard to
implement even for a relatively small problem size
(small number of clients m). In addition, the OWA
approach requires the disaggregation of location
problem with the client weights vi which usually
dramatically increases the problem size.

4. Mean/equity trade-o�s

The OWA model (22) de®nes the entire gamut
of equitably e�cient solutions to location problem
(8), but it is hard to implement. As a simpli®ed
approach one may consider a bicriteria mean/eq-
uity model (Mandell, 1991):

minf�l�f�x��; .�f�x��� : x 2 Qg �26�
taking into account both the e�ciency with mini-
mization of the mean outcome l�y� and the equity
with minimization of an inequality measure .�y�.
For typical inequality measures bicriteria model
(26) is computationally very attractive since both
the criteria are well de®ned directly for the
weighted location problem without necessity of its
disaggregation. Moreover, l�y� is a linear function
of outcomes and absolute inequalities measures
that we consider are convex piecewise linear
functions which can be introduced into problem
(26) with auxiliary linear inequalities. Exactly, the
maximum (upperside) deviation (6) can be im-
plemented within problem (26) with a nonnegative
variable D and the following linear inequalities:

D P yi ÿ
Xm

j�1

�vjyj for i � 1; 2; . . . ;m:

The mean (absolute) deviation (5) can be imple-
mented with auxiliary nonnegative variables zi

(õ � 1; 2; . . . ;m) and linear constraints:

d �
Xm

i�1

�vizi;

zi P yi ÿ
Xm

j�1

�vjyj for i � 1; 2; . . . ;m:

Similarly, the mean (absolute) di�erence (3) can
be implemented with auxiliary nonnegative vari-

ables zij �i � 1; 2; . . . ;m; j � 1; 2; . . . ;m) and lin-
ear constraints:

D � 1

2

Xm

i�1

Xm

j�1

�vi�vjzij; �27�

zij P yi ÿ yj for i � 1; 2; . . . ;m; j � 1; 2; . . . ;m:

�28�
One may raise a question whether such bicriteria
mean/equity models comply with the preference
structure of the equitable e�cient solution con-
cept. In the case of bicriteria mean/equity problem
(26) we get the following dominance relation:

y0 �l=. y00 () l�y0�6 l�y00� and .�y0�6 .�y00�:
One can easily notice that such a de®ned prefer-
ence relation does not satisfy the requirement of
the strict monotonicity (16) if function . does not
satisfy the condition of at least weak monotonici-
ty, i.e., .�yÿ eei�6 .�y� for e > 0. Unfortunately,
the property of weak monotonicity does not hold
for the Gini coe�cient (7) used by Mandell (1991),
nor the other typical inequality measures. Thus,
the mean/equity bicriteria approaches, in general,
may generate solutions which are not equitably
e�cient. For instance, the last solution in Example
2 is the unique optimal solution for minimization
of the Gini coe�cient and thereby it is an e�cient
solution of the corresponding mean/equity prob-
lem whereas as shown in Table 2, it is equitably
dominated by each of three other solutions.

An important advantage of mean/equity ap-
proaches is the possibility of a trade-o� analysis.
Having assumed a trade-o� coe�cient k between
the inequality measure .�y� and the mean out-
come, one may directly compare real values of
l�y� � k.�y� and ®nd the best location pattern by
solving the optimization problem

minfl�f�x�� � k.�f�x��: x 2 Qg: �29�
The optimal solution of problem (29) we refer to
as the k-mean-equity solution. Solving parametric
problem (29) with changing k > 0 allows one to
select an appropriate value of the trade-o� coe�-
cient k and the corresponding optimal location
pattern through a graphical analysis in the mean/
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equity image space. In this section we show that
the optimization (29) with trade-o� coe�cients
bounded by 1 is consistent with equitable e�ciency
in the case of absolute inequalities measures that
we consider.

Note that the maximum (upperside) deviation
(6) can be expressed in terms of �hi�y� as follows:

D�y� � max
i�1;...;m

yi ÿ 1

m

Xm

i�1

yi � �h1�y� ÿ 1

m
�hm�y�:

�30�

It leads to the following result.

Theorem 2. Except for location patterns with
identical mean and maximum deviation, every lo-
cation pattern x 2 Q that is minimal for
l�f�x�� � kD�f�x�� with 0 < k < 1 is an equitably
e�cient solution of the location problem (8).

Proof. Let 0 < k6 1 and x0 2 Q be minimal by
l�f�x�� � kD�f�x��. Note that, due to Eq. (30), one
gets

l�f�x�� � kD�f�x��

� k�h1�f�x�� � 1ÿ k
m

�hm�f�x��: �31�

Hence, in the case of 0 < k < 1, function
l�f�x�� � kD�f�x�� is a linear combination with
positive coe�cients (weights) of the objective
functions �h1�f�x�� and �hm�f�x��.

Suppose there exists a location pattern x0 2 Q
which equitably dominates x0. Then �H�f�x0��6
�H�f�x0�� and, in particular, �h1�f�x0��6 �h1�f�x0��
and �hm�f�x0��6 �hm�f�x0��. This together with a fact
that x0 is optimal implies

k�h1�f�x0�� � 1ÿ k
m

�hm�f�x0��

� k�h1�f�x0�� � 1ÿ k
m

�hm�f�x0��

and further �h1�f�x0�� � �h1�f�x0�� and �hm�f�x0�� �
�hm�f�x0��. Hence, l�f�x0�� � l�f�x0�� and, from
Eq. (30), D�f�x0�� � D�f�x0�� which completes the
proof. �

Theorem 2 partially justi®es the maximum de-
viation k-mean-equity as an equitably e�cient
solution concept. Note that, due to Eq. (31), its
objective function can be expressed as follows:

l�f�x�� � kD�f�x��

� k max
i�1;...;m

fi�x� � �1ÿ k�
Xm

i�1

�vifi�x�; �32�

which was introduced by Halpern (1978) to de®ne
his convex k-cent-dian solution concept. Thus,
Theorem 2 justi®es also the convex k-cent-dians as
equitably e�cient solutions to location problem (8).

The maximum deviation is an inequality mea-
sure related to the worst case analysis. It is in some
manner very ``rough'' as it does not take into ac-
count the distribution of outcomes other than the
worst one, which means that only two objective
functions �hi�y� from the multiple criteria problem
(20) are used. Similar results can be established for
absolute inequality measures taking into account
all the quantities �hi�y�.

The mean deviation (5) can be expressed in
terms of �hi�y� as follows:

d�y� � 1

m

X
i:hi�y�>l�y�

�hi�y� ÿ l�y��

� 1

m
max

i�1;...;mÿ1

�hi�y�
�

ÿ i
m

�hm�y�
�
: �33�

It leads to the following result.

Theorem 3. Except for location patterns with
identical mean and mean deviation, every location
pattern x 2 Q that is minimal for l�f�x�� � kd�f�x��
with 0 < k6 1 is an equitably e�cient solution of
the location problem (8).

Proof. Let 0 < k6 1 and x0 2 Q be minimal by
l�f�x�� � kd�f�x��. Note that, due to Eq. (33), one
gets

l�f�x�� � kd�f�x��

� 1

m
�hm�f�x�� � k

m
max

i�1;...;mÿ1

�hi�f�x��
�

ÿ i
m

�hm�f�x��
�

� max
i�1;...;mÿ1

k
m

�hi�f�x��
�

�mÿ ik
m2

�hm�f�x��
�
: �34�
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Thus, x0 is an optimal solution to the minimax
scalarization of the multiple criteria problem:

minf�g1�f�x��; g2�f�x��; . . . ; gmÿ1�f�x���: x 2 Qg;
�35�

with mÿ 1 objective functions gi given by the
formula

gi�y� � k
m

�hi�y� � mÿ ik
m2

�hm�y�
for i � 1; 2; . . . ;mÿ 1: �36�

Moreover, both the coe�cients in Eq. (36) are
positive and therefore every e�cient solution of
problem (35) is also an e�cient solution of
problem (20).

Suppose there exists a location pattern x0 2 Q
which equitably dominates x0. Then �H�f�x0��6
�H�f�x0�� and, due to positive coe�cients in
Eq. (36), gi�f�x0��6 gi�f�x0�� for i � 1; 2; . . . ;mÿ 1.
On the other hand, maxi�1;...;mÿ1 gi�f�x0��P
maxi�1;...;mÿ1 gi�f�x0��. Hence, there exists index i0

such that gi0�f�x0�� � gi0�f�x0�� and therefore
�hm�f�x0�� � �hm�f�x0��. Thus, l�f�x0�� � l�f�x0��
and d�f�x0�� � d�f�x0�� which completes the
proof. �

The mean di�erence (3) can be expressed in
terms of �hi�y� as follows:

D�y� � 1

m2

Xmÿ1

i�1

��i� 1��hi�y� ÿ i�hi�1�y��

� 2

m2

Xmÿ1

i�1

�hi�y� ÿ mÿ 1

m2
�hm�y�: �37�

It leads to the following result.

Theorem 4. Every location pattern x 2 Q that is
minimal for l�f�x�� � kD�f�x�� with 0 < k6 1 is an
equitably e�cient solution of the location problem
(8).

Proof. Let 0 < k6 1 and x0 2 Q be minimal by
l�f�x�� � kD�f�x��. Note that, due to Eq. (37), one
gets

l�y� � kD�y� � 2k
m2

Xmÿ1

i�1

�hi�y� � mÿ k�mÿ 1�
m2

�hm�y�:

�38�

Hence, in the case of 0 < k6 1, function
l�f�x�� � kD�f�x�� is a linear combination with
positive weights of the objective functions �hi�f�x��
for õ � 1; 2; . . . ;m. Therefore, x0 is an e�cient so-
lution of the multiple criteria problem (20) and,
due to Corollary 1, x0 is an equitably e�cient so-
lution of the location problem (8). �

We have shown that the k-mean-equity solution
concepts corresponding to all three inequality
measures, in the case of 0 < k < 1, can be con-
sidered scalarizations of the multiple criteria
problem (20). This can be illustrated in the Lor-
enz-type diagram, we considered in the previous
section (Fig. 1 ). Recall that, under assumption of
positive outcomes, vector �H�y� can be then viewed
graphically with the upper absolute Lorenz curve
connecting point �0; 0� and points �i=m; �hi�y�=m�
for i � 1; 2; . . . ;m where the last point (for i � m)
is �1; l�y��. Note that in our model the perfectly
equal achievement vector with mean value l�y�
has all the coe�cients equal to l�y� and its ab-
solute Lorenz curve is the ascent line connecting
points �0; 0� and �1; l�y��. Hence, the space be-
tween the curve �i=m; �hi�y�=m� and its ascent line
represents the dispersion (and thereby the in-
equality) of y in comparison to the perfectly equal
achievement vector of l�y�. We shall call it the
dispersion space. Both size and shape of the dis-
persion space are important for complete descrip-
tion of the inequality. Nevertheless, it is quite
natural to consider some size parameters as sum-
mary characteristics of the inequality. As shown in
Fig. 2, all three inequality measures, we have
considered, represent some size parameters of the
dispersion space. Note that vertical diameter of the
dispersion space at point i=m is given as
di�y� � �1=m��hi�y� ÿ �i=m2��hm�y�. Hence, for the
mean deviation, due to Eq. (33), we get
d�y� � maxi�1;...;m di�y�. This means that d�y� rep-
resents the largest vertical diameter of the disper-
sion space. Similarly, for the maximum deviation,
due to Eq. (30), we get D�y� � md1�y�. Thus, D�y�
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represents the projection of d1�y� onto the vertical
line at i � m or the largest vertical diameter of the
corresponding triangular envelope of the disper-
sion space. The mean di�erence, due to Eq. (37),
satis®es D�y� � �2=m�Pmÿ1

i�1 di�y�. That means,
D�y� is twice the area of the dispersion space. This
explains why for this inequality measure we get the
strongest result (Theorem 4) in the sense that each
k-mean-equity solution with bounded trade-o� k is
an equitably e�cient solution of the location
problem (8). On the other hand, the mean di�er-
ence is computationally more complex than other
two measures. Note that implementation of the
mean di�erence requires m2 auxiliary inequalities
(28) whereas the other two measures need only m
auxiliary inequalities.

The k-mean-equity solution concept with mean
di�erence D�y� as the inequality measure, due to
Eq. (38), may be viewed as the OWA aggregation
(22) with weights wi � �m� �mÿ 2i� 1�k�=m2 for
i � 1; 2; . . . ;m. Hence, for the trade-o� coe�cient
0 < k6 1 the weights are positive and strictly
decreasing (23) which causes that every optimal
solution is equitably e�cient. However, wi ÿ wi�1 �
2k=m2 for all i � 1; 2; . . . ;mÿ 1. Thus, this

approach, in terms of the OWA aggregation,
considers only weights decreasing by a constant
step.

5. Other bicriteria approaches

In the case when the multiple criteria problem
(8) is a discrete one (like the discrete location
problem (9)±(13) in Example 1), there exist equi-
tably e�cient location patterns that are e�cient
solutions of the bicriteria mean/equity problem
(26), but they cannot be generated as k-mean-eq-
uity solutions. We illustrate this with a small
example.

Example 3. Let us consider a simple single facility
location problem with two clients (C1 and C2) and
three potential locations (P1, P2 and P3). The
distances between the clients and potential loca-
tions are given as follows: d11 � 10, d12 � 12:8,
d13 � 15, d21 � 17, d22 � 16, d23 � 15.

The problem has, obviously, three feasible so-
lutions corresponding to potential locations P1, P2
and P3, respectively. Quantitative characteristics
of these solutions are given in Table 3. Note that
all three feasible solutions are equitably e�cient
and they are e�cient solutions of bicriteria mean/
equity problem (26) for all considered absolute
inequality measures. Nevertheless, one can easily
verify that while dealing with the trade-o� analysis
(29), location P2 cannot be selected for any posi-
tive trade-o� coe�cient k. Location P2 is never a
k-mean-equity solution for the data of this exam-
ple. Moreover, location P2 is never an optimal
solution solutions to the OWA problem (22) with
positive weights.

In the case of discrete location problems not all
e�cient solutions of the mean/equity problem (26)

Fig. 2. �H�y� and inequality measures.

Table 3

Locations in Example 3

y �H�y� l�y� D�y� d�y� D�y�
P1 10.0 17.0 17.0 27.0 13.5 3.5 1.75 1.75

P2 12.8 16.0 16.0 28.8 14.4 1.6 0.80 0.80

P3 15.0 15.0 15.0 30.0 15.0 0.0 0.00 0.00
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can be identi®ed as k-mean-equity solutions. This
is a direct consequence of the well-known ¯aws of
convex weighting approaches to nonconvex mul-
tiple criteria optimization (Steuer, 1986). There-
fore, similar di�culties one may encounter
(Ogryczak, 1997a) while dealing with location
problems on general networks (Labb�e et al., 1996).
Unfortunately, one cannot simply apply another
multiple criteria approach to the bicriteria mean/
equity problem (26) since not all its e�cient so-
lutions are equitably e�cient solutions of the lo-
cation problem (8). This di�culty can be
overcome by replacing the original mean/equity
bicriteria optimization (26) with the following
bicriteria problem:

minf�l�f�x��;M�f�x��� : x 2 Qg; �39�
where the second objective represents the sum of
the mean outcome and the corresponding in-
equality measure, i.e.,

M�y� � l�y� � .�y�: �40�
Note that, in the case of maximum deviation D�y�,
the corresponding quantity M�y� represents the
worst outcome:

MD�y� � l�y� � D�y� � max
i�1;...;m

yi:

Similarly, in the case of mean deviation we get the
mean worse-side outcome:

Md�y� � l�y� � d�y� �
Xm

i�1

�vi maxfyi; l�y�g;

and, in the case of mean di�erence we get the mean
pairwise worse outcome:

MD�y� � l�y� � D�y� �
Xm

i�1

Xm

j�1

�vi�vj maxfyi; yjg:

Thus, M�y� may be considered a measure related
worst value and we will refer to the bicriteria
problem (39) as to mean/worst problem.

For any inequality measure M�y�P l�y�, since
.�y�P 0. One can easily verify (cf. Fig. 2) that for
the absolute inequality measures, we consider, the
following inequality holds:

l�y�6Md�y�6MD�y�6MD�y�:
While applying the standard weighting ap-

proach (Steuer, 1986) to the bicriteria mean/worst
problem (39) one gets the parametric objective
function:

Hk�x� � �1ÿ k�l�f�x�� � kM�f�x��
� l�f�x�� � k.�f�x��; 0 < k < 1: �41�

Hence, all the k-mean-equity solution concepts, we
considered in the previous section, can be viewed
as weighting approaches to the corresponding
mean/worst problems (39), like the convex k-cent-
dians (32) in the case of equity measured with
maximum deviation. It turns out, however, that all
e�cient solutions of the mean/worst problems has
the same equitability properties as the corre-
sponding k-mean-equity solutions. This is shown
in the following theorems.

Theorem 5. Except for location patterns with
identical mean l�y� and worst outcome MD�y�, every
e�cient solution to the bicriteria problem

minf�l�f�x��;MD�f�x��� : x 2 Qg �42�
is an equitably e�cient solution of the location
problem (8).

Proof. Let x0 2 Q be an e�cient solution of
problem (42). Suppose there exists a location
pattern x0 2 Q which equitably dominates x0. Then
�H�f�x0��6 �H�f�x0�� and, in particular, �h1�f�x0��6
�h1�f�x0�� and �hm�f�x0��6 �hm�f�x0��. Hence,
l�f�x0��6 l�f�x0�� and MD�f�x0��6MD�f�x0��. This
together with the fact that x0 is e�cient implies
l�f�x0�� � l�f�x0�� and MD�f�x0�� � MD�f�x0��
which completes the proof. �

Theorem 6. Except for location patterns with
identical mean l�y� and mean worse-side outcome
Md�y�, every e�cient solution to the bicriteria
problem

minf�l�f�x��;Md�f�x��� : x 2 Qg �43�
is an equitably e�cient solution of the location
problem (8).
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Proof. Let x0 2 Q be an e�cient solution of
problem (43). Suppose there exists a location
pattern x0 2 Q which equitably dominates x0. Then
�H�f�x0��6 �H�f�x0��. Hence, l�f�x0��6l�f�x0��
and, due to (34) with k � 1, Md�f�x0��6Md�f�x0��.
This together with a fact that x0 is e�cient implies
l�f�x0�� � l�f�x0�� and Md�f�x0�� � Md�f�x0��. �

Theorem 7. Every e�cient solution to the bicriteria
problem

minf�l�f�x��;MD�f�x��� : x 2 Qg �44�
is an equitably e�cient solution of the location
problem (8).

Proof. Let x0 2 Q be an e�cient solution of
problem (44). Suppose there exists a location
pattern x0 2 Q which equitably dominates x0. Then
�hi�f�x0��6 �hi�f�x0�� for i � 1; 2; . . . ;m where at
least one inequality is strict. Hence,
l�f�x0��6 l�f�x0�� and, due to (34) with k � 1,
MD�f�x0�� < MD�f�x0�� which contradicts to a fact
that x0 is e�cient. Thus, x0 is an equitably e�cient
solution of the location problem (8). �

According to the theory of multiple criteria
optimization (Steuer, 1986), in the case of non-
convex problems, the whole set of e�cient solu-
tions can be completely parameterized with
minimization of the weighted Chebyschev norm.
Moreover, this optimization should be supported
by some regularization (re®nement) in the case of
nonunique optimal solution. Let us de®ne

�Hk�x� � maxf�1ÿ k�l�f�x��; kM�f�x��g: �45�
We call a location pattern x 2 Q the Chebyschev

k-mean-worst solution if it is an optimal solution of
the following lexicographic (two-level) problem:

lex minf� �Hk�x�;Hk�x�� : x 2 Qg: �46�
The lexicographic minimization in problem (46)
means that ®rst we minimize H k�x� on x 2 Q, and
next we minimize Hk�x� on the optimal set of
�Hk�x�. Thus, function Hk�x�, de®ned as the convex

linear combination (41), is used in problem (46)
only for regularization purposes, in the case of
nonunique minimum for the main function �Hk�x�

de®ned with (45). However, this regularization is
necessary to guarantee that the Chebyschev k-
mean-worst solutions are e�cient solutions of the
corresponding bicriteria mean/worst problem
(39).

Theorem 8. For any location problem (8) and any
absolute inequality measure ., a location pattern
x 2 Q is an e�cient solution to the corresponding
mean/worst problem (39), if and only if x is the
corresponding Chebyschev k-mean-worst solution
for some 0 < k < 1.

Proof. Let x0 2 Q be a Chebyschev k-mean-worst
solution for some 0 < k < 1. Suppose that x0 is not
e�cient in problem (39). It means, there exists
x0 2 Q such that M�f�x0��6M�f�x0�� and
l�f�x0��6 l�f�x0�� where at least one inequality is
strict. Hence, due to 0 < k < 1, we get
�Hk�x0�6 �Hk�x0� and Hk�x0� < Hk�x0� which con-

tradicts optimality of x0 for problem (46). Thus,
x0 is an e�cient solution of the corresponding
problem (39).

Let x0 be an e�cient solution of the mean/worst
problem (39). Recall that in our location problem
all the outcomes (distances) are assumed to be
nonnegative. If l�f�x0�� � M�f�x0�� � 0, then x0 is
the unique Chebyschev k-mean-worst solution for
any 0 < k < 1. Otherwise M�f�x0�� > 0. Let us
de®ne

k � l�f�x0��=�M�f�x0�� � l�f�x0���:

Then 0 < k < 1;

1ÿ k � M�f�x0��=�M�f�x0�� � l�f�x0���

and

�Hk�x0� � M�f�x0��l�f�x0��
M�f�x0�� � l�f�x0�� � kM�f�x0��

� �1ÿ k�l�f�x0��: �47�

Suppose that x0 is not the corresponding Che-
byschev k-mean-worst solution. Thus, there exists
x0 2 Q such that kM�f�x0��6 �Hk�x0� and
�1ÿ k�l�f�x0��6 �Hk�x0� where at least one in-
equality is strict. Due to (47), it would contradict
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e�ciency of x0. Thus, x0 must be the correspond-
ing Chebyschev k-mean-worst solution. �

Theorem 8 together with earlier proven theo-
rems for the speci®c inequality measures allows us
to derive the following corollaries for the in-
equality measures, we consider.

Corollary 2. Except for location patterns with
identical mean l�y� and maximum deviation D�y�,
any Chebyschev k-mean-worst solution

lex minf�maxf�1ÿ k�l�f�x��; kMD�f�x��g;
�1ÿ k�l�f�x�� � kMD�f�x��� : x 2 Qg;
0 < k < 1

is an equitably e�cient solution of the location
problem (8).

Corollary 3. Except for location patterns with
identical mean l�y� and mean deviation d�y�, any
Chebyschev k-mean-worst solution

lex minf�maxf�1ÿ k�l�f�x��; kMd�f�x��g;
�1ÿ k�l�f�x�� � kMd�f�x��� : x 2 Qg;
0 < k6 1

is an equitably e�cient solution of the location
problem (8).

Corollary 4. Any Chebyschev k-mean-worst solu-
tion

lex minf�maxf�1ÿ k�l�f�x��; kMD�f�x��g;
�1ÿ k�l�f�x�� � kMD�f�x��� : x 2 Qg;
0 < k6 1

is an equitably e�cient solution of the location
problem (8).

The Chebyschev k-mean-worst approach, sim-
ilar to the k-mean-equity one, is a parametric so-
lution concept generating various solutions
depending on the value of the trade-o� coe�cient
0 < k < 1. While the k-mean-equity solution con-
cepts can be considered as generalization of the
convex k-cent-dians (Halpern, 1978) for other ab-

solute inequality measures, the Chebyschev
k-mean-worst solution concepts generalize the
Chebyschevk-cent-dian(Ogryczak,1997a).Accord-
ing to Theorem 8, each e�cient solution of the
bicriteria mean/worst problem (39) can be found
as a Chebyschev k-mean-worst solution. Thus, the
concept of Chebyschev k-mean-worst solutions
allows us to identify various equitably e�cient
solutions of the location problem (8) through
modeling all rational compromises between the
values of the mean and the (measure related) worst
value. Note that equitably e�cient location P2
from Example 3, which could never be identi®ed as
a k-mean-equity solution, can be found as the
Chebyschev k-mean-worst solution.

Selection of trade-o� coe�cient k depends on
the type of a compromise one seeks. The Che-
byschev k-mean-worst solution is the median for k
close enough to 0, and the solution minimizing
M�f�x�� (the center in the case of inequality mea-
sure D�y�) for kP 1=2 (since M�y�P l�y�). For k
between 0 and 1=2 one may expect various com-
promise solutions. One may proceed the search for
a satisfactory compromise in an interactive way.
For more intuitive understanding of the trade-o�
k, one may use the concept of Chebyschev k-mean-
worst solutions applied to the normalized objective
functions

�M�f�x�� � M�f�x�� ÿM�f�xM�� � e
M�f�xl�� ÿM�f�xM�� � e

and

�l�f�x�� � l�f�x�� ÿ l�f�xl�� � e
l�f�xM�� ÿ l�f�xl�� � e

;

where

xM � arg minfM�f�x�� : x 2 Qg;

xl � arg minfl�f�x�� : x 2 Q; g

and e is an arbitrarily small positive number in-
troduced to guarantee positive values of the
functions. Functions �M�f�x�� and �l�f�x�� repre-
sent the relative degradations of the corresponding
functions M�f�x�� and l�f�x�� to their optimal
values M�xM� and l�xl�, respectively. One may
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easily prove an analog of Theorem 8 and its cor-
ollaries for the Chebyschev k-mean-worst solu-
tions de®ned with the use of functions �M�f�x�� and
�l�f�x�� instead of the original M�f�x�� and l�f�x��.
Such a Chebyschev k-mean-worst solution concept
may be considered a special case of the reference
point approach in multiple criteria optimization
(cf. Wierzbicki, 1982).

6. Concluding remarks

While making location decisions, the distribu-
tion of travel distances among the service recipi-
ents (clients) is an important issue. It is usually
tackled with the center or the median solution
concepts. Both concepts minimize only simple
scalar characteristics of the distribution: the max-
imal distance and the average distance, respec-
tively. The entire distribution of distances can be
taken into account in the multiple criteria model
where all the distances (or more general e�ects) for
the individual clients are considered as the set of
uniform criteria to be minimized. In order to
comply with the minimization of distances as well
as with an equal consideration of the clients, the
concept of equitable e�ciency must be used for
this multiple criteria model. The concept is based
on extension of the standard e�ciency concept
with the principle of impartiality and the principle
of transfers.

Equitably e�cient solution concepts may be
modeled with the standard multiple criteria opti-
mization applied to the cumulative ordered out-
comes. Although rich with equitably e�cient
solutions, these approaches, in general, are very
hard to implement even for a relatively small
problem size. In addition, the ordering of out-
comes requires the disaggregation of location
problem with the client weights which usually
dramatically increases the problem size. Therefore,
we are interested in solution concepts which can
be applied directly to the weighted problem. As a
simpli®ed approach one may consider a bicriteria
mean/equity model taking into account both the
e�ciency with minimization of the mean outcome
and the equity with minimization of an inequality
measure. For typical inequality measures such a

bicriteria model is computationally very attractive
since both the criteria are well de®ned directly for
the weighted location problem without necessity
of its disaggregation. The mean/equity bicriteria
approaches, in general, may generate solutions
which are not equitably e�cient. It turns out that,
under the assumption of bounded trade-o�s, the
bicriteria mean/equity approaches for selected
absolute inequality measures (maximum devia-
tion, mean deviation or mean di�erence) comply
with the rules of equitable multiple criteria opti-
mization. Moreover, these absolute inequality
measures can be used to build generalized bicri-
teria approaches not using directly the trade-o�
technique. Thus, the selected absolute inequality
measures can be e�ectively used to incorporate
equity factors into various facility location deci-
sion models.

This paper focuses on location problems.
However, the location decisions are analyzed
from the perspective of their e�ects for individual
clients. Therefore, the general concept of the
proposed equitable approaches can be used for
optimization of various systems which serve
many users. Moreover, uniform individual ob-
jectives may be associated with some events
rather than the physical users, like in many dy-
namic optimization problems where uniform in-
dividual criteria represent the same outcome for
various periods.
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