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Abstract This note is focused on computational efficiency of the portfolio selection
models based on the Conditional Value at Risk (CVaR) risk measure. The CVaR mea-
sure represents the mean shortfall at a specified confidence level and its optimization
may be expressed with a Linear Programming (LP) model. The corresponding portfo-
lio selection models can be solved with general purpose LP solvers. However, in the
case of more advanced simulation models employed for scenario generation one may
get several thousands of scenarios. This may lead to the LP model with huge num-
ber of variables and constraints thus decreasing the computational efficiency of the
model. To overcome this difficulty some alternative solution approaches are explored
employing cutting planes or nondifferential optimization techniques among others.
Without questioning importance and quality of the introduced methods we demon-
strate much better performances of the simplex method when applied to appropriately
rebuilt CVaR models taking advantages of the LP duality.

Keywords Risk measures - Portfolio optimization - Computability - Linear
programming

1 Introduction

Recently, the second order quantile risk measures have become popular in finance and

banking. The simplest such measure, now commonly called the Conditional Value at
Risk (CVaR) after Rockafellar and Uryasev [14], represents the mean shortfall at a
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specified confidence level. The CVaR measures optimization is consistent with the
second degree stochastic dominance [11]. Several empirical analyses confirm its ap-
plicability to various financial optimization problems [1, 9]. The corresponding port-
folio optimization models can be built as Linear Programming (LP) problems and
solved with general purpose LP solvers. However, in the case of more advanced sim-
ulation models employed for scenario generation one may get several thousands of
scenarios [3, 13] thus leading to the LP model with huge number of auxiliary vari-
ables and constraints and thereby hardly solvable by general LP tools. Actually, in the
case of fifty thousand scenarios and two hundred instruments the model may require
more than an hour computation time with the state-of-art LP solver (CPLEX code). To
overcome this difficulty some alternative solution approaches are searched trying to
approximate the returns with a factor representation [5], to reformulate the optimiza-
tion problems as two-stage recourse problems [7], or to employ cutting planes [2].
Recently, Lim et al. [8] have developed the dedicated techniques of nondifferentiable
optimization capable to solve effectively large scale CVaR models. We are afraid,
however, that reported low performance of the general purpose LP solvers (simplex
method) might be misleading for the CVaR models users who are less familiar with
the LP modeling and solution procedures. Without questioning the importance and
quality of the introduced methods we want to emphasize much better performances
of the simplex method when applied to appropriately rebuilt CVaR models.

Actually, in the standard LP model for CVaR optimization, the number of con-
straints (matrix rows) is proportional to the number of scenarios, while the number
of variables (matrix columns) is proportional to the total of the number of scenarios
and the number of instruments. However, in the case of problems with numerous con-
straints the computational efficiency of the simplex method can easily be improved
by taking advantages of the LP duality, i.e. by solving the dual to the original prob-
lem. This applies to various LP computable portfolio optimization models [6, 12]
and it applies also to the CVaR model with large number of scenarios. In this note we
show that the computational efficiency can be dramatically improved with an alter-
native model taking advantages of the LP duality. In the introduced dual model the
number of structural constraints (matrix rows) is proportional to the number of instru-
ments thus not affecting so seriously the simplex method efficiency by the number of
scenarios.

2 The LP models

Let us consider portfolio optimization problem with security returns given by dis-
crete random variables where coefficients r;; denote return realizations for security i
(i=1,2,...,n)under scenario j (j =1,2,..., J). Following formula (6) of [8], the
CVaR portfolio optimization model can be formulated as the following LP problem:

J

min g+zujz,- (1a)
£,2j.%i —
j=1
n

st i+ Y rixi+£20 forj=1,....J (1b)

i=1
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Xn:xi =1 (1)
i=1

x; >0 fori=1,...,n, z; =0 forj=1,...,J (1d)

where £ is unbounded variable. Variables x; with (1c) represent shares of several
securities in the portfolio. Note that with returns 7;; the corresponding losses are
represented by —r;;. Coefficients v; are given as quantities p;/(1 — o) where p;
denotes the probability of scenario j and « is the confidence level (CVaR parameter).
Actually, Lim et al. [8] assume all the scenarios equally probable (p; = 1/J) and
therefore they use a single coefficient v = [(1 — &)J]~" in model (6). Except from
the core portfolio constraints (1¢), model (1) contains J nonnegative variables z; plus
single & variable and J corresponding linear inequalities. Hence, its dimensionality
is proportional to the number of scenarios J. Exactly, the LP model (1) contains
J 4+ n + 1 variables and J + 1 constraints. For limited number of scenarios such LP
models are easily solvable by the general purpose LP solvers.

The use of advanced simulation models for scenario generation results in the corre-
sponding LP model (1) containing a huge number of variables and constraints thus de-
creasing dramatically computational efficiency of the simplex method. Indeed, while
the number of scenarios was fixed as 50,000 to provide an adequate approximation
to the underlying unknown continuous return distribution the model (for 100 or 200
securities) became hardly solvable by the simplex method while still reasonably solv-
able the barrier method [8, Table 2].

The LP dual to model (1) takes the following form:

max 7 (2a)
n.uj

J
st n+ Y rjuj<0 fori=1,....n (2b)

Jj=1

J
Zuj=1 (2¢)

Ofujgvj forj:l,...,] (2d)

Note that model may be considered a special case within the general theory of dual
representations of coherent measures of risk, following from conjugate duality [10]
which allows variables u; to have the interpretation of probability distributions.

The dual LP model (2) contains J variables u ; corresponding to inequalities (1b),
but the J constraints corresponding to variables z; from (1) take the form of simple
upper bounds (SUB) on u; (2d) thus not affecting the problem complexity. Actually,
the number of structural constraints in (2) is proportional to the total of portfolio
size n and it is independent from the number of scenarios. Exactly, there are J + 1
variables and n + 1 constraints (2b) and (2c). This guarantees a high computational
efficiency of the dual model even for very large number of scenarios.
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Table 1 Computational times (in seconds) for the dual CVaR model (averages of 10 instances with 50,000
scenarios)

Number of securities a=0.95 a=0.9 a=0.8 a=0.7 a=0.6
n=>50 5.3 7.1 8.8 9.8 10.0
n =100 13.6 17.9 22.8 24.8 25.7
n =200 38.9 52.6 68.00 74.9 75.8

We have run computational tests on large scale instances developed by Lim
et al. [8]. They were originally generated from a multivariate normal distribution
for 50, 100 or 200 securities with the number of scenarios 50,000. All computations
were performed on a PC with the Intel Core i7 2.66 GHz processor and 6 GB RAM
employing the simplex code of the CPLEX 12.1 package. An attempt to solve the pri-
mal model (1) with o = 0.95 resulted in 580, 1443 and 5006 seconds of computation
on average, for problems with 50, 100 and 200 securities, respectively. Solving the
dual models (2) directly by the primal method (standard CPLEX settings) results in
computation times 5.3, 13.6 and 38.9 CPU seconds, respectively. Moreover, the com-
putation times remain very low for various confidence levels as shown in Table 1.

Note that the computation times reported in Table 2 of [8] are for the confidence
level @ = 0.95 which corresponds to the first column of Table 1. Even if one takes
into account, that the CPU used in [8] is approximately two times slower than the
one used in our computations, the performances of the simplex method applied to the
dual model are significantly better than those of the nondifferentiable optimization
techniques as well as the barrier method reported in [8, Table 2]. Similar results were
achieved in our earlier experiments using CPLEX 9.1 instead of the 12.1 package.
One may notice, however, that the approach of Lim et al. [8] achieves near-optimality
at the end of phase 2 itself with competitive effort as noted in Table 2 of [8].

While trying to take advantages of the CPLEX automatic dualization in the pre-
solve phase (PREDUAL parameter [4]) instead of directly formulating the dual of
the portfolio selection problem we got the solution times of 23.7, 45.0 and 106.4
seconds, for problems with 50, 100 and 200 securities, respectively, and o = 0.95.
Thus the times turned out to be very attractive when compared with the primal model
solution times (about 20 times shorter) but significantly worse than those for directly
rebuilt models (Table 1). Actually, the performances of the automatic dualization ap-
proach are quite comparable to those of Lim et al. [8]. Indeed, the nondifferentiable
optimization approach adopted in [8] essentially solves the dual to the formulated
linear program, albeit by using a nondifferentiable optimization technique.

3 Concluding remarks

The presented computational tests show that the simplex method can effectively solve
large scale CVaR models provided that it is appropriately applied to the dual problem.
Actually, the portfolio selection problems of fifty thousand scenarios and two hundred

instruments can be solved with the general purpose LP solvers in less than a minute.
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The simplex method performances on the dual CVaR model although beating
those of the barrier algorithm and the nondifferentiable optimization techniques on
problems up to 200 securities are not easily scalable with respect to the number of
securities. Increasing number of securities results in increasing number of constraints
of the dual model. The latter together with huge number of variables may signifi-
cantly lower the simplex method efficiency. Therefore, our results do not question the
importance and quality of the nondifferentiable optimization techniques introduced
in [8]. They clarify the direct methods applicability for larger CVaR portfolio opti-
mization problems while leaving only extremely huge problems defined by both the
large number of scenarios and the large number of securities as requiring specialized
optimization techniques. One may also notice that the dual transformation cannot be
applied in the case of problems with more complicated nonconvex portfolio structure
restrictions. In particular, it cannot be applied to mixed integer programming models
related to nonconvex transaction costs.
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