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Abstract

While making location decisions, the distribution of travel distances among the service recipients
(clients) is an important issue. It is usually tackled with the minimax (center) or the minisum (median)
solution concepts. Both concepts minimize only simple scalar characteristics of the distribution: the
maximal distance and the average distance, respectively. In this paper, all the distances for the
individual clients are considered as a set of multiple uniform criteria to be minimized. This results in a
multiple criteria model taking into account the entire distribution of distances. Our analysis of the
multiple criteria problem focuses on the symmetrically e�cient solutions which comply with
minimization of distances as well as with impartial consideration of the clients. Various solution
concepts generating symmetrically e�cient location patterns are analyzed. Finally, the reference
distribution approach is developed as an interactive technique which enables us to identify a satisfactory
symmetrically e�cient location pattern by evolving a reference (target) distribution of distances. 7 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

A host of operational models has been developed to deal with the facility location
optimization (cf. [1±3]). Most classical location studies focus on some aspects of two major
approaches: the minimax (center) or the minisum (median) solution concepts. Both concepts
minimize only simple scalar characteristics of the distribution: the maximal distance and the
average distance, respectively. In this paper all the distances for the individual clients are
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considered as the set of multiple uniform criteria to be minimized. This results in a multiple
criteria model taking into account the entire distribution of distances.
The generic location problem that we consider may be stated as follows. There is given a set

of m clients (service recipients). Each client is represented by a speci®c point. There is also
given a set of n potential locations for the facilities. It may be, in particular, a subset (or the
entire set) of points representing the clients. Further, the number (or the maximal number) p of
facilities to be located is given �pRn). Thus, we limit our discussion to discrete location
problems [4]. They can be viewed, however, as network location problems with possible
locations restricted to some subset of the network vertices [5].
The main decisions to be made in the location problem can be described with the binary

variables: xj is equal to 1 if location j is to be used and equal to 0 otherwise �j � 1, 2, . . . ,n).
To meet the problem requirements, the decision variables xj have to satisfy the following
constraints:Xn

j�1
xj � p, xj 2 f0, 1g, for j � 1, 2, . . . ,n, �1�

where the equation is replaced with the inequality (R) if p speci®es the maximal number of
facilities to be located. Note that constraints (1) take a very simple form of the binary
knapsack problem with all the constraint coe�cients equal to 1. However, for most location
problems the feasible set has a more complex structure due to explicit consideration of
allocation decisions. These decisions are usually modeled with the additional allocation
variables: x 0ij is equal to 1 if location j is used to service client i and equal to 0 otherwise �i � 1,
2, . . . ,m; j � 1, 2, . . . ,n).
The allocation variables have to satisfy the following constraints:Xn

j�1
x 0ij � 1, for i � 1, 2, . . . ,m: �2�

x 0ijRxj, for i � 1, 2, . . . ,m and j � 1, 2, . . . ,n: �3�

x 0ij 2 f0, 1g, for i � 1, 2, . . . ,m and j � 1, 2, . . . ,n: �4�

In the capacitated location problem, for each client the demand for services is de®ned with the
corresponding coe�cient vi and the capacities of the potential facilities are given as qj (for
j � 1, 2, . . . ,n). This implies the additional constraints:Xm

i�1
vix
0
ijRqj, for j � 1, 2, . . . ,n:

Let us assume that for each client i �i � 1, 2, . . . ,m� a function fi�x� of the location pattern x
has been de®ned. This function, called the individual objective function, measures the outcome
(e�ect) of the location pattern for client i (cf. [6]). Individual objective functions fi depend on
e�ects of several allocations decisions. It means they depend on allocation e�ect coe�cients
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dij > 0 �i � 1, 2, . . . ,m; j � 1, 2, . . . ,n), called hereafter simply distance coe�cients or distances
as they usually express the distance (or travel time) between client i and location j. For the
standard uncapacitated location problem, it is assumed that all the potential facilities provide
the same type of service and each client is serviced by the nearest located facility. The
individual objective functions then take the following form:

fi�x� � min
j�1,...,n

�
dij : xj � 1

	
, for i � 1,2, . . . ,m:

With the explicit use of the allocation variables and the corresponding constraints (2) and (3),
the individual objective functions fi can be written in the linear form:

fi�x� �
Xn
j�1

dijx
0
ij, for i � 1, 2, . . . ,m: �5�

These linear functions of the allocation variables are applicable for the uncapacitated as well as
for the capacitated facility location problems. One may be interested in putting into formula
(5) some additional factors related to the client attributes, like the service demand vi, etc. This
can be implemented without a�ecting formula (5) by an appropriate transformation of the
distance coe�cients dij (e.g., dij � vidij, for j � 1, 2, . . . ,n). Note that in such transformations,
the set of potential locations and the set of clients are treated independently thus generating
possible nonsymmetric distances if the same ``geographical'' point belongs to both categories.
In typical formulations of location problems related to desirable facilities, smaller value of

the individual objective function means better e�ect (higher service quality or client
satisfaction). This remains valid for location of obnoxious facilities if the distance coe�cients
are replaced with their complements to some large number: d 0ij � dÿ dij, where d > dij for all
i � 1, 2, . . . ,m and j � 1, 2, . . . ,n: Therefore, without lost of generality, we can assume that each
function fi needs to be minimized. Hence, the generic location problem can be viewed as the
following multiple criteria minimization problem:

min
�
f�x�: x 2 Q

	
, �6�

where:

f � � f1, . . . , fm� is a vector function that maps the decision space X � Rn into the criterion
space Y � Rm,

Q � X denotes the feasible set of location patterns,
x 2 X denotes the vector of decision variables (the location pattern).

We do not assume any special form of the feasible set while analyzing properties of the
solution concepts. We rather consider that the feasible set is a general discrete (nonconvex) set.
Therefore, the results of our analysis apply to various discrete location problems. However, for
the solution procedure of the reference distribution approach we will assume that the feasible
set includes constraints (1)±(4) and possible side constraints. Similarly, we do not assume any
special form of the individual objective functions nor their special properties (like convexity)
while analyzing properties of the solution concepts. However, for the solution procedure of the
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reference distribution approach we will assume that the individual objective functions are
de®ned in terms of formula (5).
The elements of the criterion space we refer to as achievement vectors. An achievement

vector y 2 Y is attainable if it expresses outcomes of a feasible solution x 2 Q �y � f�x��: The
set of all the attainable achievement vectors is denoted by Ya, i.e. Ya�fy 2 Y: y� f�x�, x 2 Qg:
Model (6) only speci®es that we are interested in the minimization of all objective functions

fi for i 2 I � f1, 2, . . . ,mg: The individual objective functions fi are usually con¯icting when
minimized. Therefore, the location problem (6) is a true multiple criteria decision problem and
one needs to decide for a compromise among the individual outcomes. There is, however, a
speci®city of problem (6) related to the location decision circumstances. In typical multiple
criteria problems values of the individual objective functions are assumed to be incomparable
[7]. The individual objective functions in our multiple criteria location model express the same
quantity (usually the distance) for various clients. Thus the functions are uniform in the sense
of the scale used and their values are directly comparable. Moreover, especially while locating
public facilities, the clients should be considered impartially. Thus the distribution of distances
among the clients is more important than the assignment of several distances to the speci®c
clients. In other words, a location pattern generating individual distances: 4, 3 and 0 for clients
1, 2 and 3, respectively, should be considered equally good as a solution generating distances 0,
3 and 4. Our approach will take into account this speci®city of the multiple criteria location
model (6).

2. Symmetric e�ciency

It is clear, or rather commonly accepted, that an achievement vector is better than another if
all its individual outcomes are better or at least one individual outcome is better whereas no
other one is worse. In fact, it is the most general assumption about the preference model
underlying the multiple criteria optimization [8]. This is mathematically formalized with the
domination relation de®ned on the criterion space Y.

De®nition 1. We say that achievement vector y 0 2 Y dominates y 00 2 Y, or y0 is dominated by
y ', if y 0iRy 00i for all i 2 I and for at least one index i0 strict inequality holds (i.e., y 0i0 < y 00i0 ).

Unfortunately, there usually does not exist an attainable achievement vector that dominates all
the others with respect to all the criteria. Thus, in terms of the domination relation, we cannot
distinguish the best attainable achievement vector. We can only distinguish the attainable
achievement vectors which are not dominated by the others.

De®nition 2. We say that achievement vector y 2 Ya is nondominated, if there does not exist a
vector y 0 2 Ya such that y ' dominates y.

De®nition 3. We say that feasible solution x 2 Q is an e�cient (Pareto optimal) solution to the
multiple criteria problem (6), if y � f�x� is a nondominated achievement vector.
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Recall that in the multiple criteria location problem (6) all the individual objective functions
are uniform and equally important. Moreover, we want to consider all the clients, and thereby
all the individual objective functions, impartially. Thus we are interested in comparison rather
distributions of outcomes of the achievement vectors. Note that having two possible location
patterns generating achievement vectors y 0 � �5, 0, 5� and y 00 � �0, 1, 0�, respectively, we
recognize both the location patterns as e�cient. In fact, neither y ' dominates y0 nor y0
dominates y '. However, the ®rst location pattern generates two outcomes (distances) equal to 5
and one outcome equal to 0, whereas the second pattern generates one outcome equal to 1 and
two outcomes equal to 0. Thus, the second location pattern is clearly better.
For multiple criteria problems with uniform and equally important objective functions, we

need to introduce an e�ciency concept based rather on the set of outcomes than on the
achievement vectors. For this purpose, we assume that the preference model satis®es the
principle of impartiality (anonimity)

�yt�1�, yt�2�, . . . ,yt�m� � � �y1, y2, . . . ,ym�, for any permutation t of I: �7�

Condition (7) reads that any permutation of the achievement vector is equally good
(indi�erent) as the original achievement vector. Adding the principle of impartiality to the
domination relation leads us to the concept of symmetric domination which is not a�ected by
any permutation of the achievement vector coe�cients.

De®nition 4. We say that achievement vector y 0 2 Y symmetrically dominates y 00 2 Y, or y0 is
symmetrically dominated by y ', if there exist permutations t 0 and t 00 such that y 0t 0�i �Ry 00t 00�i � for
all i 2 I and for at least one index i0 strict inequality holds (i.e., y 0t 0�i0� < y 00t 00�i0�).

De®nition 5. We say that feasible solution x 2 Q is a symmetrically e�cient solution to the
multiple criteria problem (6), if y � f�x� is symmetrically nondominated, i.e. does not exist x 0 2
Q such that y 0 � f�x 0 � symmetrically dominates y � f�x�:

Note that an achievement vector y symmetrically dominates all achievement vectors which
are dominated in the standard sense as well as vectors dominated by any permutation of y (see
Fig. Fig. 1). Hence, the concept of symmetric e�ciency is a re®nement of the standard
e�ciency and the symmetrically e�cient set is a subset of the standard e�cient set.
The relation of symmetric domination can be expressed as domination of the achievement

vectors with coe�cients ordered in nonincreasing order. This can be mathematically formalized
with the ordering map Y: Rm4Rm such that Y�y� � �y1�y�, y2�y�, . . . ,ym�y��, where
y1�y�ry2�y�r � � �rym�y� and there exists a permutation t of set I such that yi�y� � yt�i � for i �
1, 2, . . . ,m: The following proposition is valid [9].

Proposition 1. An achievement vector y 0 2 Y symmetrically dominates y 00 2 Y, if and only if Åy 0 �
Y�y 0� dominates Åy 00 �Y�y 00�, i.e. yi�y 0�Ryi�y 00� for all i 2 I and for at least one index i0 strict
inequality holds (i.e., yi0�y 0� < yi0�y 00�).
Proposition 1 permits one to express symmetric e�ciency for problem (6) in terms of the

standard e�ciency for the multiple criteria problem with objectives Y�f�x��:
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min
�ÿ
y1�f�x��, y2�f�x��, . . . ,ym�f�x��

�
: x 2 Q

	
: �8�

Corollary 1. A feasible solution x 2 Q is a symmetrically e�cient solution to the multiple criteria
problem (6), if and only if it is an e�cient solution to the multiple criteria problem (8).

Example 1. In order to illustrate the concept of symmetric domination, let us consider a
problem of locating two facilities among 10 points where each point represents one client and
it can be considered as a potential location for a facility. We assume that the facilities have
unlimited capacities and each client is served by the nearest facility. Thus, the problem takes
the form (1)±(6) with m = n = 10 and p = 2. To make possible an easy analysis of the
problem without complex computations, we consider points P1, P2, . . . , P10 on a line, say X-
axis, with coordinates: 0, 4, 5, 6, 8, 17, 18, 19, 20 and 28, respectively.

Table 1 contains four various solutions to the location problem. The ®rst one corresponds to
the lexicographic minimax (center) solution concept [10] where in addition to the largest
outcome, the second largest outcome is also minimized (provided that the largest one remains
as small as possible), the third largest outcome is minimized (provided that the two largest
remain as small as possible), and so on. This solution depends on locating facilities at points
P2 and P9. In the second row of Table 1, there are distances for another, in our opinion the
worst, minimax solution. It is based on locating facilities at points P1 and P9. Further, we
have included the minisum (median) solution and the solution minimizing the Gini coe�cient,
which is perhaps the most popular inequality measure in economics [6]. The minisum solution

Fig. 1. Achievement vectors symmetrically dominated by y 2 R2:
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is based on locating facilities at points P3 and P8. The Gini solution uses locations P1 and
P10.
Note that among the four solutions (achievement vectors) presented in Table 1 no one is

dominated by any other. In fact, all these solutions are e�cient as, due to the problem
speci®city, each feasible solution is e�cient. However, one can easily observe that the ordered
achievement vector of the second solution is dominated by that of the ®rst one. The ordered
achievement vector of the fourth solution is dominated by each of the other three vectors.
Thus, both the second and the fourth solutions are not symmetrically e�cient.

3. Generation techniques

E�cient solutions of the multiple criteria problem (6) can be generated with simple
scalarizations of the problem. Most of them are based on the minisum approach:

min

(Xm
i�1

fi�x�: x 2 Q

)
, �9�

or on the minimax approach:

min

�
max

i�1,...,m
fi�x�: x 2 Q

�
: �10�

However, the latter generates an e�cient solution only in the case of a unique optimal
solution. In the general case, the optimal set of (10) includes an e�cient solution and some
additional re®nement (regularization) is necessary to select the optimal solution which is
e�cient. Therefore, the minimax scalarization is usually regularized by the additional minisum
term thus generating the augmented minimax problem [7]:

min

(
max

i�1,...,m
fi�x� � e

Xm
i�1

fi�x�: x 2 Q

)
, �11�

where e is an arbitrarily small positive number.

Table 1

Location solutions for Example 1

Solution Locations Achievement vector Ordered achievement vector

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 P2 P9 4 0 1 2 4 3 2 1 0 8 8 4 4 3 2 2 1 1 0 0
2 P1 P9 0 4 5 6 8 3 2 1 0 8 8 8 6 5 4 3 2 1 0 0
3 P3 P8 5 1 0 1 3 2 1 0 1 9 9 5 3 2 1 1 1 1 0 0

4 P1 P10 0 4 5 6 8 11 10 9 8 0 11 10 9 8 8 6 5 4 0 0
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For location problems, the minisum and the minimax approaches represent the (unweighted)
median and the center solution concepts, respectively. Halpern [11] has introduced a parametric
solution concept of l-cent-dian as the optimal solution of problem:

min

(
l max
i�1,...,m

fi�x� � �1ÿ l�
Xm
i�1

fi�x�: x 2 Q

)
: �12�

The l-cent-dian covers as special cases the center �l � 1� and the median �l � 0� solution
concepts. For 0 < l < 1, the l-cent-dian minimizes a convex combination of the average and
maximum distance and it is an extension of the augmented minimax approach (11) for not
necessarily small e: Note that:

max
i�1,...,m

yi�f�x�� � max
i�1,...,m

fi�x� and
Xm
i�1

yi�f�x�� �
Xm
i�1

fi�x�:

Hence, all the above scalarizations can also be considered as applied to the ordered problem
(8). Thus, due to the theory of multiple criteria optimization [7] and Corollary 1, the following
proposition is valid.

Proposition 2. For any 0Rl < 1, each optimal solution to the l-cent-dian problem (12) is a
symmetrically e�cient solution to the multiple criteria location problem (6).

Usually there exist many symmetrically nondominated achievement vectors and they are
incomparable with each other on the basis of the speci®ed set of objective functions. Therefore,
usually there exist many symmetrically e�cient solutions and they are di�erent not only in the
decision space but also in the criteria space. So, there arises a need for further analysis, or
rather decision support, to help the decision maker (DM) in the selection of one solution for
implementation. Of course, the original objective functions do not allow one to select any
symmetrically e�cient solution as better than any other one. Therefore, this analysis depends
usually on additional information about the DMs preferences. The DM, working interactively
with a decision support system (DSS), speci®es the preferences in terms of some control
parameters and the DSS provides the DM with a symmetrically e�cient solution which is the
best according to the speci®ed control parameters. For such an analysis, there is no need to
identify the entire symmetrically e�cient set prior to the analysis, since contemporary
optimization software is powerful enough to be used on-line for direct computations at each
interactive step. Thus, the DSS can generate at each interactive step only one solution that
meets the current preferences. Such a DSS can be used for the analysis of decision problems
with ®nite as well as in®nite symmetrically e�cient sets. In order to allow the DSS to meet
various DMs preferences, it is important, however, that the control parameters provide the
completeness of the control (cf. [12]), i.e., by varying the control parameters, the DM can
identify every symmetrically nondominated achievement vector.
For an interactive DSS dealing with multiple uniform criteria, we need parametric solution

concepts generating symmetrically e�cient solutions. In the case of the standard e�ciency, one
may consider weighting of the objective functions. In the case of impartial criteria, we cannot

W. Ogryczak / Computers & Industrial Engineering 37 (1999) 595±612602



assign various weights to individual objective functions. Due to Corollary 1, the weights should
be assigned rather to the speci®c coe�cients of the ordered achievement vectors. Such an
ordered weighting approach was proposed by Yager [13] in the so-called Ordered Weighted
Averaging (OWA) aggregation. Applying the OWA aggregation operator to the multiple
criteria problem (6), we get the following single objective problem:

min

(Xm
i�1

wiyi�f�x��: x 2 Q

)
: �13�

Due to Corollary 1, the following proposition is valid.

Proposition 3. In the case of positive weights wi > 0 �i � 1, . . . ,m), every optimal solution to
problem (13) is a symmetrically e�cient solution to the multiple criteria problem (6).

Note that the OWA scalarization (13) with positive weights covers as its special cases: the
minisum approach (9) �w1 � � � � � wm � 1), the augmented minimax approach (11) �w1� 1� e,
w2 � � � � � wm � e� and the l-cent-dian (12) for 0Rl < 1 �w1 � 1, w2 � � � � � wm � 1ÿ l),
whereas the pure minimax approach (10) is represented with w1 � 1 and w2 � � � � � wm � 0: As
a limiting case of the OWA problem (13), when the di�erences among the weights increase to
in®nity (i.e., w1 � w2 � � � � � wm), we get the lexicographic problem:

lexmin
�ÿ
y1�f�x��, y2�f�x��, . . . ,ym�f�x��

�
: x 2 Q,

	 �14�

which represents the lexicographic minimax approach [10] to the original multiple criteria
problem (6). Problem (14) is a regularization of the standard minimax scalarization (10). In the
former, having minimized the largest outcome, we minimize also the second largest outcome
(provided that the largest one remains as small as possible). Further, we minimize the third
largest outcome (provided that the two largest remain as small as possible), and so on. Since
the lexicographic optimization generates e�cient solutions, thus due to Corollary 1, we get the
following corollary.

Corollary 2. The optimal solution to the lexicographic minimax problem (14) is a symmetrically
e�cient solution to the multiple criteria problem (6).

Unfortunately, the ordered weighting does not provide us with a complete parameterization
of the entire symmetrically e�cient set. This is due to the speci®city of the linear weighting
approach. In the case when the multiple criteria problem is a discrete one (like the location
problem (6)), there exist symmetrically e�cient solutions that cannot be generated as optimal
solutions to problem (13) with any set of positive weights. We illustrate this with a small
example.

Example 2. Let us consider a simple single facility location problem with two clients (C1 and
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C2) and three potential locations (P1, P2 and P3). The distances between the clients and
potential locations are given as follows: d11=15, d12=14, d13=12, d21=10, d22=11, d23=12.

Note that all three feasible solutions are e�cient in the standard and symmetric sense. One
can easily verify that while dealing with the ordered weighting approach, location P2 cannot be
selected for any set of positive weights. If 3w1 < 2w2, then location P1 is the unique optimal
solution to problem (13). If 3w1 > 2w2, then location P3 is the unique optimal solution to
problem (13). Finally, if 3w1 � 2w2, then both locations P1 and P3 are optimal. Location P2 is
never an optimal solution to problem (13) with the data of this example.

4. The reference point approach

In the case of multiple criteria problems with discrete (or more general nonconvex) feasible
sets, the entire e�cient set can be parameterized with the weighted augmented minimax
approach (cf. [7]). This is used as the basis of the reference point method [14]. Due to
Corollary 1, we can apply the reference point method to the ordered problem (8) to
parameterize the entire symmetrically e�cient set of the original multiple criteria problem (6).
The reference point method is an interactive technique for an open search for a satisfying
e�cient solution. The basic concept of the interactive scheme is as follows. The DM speci®es
requirements in terms of aspiration levels for individual objective functions. Depending on the
speci®ed aspiration levels a special scalarizing achievement function is built which when
minimized generates an e�cient solution to the problem. The computed e�cient solution is
presented to the DM as the current solution allowing comparison with previous solutions and
modi®cations of the aspiration levels if necessary.
The scalarizing achievement function not only guarantees e�ciency of the solution but also

re¯ects the DMs expectation as speci®ed by the aspiration levels. In building the function the
following assumption regarding the DMs expectations is made: the DM prefers outcomes that
satisfy all the aspiration levels to any outcome that does not reach one or more of the
aspiration levels. In other words, the aspiration levels are considered to be the desired values
for the corresponding outcomes. However, if there is an opportunity to reach all the aspiration
levels and to improve further some outcomes, then the reference point method will do it. One
of the simplest scalarizing achievement functions takes the following form (cf. [7]):

s�x� � max
i�1,...,m

�
li
ÿ
fi�x� ÿ ai

�	� e
Xm
i�1

li
ÿ
fi�x� ÿ ai

�
, �15�

where:

a denotes the vector of aspiration levels,
l is a scaling vector, li > 0,
e is an arbitrarily small positive number.

Minimization of the scalarizing achievement function (15) over the feasible set generates an
e�cient solution. The selection of the solution within the e�cient set depends on two vector
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parameters: an aspiration vector a and a scaling vector l: In practical implementations the
former is usually designated as a control tool for direct use by the DM during the interactive
analysis. The latter is automatically calculated on the basis of some predecision analysis or it is
adjusted during the interactive process depending on values of the so-called reservation levels
used as additional control parameters expressing the worst accepted values of outcomes (cf.
[15]). The small scalar e is introduced only to guarantee e�ciency in the case of a nonunique
optimal solution. It can be replaced by two level lexicographic minimization of the
corresponding terms [15]. The reference point approach was successfully implemented in many
DSS (cf. [16]) with real-life applications including multiple criteria location problems (e.g. [17]).
One may apply the scalarizing achievement function (15) to the ordered problem (8). It

results in the scalarizing achievement function:

�s�x� � max
i�1,...,m

�
li
ÿ
yi�f�x�� ÿ �ai

�	� e
Xm
i�1

li
ÿ
yi�f�x�� ÿ �ai

�
, �16�

where Åa � � �a1, �a2, . . . , �am� is an ordered aspiration vector �Åa � Y�Åa��: Applying function (16) to
the multiple criteria problem (6) we get the following parameterized single objective problem
generating symmetrically e�cient solutions:

min
�

�s�x�: x 2 Q
	
: �17�

Due to Corollary 1, the parametric problem (17) provides us with a complete parameterization
for the symmetrically e�cient set of the multiple criteria problem (6). This means that any
optimal solution to problem (17) is a symmetrically e�cient solution of (6), and any
symmetrically e�cient solution of the multiple criteria problem (6) can be found as an optimal
solution to problem (17) for some aspiration vector Åa:
The ordering operator Y used in the de®nition of the scalarizing achievement function (16),

in general, makes the corresponding problem (17) very di�cult to implement. However, even
the unweighted scalarizing achievement function (16) with all li � 1 provides us with a
complete parameterization of the entire symmetrically e�cient set. If we decide to use such an
unweighted scalarizing achievement function, we can form the corresponding scalarized
problem (17) without the ordering operator in the following form:

minimize max
i�1,...,m

zi � e
Xm
i�1

zi

subject to x 2 Q

zi � fi�x� ÿ
Xm
l�1

aluil,
Xm
l�1

uil � 1, for i � 1, 2, . . . ,m

Xm
i�1

uil � 1, for l � 1, 2, . . . ,m

uil 2 f0, 1g, for i � 1, 2, . . . ,m; l � 1, 2, . . . ,m,

where the ordering of outcomes is implemented with additional assignment constraints.
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Note that the aspiration vector Åa in the scalarizing achievement function (16) is used in the
ordered form �Åa � Y�Åa�). Thus, it is rather an aspiration set of outcomes than a vector. For
problems with large number of objectives, like location problem (6) with large number of
clients, we can consider it as an aspiration distribution of outcomes.

5. The reference distribution approach

For the discrete location problem (1)±(6) there exists a ®nite set of all possible outcomes of
the individual objective functions. Therefore, we can directly deal with the distribution of
outcomes described by frequencies of several outcomes. Let V � fv1, v2, . . . ,vrg (where v1 > v2 >
� � � > vr� denote the set of all attainable outcomes (all possible values of the individual objective
functions fi for x 2 Q). We introduce integer functions hk�x� �k � 1, 2, . . . ,r� expressing the
number of values vk taken in the achievement vector f(x). Analytically, the functions hk can be
introduced into any discrete model by auxiliary assignment (binary) variables uik with the
following formulas:

hk�x� �
Xm
i�1

uik, for k � 1, 2, . . . ,r:

fi�x� �
Xr
k�1

vkuik,
Xr
k�1

uik � 1, for i � 1, 2, . . . ,m:

uik 2 f0, 1g, for i � 1, 2, . . . ,m; k � 1, 2, . . . ,r:

Note that in our discrete location problem with explicit allocation variables (2)±(4), the
functions hk can be introduced directly to the model without auxiliary variables uik: Let us
partition the set of all the allocation indices �i, j� i � 1, . . . ,m; j � 1, . . . ,n into classes Ck �k �
1, . . . ,r� de®ned by equal distance coe�cients dij: Let d�Ck� �k � 1, . . . ,r� denote the value of the
distance coe�cient for the class Ck and d�C1� > d�C2� > � � � > d�Cr�: Then, the functions hk can
be de®ned with the simple linear formula:

hk�x� �
X
�i, j�2Ck

x 0ij, for k � 1, 2, . . . ,r: �18�

Having de®ned the functions hk, we can introduce cumulative distribution functions:

�hk�x� �
Xk
l�1

hl�x�, for k � 1,2, . . . ,r: �19�

The function �hk expresses the number of outcomes greater or equal to vk: Certainly, for the
discrete location problem (1)±(6) with functions hk de®ned by formula (18), the corresponding
functions �hk are linear. Since we want to minimize all the outcomes, we are interested in the
minimization of all the functions �hk: This leads us to the following multiple criteria problem:
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min
�ÿ

�h1�x�, �h2�x�, . . . , �hr�x�
�
: x 2 Q

	
: �20�

The following proposition (the proof is given in Appendix) permits one to express symmetric
e�ciency for problem (6) in terms of the standard e�ciency for the multiple criteria problem
(20).

Proposition 4. A feasible solution x 2 Q is a symmetrically e�cient solution to the multiple
criteria problem (6), if and only if it is an e�cient solution to the multiple criteria problem (20).

For the discrete location problem (1)±(6), the number of objective functions �hk in problem
(20) is given by the number of classes Ck which is related to the accuracy of distances. While
dealing with discrete location problems we have a discrete set of feasible alternatives (location
patterns). However, the alternatives are evaluated and compared on the basis of outcomes
(distances) which may take real values. This leads us to the fundamental problem of the
accuracy of distances, or rather the accuracy of distinguishing di�erent distances. We argue
that the DM is usually not interested in a reduction of some distance by an arbitrarily small
quantity. In our opinion, the DM rather wishes to distinguish some categories of distances
expressed with fuzzy terms such as: extremely close, very close, . . . , far away, very far away,
etc. In the simplest model, the distance categories and the corresponding classes Ck can be
de®ned by appriopriate intervals of distances without any need to incorporate the fuzzy set
theory (cf. [18]). If one wishes to take advantages of the fuzzy set theory by modeling each
distance category with the membership function mk, then the corresponding functions hk are
de®ned by the linear formula:

hk�x� �
Xm
i�1

Xn
j�1

mk
ÿ
dij
�
x 0ij, for k � 1, 2, . . . ,r:

We believe that most decision makers distinguish a quite small number of the distance
categories. With such a modeling approach, there is a very limited number of the
corresponding objective functions in problem (20). Thus, we argue that problem (20) has not
only simpler objective functions than problem (8), but also it has a rather small number of
objective functions independently of the number of clients.
Due to Proposition 4, we can apply the standard reference point method to the multiple

criteria problem (20) for an interactive analysis of the symmetrically e�cient set of problem
(6). Note that function �hr represents the number of outcomes greater than or equal to the
smallest possible outcome vr: Hence, function �hr is constant � �hr�x� � m for all x 2 Q� and it can
be dropped from the analysis. Thus, the corresponding scalarizing achievement function takes
the following form:

s�x� � max
k�1,...,rÿ1

�
lk
ÿ

�hk�x� ÿ �qk
�	
� e

Xrÿ1
k�1

lk
ÿ

�hk�x� ÿ �qk
�
, �21�

where:

�q denotes the vector of aspiration levels for the cumulative distribution of outcomes,
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l is a scaling vector, lk > 0,
e is an arbitrarily small positive number.

Due to Proposition 4, the scalarizing achievement function (21) provides us with a complete
parameterization for the symmetrically e�cient set of the multiple criteria problem (6). This
means that minimization of (21) over the feasible set generates a symmetrically e�cient
solution of (6) and any symmetrically e�cient solution of the multiple criteria problem (6)
minimizes (21) for some aspiration vector Åq: The aspiration distribution vector Åq is the main
control tool for direct use by the DM during an interactive analysis. The scaling factors lk can
be used as auxiliary control parameters and be modi®ed by the DM during the interactive
process in order to emphasize the importance of some criteria. Note that, in the case of larger
r, the DM does not need to deal with all the aspiration coe�cients Åqk: As Åq represents the
reference cumulative distribution, it can be speci®ed with only a few coe�cients �qk and
automatic interpolation of values for the remaining coe�cients. Thus, during the initial stage
of the interactive search the DM may only roughly specify the aspiration distribution taking
into account larger classes of distances.

Example 3. In order to illustrate the reference distribution approach, we show the sample
interactive analysis of a randomly generated discrete location problem (1)±(6). We consider
location of two facilities ( p = 2) among 10 given potential locations (n = 10) to serve the set
of 50 clients (m = 50). To de®ne the data, we have randomly generated (from a uniform
distribution) 60 points with integer coordinates within the interval 0±100. The distances have
been de®ned by calculating ®rst the Euclidean distances, and next by rounding the results to
the assumed distance step 10. Thus, we have received the multiple criteria problem (6) with 50
uniform criteria for which the values belong to the set V � f150, 140, . . . ,10, 0g, where v1 �
150, v2 � 140, . . . ,v15 � 10 and v16 � 0: We have analyzed the problem with the reference
distribution approach based on the scalarizing achievement function (21) with all lk � 1:

Table 2
Interactive analysis of the random location problem

Cumulative distribution of distances �hk
k 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

vk 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Iteration 1

Aspiration 45 43 31 22 18 11 6 3 0 0 0 0 0 0 0
Solution 48 44 31 22 21 12 7 5 0 0 0 0 0 0 0

Iteration 2

Aspiration 50 50 40 30 18 11 6 3 0 0 0 0 0 0 0
Solution 50 49 38 27 18 11 6 3 1 0 0 0 0 0 0

Iteration 3
Aspiration 50 50 48 32 22 14 6 3 0 0 0 0 0 0 0

Solution 50 49 38 27 18 11 6 3 1 0 0 0 0 0 0
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The interactive analysis is reported in Table 2 and Fig. 2. As the ®rst aspiration, we have
taken the utopia distribution, i.e. the vector Åq consisted of the smallest possible values of the
functions �hk �k � 1, 2, . . . ,15�, when minimized independently. This has resulted in the solution
with a signi®cant number of large distances (5 distances equal to 80, 7 distances greater than
or equal to 70 and 12 distances greater than or equal to 60). To ®nd a solution with a smaller
number of large distances, in iteration 2 we relax (increase) the aspiration levels corresponding
to the small distances � �q15� �q14�50, �q13� 40, �q12�30� leaving unchanged the aspiration levels
corresponding to larger distances. As a result, we get the solution with a remarkable lower
number of large distances (only 3 distances greater than or equal to 80, 6 distances greater
than or equal to 70, and 11 distances greater than or equal to 60), although one distance is
equal to 90. This distribution of distances seems to be a satisfying solution as we have achieved
the smallest possible numbers of distances greater than or equal to 40, 50, 60 and 70,
respectively.
To verify if there exists a similar solution without any distance greater than 80, in iteration 3

we further relax the aspiration levels for small distances. It turns out that we get again the
same solution. There does not exist another solution with a similarly low number of larger
distances. This is clear from Fig. 2, where the solution distributions are presented with dots on
the bars representing the corresponding reference distributions (aspirations). Thus, we accept
the current solution which generates: 1 distance of 90, 2 distances of 80, 3 of 70, 5 of 60, 7 of
50, 9 of 40, 11 of 30, 11 of 20 and one of 10. The selection of the ®nal solution depends,
certainly, on the DMs preferences. Our sample session shows, however, how easily the DM can
learn the decision problem and control the analysis.

6. Concluding remarks

While making location decisions, the distribution of travel distances among the service

Fig. 2. Interactive analysis of the random location problem.
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recipients (clients) is an important issue. It is usually tackled with the minimax (center) or the
minisum (median) solution concepts. Both concepts minimize only simple scalar characteristics
of the distribution: the maximal distance and the average distance, respectively. The entire
distribution of distances can be taken into account in the multiple criteria model where all the
distances for the individual clients are considered as the set of uniform criteria to be
minimized. In order to comply with the minimization of distances as well as with an impartial
consideration of the clients, the concept of symmetric e�ciency must be used for this multiple
criteria model. The concept is based on the principle of impartiality, i.e., on the assumption
that any permutation of the achievement vector is equally good as the original achievement
vector.
In the case of the standard multiple criteria optimization problems, the reference point

method is a very convenient technique for an interactive analysis. It provides the DM with a
tool for an open analysis of the e�cient frontier. The interactive analysis is navigated with the
commonly accepted control parameters expressing aspiration levels for the individual objective
functions. The standard reference point method cannot be directly applied to search for
symmetrically e�cient solutions. In this paper we have developed, as an analogue of the
reference point method, the reference distribution method taking into account the principle of
impartiality. All the solutions generated during the interactive process belong to the
symmetrically e�cient set. The interactive analysis of the symmetrically e�cient set is
controlled with the aspiration cumulative distribution of outcomes. In the case of discrete
location problems modeled with explicit allocation variables, the method does not complicate
signi®cantly the original problem, as all the introduced arti®cial objective functions are linear.
The illustrative example with a randomly generated discrete location problem shows how easily
the interactive analysis can be navigated with the aspiration cumulative distribution of
distances.
This paper focuses on location problems. However, the location decisions are analyzed from

the perspective of their e�ects for individual clients. Therefore, the general concept of the
proposed distribution approach can be used for optimization of various systems which serve
many users. Moreover, uniform individual objectives may be associated with some events
rather than the physical users, like in many dynamic optimization problems where uniform
individual criteria represent the same outcome for various periods.
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Appendix. Proof of Proposition 4

Let x 2 Q be a symmetrically e�cient solution to problem (6). Suppose that x is not an
e�cient solution to the corresponding problem (20). This means that there exists x0 2 Q such
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that �hk�x0�R �hk�x� for k � 1, 2, . . . ,r where for at least one index k0 strict inequality holds (i.e.,
�hk0�x0� < �hk0�x�). Then, obviously, Y�f�x0�� dominates Y�f�x�� which contradicts symmetric
e�ciency of x for problem (6). Thus, symmetric e�ciency of vector x 2 Q for problem (6)
implies its e�ciency for problem (20).
Now, let x 2 Q be an e�cient solution to problem (20). Suppose that x is not a

symmetrically e�cient solution to problem (6). This means that there exists x0 2 Q such
that Åy0 � Y�f�x0�� dominates Åy � Y�f�x��: Note that �hk�x0� � �hk�x� � 0 if vk > �y01 and
vk > �y1 as well as �hk�x0� � �hk�x� � m if vk < �y0m and vk < �ym: Moreover, for any i 2 I �y0i
� vk 0R �yi � vk 00 implies �hk�x0�R �hk�x� for k 0RkRk 00: Hence, the achievement vector
Åh�x0� dominates (in the standard sense) achievement vector Åh�x� which contradicts e�ciency of
x for problem (20). Thus, e�ciency of vector x 2 Q for problem (20) implies its symmetric
e�ciency for problem (6).
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