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Abstract: Resource allocation problems are concerned with the
allocation of limited resources among competing activities so as to
achieve the best performances. However, in systems which serve
many users there is a need to respect some fairness rules while look-
ing for the overall efficiency. The so-called Max-Min Fairness is
widely used to meet these goals. However, allocating the resource
to optimize the worst performance may cause dramatic worsening
of the overall system efficiency. Therefore, several other fair alloca-
tion schemes are being considered and analyzed. In this paper we
show how the concepts of multiple criteria equitable optimization
can effectively be used to generate various fair and efficient allo-
cation schemes. First, we demonstrate how the scalar inequality
measures can be consistently used in bicriteria models to search for
fair and efficient allocations. Further, two alternative multiple crite-
ria models equivalent to equitable optimization are introduced, thus
allowing to generate a larger variety of fair and efficient resource
allocation schemes.

Keywords: multiple criteria optimization, efficiency, fairness,
equity, inequality measures.

1. Introduction

Resource allocation problems are concerned with the allocation of limited re-
sources among competing activities (Ibaraki and Katoh, 1988). In this paper,
we focus on approaches that, while allocating resources to maximize the system
efficiency, also attempt to provide a fair treatment of all the competing activities
(Luss, 1999). The problems of efficient and fair resource allocation arise in var-
ious systems which serve many users, like in telecommunication systems among

1This work was partially supported by the Ministry of Science and Information Society
Technologies under grant 3T11C 005 27 “Models and Algorithms for Efficient and Fair Re-
source Allocation in Complex Systems”.
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others. In networking a central issue is how to allocate bandwidth to flows
efficiently and fairly (Denda, Banchs and Effelsberg, 2000; Pióro and Medhi,
2004). The issue of equity is widely recognized in location analysis of public
services, where the clients of a system are entitled to fair treatment according
to community regulations. In such problems, the decisions often concern the
placement of a service center or another facility in a position so that the users
are treated in an equitable way, relative to certain criteria (Ogryczak, 2000).
Moreover, uniform individual outcomes may be associated with some events
rather than physical users, like in many dynamic optimization problems where
uniform individual criteria represent a similar event in various periods and all of
them are equally important. Recently, several publications relating the fairness
and equity concepts to the multiple criteria optimization methodology have ap-
peared (Luss, 1999; Ogryczak and Śliwiński, 2002; Kaliszewski, 2004; Kostreva,
Ogryczak and Wierzbicki, 2004).

The generic resource allocation problem may be stated as follows. Each
activity is measured by an individual performance function that depends on
the corresponding resource level assigned to that activity. A larger function
value is considered better, like the performance measured in terms of quality
level, capacity, service amount available, etc. Models with an (aggregated)
objective function that maximizes the mean (or simply the sum) of individual
performances are widely used to formulate resource allocation problems, thus
defining the so-called mean solution concept. This solution concept is primarily
concerned with the overall system efficiency. As based on averaging, it often
provides solution where some smaller services are discriminated in terms of
allocated resources. An alternative approach depends on the so-called Max-Min
solution concept, where the worst performance is maximized. The Max-Min
approach is consistent with Rawlsian (Rawls, 1971) theory of justice, especially
when additionally regularized with the lexicographic order. The latter is called
the Max-Min Fairness (MMF) and commonly used in networking (Pióro and
Medhi, 2004). Allocating the resources to optimize the worst performances may
cause, however, a large worsening of the overall (mean) performances.

Fairness is, essentially, an abstract socio-political concept that implies im-
partiality, justice and equity (Rawls, 1958; Young, 1994). Nevertheless, fairness
was usually quantified with the so-called inequality measures to be minimized
(Atkinson, 1970; Rothschild and Stiglitz, 1973; Sen, 1973). Unfortunately, di-
rect minimization of typical inequality measures contradicts the maximization
of individual outcomes and it may lead to inferior decisions. The concept of
fairness has been studied in various areas beginning from political economics
problems of fair allocation of consumption bundles (Dalton, 1920; Pigou, 1912;
Rawls, 1958) to abstract mathematical formulation (Steinhaus, 1949). In order
to ensure fairness in a system, all system entities have to be equally well pro-
vided with the system’s services. This leads to concepts of fairness expressed by
the equitable efficiency (Ogryczak, 1997; Kostreva and Ogryczak, 1999: Luss,
1999). The concept of equitably efficient solution is a specific refinement of the
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Pareto-optimality, taking into account the inequality minimization according to
the Pigou-Dalton approach.

The paper is organized as follows. In the next section the equitable optimiza-
tion with the preference structure that complies with both efficiency (Pareto-
optimality) and the Pigou-Dalton principle of transfers is used to formalize
the fair solution concepts. In Section 3 the use of scalar inequality measures
in bicriteria models to search for fair and efficient allocations is analyzed. It
is shown that properties of convexity and positive homogeneity, together with
some boundedness condition are sufficient for a typical inequality measure to
guarantee that it can be used consistently with the equitable optimization rules.
Further, two alternative multiple criteria models equivalent to equitable opti-
mization are introduced, thus allowing for generation of a larger variety of fair
and efficient resource allocation schemes. In Section 4 the multiple criteria
model of the cumulative ordered outcomes is analyzed. This model covers the
MMF and the Ordered Weighted Averaging (Yager, 1988) as special cases, but
it allows also for the reference point approaches. In Section 5 the alternative
model of multiple targets is introduced where the mean shortfalls to several real
target values forms the multiple criteria to be minimized. The model requires
a finite set of outcome values or its approximation with some grid but it is very
attractive computationally.

2. Equity and fairness

2.1. Efficiency and equity

In this section we formulate the generic resource allocation problem as a multiple
criteria optimization model. We also discuss the equity properties achieved by
the Max-Min approaches to the multiple criteria model.

The generic resource allocation problem may be stated as follows. There is
a system dealing with a set I of m services. There is given a measure of services
realization within a system. In applications we consider, the measure usually
expresses service quality. In general, outcomes can be measured (modeled) as
service time, service costs, service delays as well as in a more subjective way.
There is also given a set Q of allocation patterns (allocation decisions). For each
service i ∈ I a function fi(x) of the allocation pattern x ∈ Q has been defined.
This function, called the individual objective function, measures the outcome
(effect) yi = fi(x) of allocation x pattern for service i. In typical formulations a
larger value of the outcome means a better effect (higher service quality or client
satisfaction). Otherwise, the outcomes can be replaced with their complements
to some large number. Therefore, without loss of generality, we can assume
that each individual outcome yi is to be maximized, which allows us to view the
generic resource allocation problem as a vector maximization model:

max {f(x) : x ∈ Q} (1)
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where f(x) is a vector-function that maps the decision space X = Rn into the
criterion space Y = Rm, and Q ⊂ X denotes the feasible set.

Model (1) only specifies that we are interested in maximization of all objec-
tive functions fi for i ∈ I = {1, 2, . . . , m}. In order to make it operational, one
needs to assume some solution concept specifying what it means to maximize
multiple objective functions. The solution concepts may be defined by proper-
ties of the corresponding preference model. The preference model is completely
characterized by the relation of weak preference (Vincke, 1992), denoted here-
after with �. Namely, the corresponding relations of strict preference ≻ and
indifference ∼= are defined by the following formulas:

y′ ≻ y′′ ⇔ (y′ � y′′ and y′′ 6� y′),

y′ ∼= y′′ ⇔ (y′ � y′′ and y′′ � y′).

The standard preference model related to the Pareto-optimal (efficient) so-
lution concept assumes that the preference relation � is reflexive:

y � y, (2)

transitive:

(y′ � y′′ and y′′ � y′′′) ⇒ y′ � y′′′, (3)

and strictly monotonic:

y + εei ≻ y for ε > 0; i = 1, . . . , m, (4)

where ei denotes the i–th unit vector in the criterion space. The last assumption
expresses that for each individual objective function more is better (maximiza-
tion). The preference relations satisfying axioms (2)–(4) are called hereafter
rational preference relations. The rational preference relations allow us to for-
malize the Pareto-optimality (efficiency) concept with the following definitions.
We say that outcome vector y′ rationally dominates y′′ (y′ ≻r y′′), iff y′ ≻ y′′

for all rational preference relations �. We say that feasible solution x ∈ Q
is a Pareto-optimal (efficient) solution of the multiple criteria problem (1), iff
y = f(x) is rationally nondominated.

Simple solution concepts for multiple criteria problems are defined by aggre-
gation (or utility) functions g : Y → R to be maximized. Thus, the multiple
criteria problem (1) is replaced with the maximization problem

max {g(f(x)) : x ∈ Q}. (5)

In order to guarantee the consistency of the aggregated problem (5) with the
maximization of all individual objective functions in the original multiple criteria
problem (or Pareto-optimality of the solution), the aggregation function must
be strictly increasing with respect to every coordinate.
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The simplest aggregation functions commonly used for the multiple criteria
problem (1) are defined as the mean (average) outcome

µ(y) =
1

m

m
∑

i=1

yi (6)

or the worst outcome

M(y) = min
i=1,...,m

yi. (7)

The mean (6) is a strictly increasing function while the minimum (7) is only
nondecreasing. Therefore, the aggregation (5) using the sum of outcomes always
generates a Pareto-optimal solution while the maximization of the worst out-
come may need some additional refinement. The mean outcome maximization
is primarily concerned with the overall system efficiency. As based on averaging,
it often provides a solution where some services are discriminated in terms of
performances. On the other hand, the worst outcome maximization, i.e. the
so-called Max-Min solution concept

max{ min
i=1,...,m

fi(x) : x ∈ Q } (8)

is regarded as maintaining equity. Indeed, in the case of a simplified resource
allocation problem with knapsack constraints, the Max-Min solution

max{ min
i=1,...,m

yi :
m

∑

i=1

aiyi ≤ b } (9)

takes the form ȳi = mb/
∑m

i=1 ai for all i ∈ I, thus meeting the perfect equity
requirement ȳ1 = ȳ2 = . . . = ȳm. In the general case, with possibly more
complex feasible set structure, this property is not fulfilled (Ogryczak, 2001).
Nevertheless, the following assertion is valid.

Theorem 1 If there exists a nondominated outcome vector ȳ ∈ f(Q) satisfying
the perfect equity requirement ȳ1 = ȳ2 = . . . = ȳm, then ȳ is the unique optimal
solution of the Max-Min problem

max{ min
i=1,...,m

yi : y ∈ f(Q) }. (10)

Proof. Let ȳ ∈ f(Q) be a nondominated outcome vector satisfying the perfect
equity requirement. This means that there exists a number α such that ȳi = α
for i = 1, 2, . . . , m. Vector ȳ is obviously a feasible solution of the Max-Min
problem (10). Suppose that there exists a feasible vector y ∈ f(Q) with a larger
value of the objective function in (10). This means that

yi ≥ min
1≤j≤m

yj > min
1≤j≤m

ȳj = α = ȳi ∀ i = 1, . . . , m
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which contradicts the assumption that ȳ is nondominated. Hence, ȳ is the
optimal solution of the Max-Min problem (10).

Suppose now that there exists a different optimal solution y 6= ȳ. Then,

yi ≥ min
1≤j≤m

yj = min
1≤j≤m

ȳj = α = ȳi ∀ i = 1, . . . , m

which together with y 6= ȳ contradicts the assumption that ȳ is nondominated.
Thus ȳ is the unique optimal solution of the Max-Min problem (10).

According to Theorem 1, the perfectly equilibrated outcome vector is a
unique optimal solution of the Max-Min problem if one cannot find any (pos-
sibly not equilibrated) vector with at least one individual outcome improved
without worsening any others. Unfortunately, it is not a common case and, in
general, the optimal set to the Max-Min aggregation (8) may contain numerous
alternative solutions including the dominated ones. While using standard algo-
rithmic tools to identify the Max-Min solution, one of many solutions is then
selected randomly.

Actually, the distribution of outcomes may make the Max-Min criterion
partially passive when one specific outcome is relatively very small for all the
solutions. For instance, while allocating clients to service facilities, such a situ-
ation may be caused by existence of an isolated client located at a considerable
distance from all the facilities. Maximization of the worst service performances
is then reduced to maximization of the service performances for that single iso-
lated client leaving other allocation decisions unoptimized. For instance, for
the available four outcome vectors (1,1,1), (10,1,1), (1,10,1) and (10,10,1), all
of them are optimal in the corresponding Max-Min optimization, as the third
outcome cannot be better than 1. Maximization of the first and the second out-
comes is then not supported in the Max-Min solution concept, allowing one to
select (1,1,1) as the optimal solution. This is a clear case of inefficient solution,
where one may still improve other outcomes while maintaining fairness by leav-
ing at its best possible value the worst outcome (Steuer, 1986). The Max-Min
solution may be then regularized according to the Rawlsian principle of justice.
Rawls (1971) considers the problem of ranking different “social states”, which
are different ways in which a society might be organized taking into account the
welfare of each individual in each society, measured on a single numerical scale.
Applying the Rawlsian approach, any two states should be ranked according
to the accessibility levels of the least well–off individuals in those states; if the
comparison yields a tie, the accessibility levels of the next–least well–off individ-
uals should be considered, and so on. Formalization of this concept leads us to
the lexicographic Max-Min concepts or the so-called Max-Min Fairness (Marchi
and Oviedo, 1992; Klein, Luss and Rothblum, 1993; Luss, 1999).
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2.2. Fair dominance

The concept of fairness has been studied in various areas beginning from po-
litical economics problems of fair allocation of consumption bundles (Dalton,
1920; Pigou, 1912; Rawls, 1958) to abstract mathematical formulation (Stein-
haus, 1949). In order to ensure fairness in a system, all system entities have to be
equally well provided with the system’s services. This leads to concepts of fair-
ness expressed by the equitable rational preferences (Ogryczak, 1997; Kostreva
and Ogryczak, 1999). In this section we proceed with formal introduction of the
fair dominance and the fair efficiency with the axioms of equitable optimization.

First of all, fairness requires impartiality of evaluation, thus focusing on the
distribution of outcome values while ignoring their ordering. This means that
in the multiple criteria problem (1) we are interested in a set of outcome values
without taking into account which outcome is taking a specific value. Hence,
we assume that the preference model is impartial (anonymous, symmetric). In
terms of the preference relation it may be written as the following axiom

(yπ(1), yπ(2), . . . , yπ(m))∼=(y1, y2, . . . , ym) for any permutation π of I (11)

which means that any permuted outcome vector is indifferent in terms of the
preference relation. Further, fairness requires equitability of outcomes, which
causes that the preference model should satisfy the (Pigou–Dalton) principle of
transfers. The principle of transfers states that a transfer of any small amount
from an outcome to any other relatively worse–off outcome results in a more
preferred outcome vector. As a property of the preference relation, the principle
of transfers takes the form of the following axiom

yi′ > yi′′ ⇒ y − εei′ + εei′′ ≻ y for 0 < ε < yi′ − yi′′ . (12)

The rational preference relations satisfying additionally axioms (11) and (12)
are called hereafter fair (equitable) rational preference relations. We say that
outcome vector y′ fairly (equitably) dominates y′′ (y′ ≻e y′′), iff y′ ≻ y′′ for all
fair rational preference relations �. In other words, y′ fairly dominates y′′, if
there exists a finite sequence of vectors yj (j = 1, 2, . . . , s) such that y1 = y′′,
ys = y′ and yj is constructed from yj−1 by application of either permutation
of coordinates, equitable transfer, or increase of a coordinate. An allocation
pattern x ∈ Q is called fairly (equitably) efficient or simply fair if y = f(x)
is fairly nondominated. Note that each fairly efficient solution is also Pareto-
optimal, but not vice verse.

In order to guarantee fairness of the solution concept (5), additional require-
ments on the class of aggregation (utility) functions must be introduced. In
particular, the aggregation function must be additionally symmetric (impar-
tial), i.e. for any permutation π of I,

g(yπ(1), yπ(2), . . . , yπ(m)) = g(y1, y2, . . . , ym) (13)
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as well as be equitable (to satisfy the principle of transfers)

g(y1, . . . , yi′ − ε, . . . , yi′′ + ε, . . . , ym) > g(y1, y2, . . . , ym) (14)

for any 0 < ε < yi′ − yi′′ . In the case of a strictly increasing function satisfying
both the requirements (13) and (14), we call the corresponding problem (5) a
fair (equitable) aggregation of problem (1). Every optimal solution to the fair
aggregation (5) of a multiple criteria problem (1) defines some fair (equitable)
solution.

Note that both the simplest aggregation functions, the sum (6) and the
minimum (7), are symmetric although they do not satisfy the equitability re-
quirement (14). To guarantee the fairness of solutions, some enforcement of
concave properties is required. For any strictly concave, increasing utility func-
tion u : R → R, the function g(y) =

∑m

i=1 u(yi) is a strictly monotonic and
equitable, thus defining a family of the fair aggregations (Ogryczak, 1997)

max {
m

∑

i=1

u(fi(x)) : x ∈ Q}. (15)

Various concave utility functions s can be used to define the fair aggrega-
tions (15) and the resulting fair solution concepts. In the case of the outcomes
restricted to positive values, one may use logarithmic function, resulting in
the Proportional Fairness (PF) solution concept (Kelly, Mauloo and Tan, 1997;
Pióro, Malicskó and Fodor, 2002). Actually, it corresponds to the so-called Nash
criterion (Nash, 1950) which maximizes the product of additional utilities com-
pared to the status quo. Again, in the case of a simplified resource allocation
problem with knapsack constraints, the PF solution

max{
m

∑

i=1

log(yi) :

m
∑

i=1

aiyi ≤ b } (16)

takes the form ȳi = b/ai for all i ∈ I thus allocating the resource inversely
proportional to the consumption of particular services.

For a common case of upper bounded outcomes yi ≤ u∗ one may maximize
power functions −

∑m

i=1 (u∗ − xi)
p for 1 < p < ∞, which corresponds to the

minimization of the corresponding p-norm distances from the common upper
bound u∗ (Kostreva, Ogryczak and Wierzbicki, 2004). Various other concave
functions s can be used to define fair aggregations and the resulting resource
allocation schemes. In particular, a parametric class of utility functions:

u(yi, α) =

{

y1−α
i /(1 − α) if α 6= 1

log(yi) if α = 1

may be used on positive outcomes generating various fair solution concepts for
α > 0 (Mo and Warland, 2000).
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For α = 1, it represents the PF approach while with α tending to the infinity
it converges to the MMF. However, every such approach requires to build (or to
guess) a utility function prior to the analysis and later it gives only one possible
compromise solution. It is very difficult to identify and formalize the preferences
at the beginning of the decision process. Moreover, apart from the trivial case
of the total output maximization all the utility functions that really take into
account any fairness preferences are nonlinear. Many decision models considered
with fair outcomes are originally Linear Programming (LP) or Mixed Integer
LP (MILP) models. Nonlinear objective functions applied to such models may
result in computationally hard optimization problems. In the following, we shall
describe an approach that allows to search for such compromise solutions with
multiple linear criteria rather than the use nonlinear objective functions.
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rȳ

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
��
y2 = y1

b

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

@
@@

@
@

@@

@
@

@
@@

@
@

@
@

@

@
@

@
@

@
@

@
@

@
@

@
@@

@
@

@
@

@
@

@@

@
@

@
@

@
@@

�
�

�
�

�

�
�

�
��

�
�

�
�

�
�

��

�
�

��

�
�

�
�

��

�
�

�
�
�

�
�

�
��

�
�

�
�

�
�

��

�
�

��

�
�

�

�
��

S(ȳ)

D(ȳ)

u(y) = u(ȳ)

Figure 1. Structure of fair dominance: D(ȳ) – the set fairly dominated by ȳ,
S(ȳ) – the set of outcomes fairly dominating ȳ.

Fig. 1 presents the structure of fair dominance for two-dimensional outcome
vectors. For any outcome vector ȳ, the fair dominance relation distinguishes
the set D(ȳ) of dominated outcomes (obviously worse for all fair rational prefer-
ences) and set S(ȳ) of dominating outcomes (obviously better for all fair rational
preferences). However, some outcome vectors are left (in white areas) and they
can be differently classified by various specific fair rational preferences. The
MMF fairness assigns the entire interior of the inner white triangle to the set of
preferred outcomes while classifying the interior of the external open triangles
as worse outcomes. Isolines of various utility functions split the white areas in
different ways. For instance, there is no fair dominance between vectors (0.01, 1)
and (0.02, 0.02) and the MMF considers the latter as better while the propor-
tional fairness points out the former. On the other hand, vector (0.02, 0.99) fairly
dominates (0.01, 1) and all fairness models (including MMF and PF) prefer the
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former. One may notice that the set D(ȳ) of directions leading to outcome vec-
tors being dominated by a given ȳ is, in general, not a cone and it is not convex.
Although, when we consider the set S(ȳ) of directions leading to outcome vec-
tors dominating given ȳ we get a convex set. While the MMF optimal solution
may be characterized by the lack of a possibility to increase any outcome with-
out decreasing some smaller outcome, the general fairly nondominated vectors
are characterized by the lack of possibility to increase any outcome without
decreasing some smaller outcome or more importantly decreasing some larger
outcome.

3. Inequality measures and bicriteria models

3.1. Inequality measures and fair consistency

Equity is, essentially, an abstract socio–political concept, but it is usually quan-
tified with the so–called inequality measures to be minimized. In this section we
first introduce the inequality measures which are most commonly used in the
resource allocation analysis. Next, we develop the fair consistency rules showing
how the inequality measures can be used in resource allocation to guarantee a
harmony both with outcome maximization and with inequality minimization.

Inequality measures were primarily studied in economics (Sen, 1973) while
recently they become very popular tools in Operations Research. For instance,
Marsh and Schilling (1994) describe twenty different measures proposed in the
literature to gauge the level of equity in facility location alternatives. Typical
inequality measures are some deviation type dispersion characteristics. They
are translation invariant in the sense that ̺(y + ae) = ̺(y) for any outcome
vector y and real number a (where e vector of units (1, . . . , 1)), thus being not
affected by any shift of the outcome scale. Moreover, the inequality measures
are also inequality relevant, which means that they are equal to 0 in the case of
perfectly equal outcomes while taking positive values for unequal ones.

The simplest inequality measures are based on the absolute measurement of
the spread of outcomes, like the mean absolute difference

Γ(y) =
1

2m2

m
∑

i=1

m
∑

j=1

|yi − yj| (17)

or the maximum absolute difference

d(y) = max
i,j=1,...,m

|yi − yj |. (18)

In most application frameworks better intuitive appeal may have inequality
measures related to deviations from the mean outcome, like the mean absolute
deviation

δ(y) =
1

m

m
∑

i=1

|yi − µ(y)|. (19)
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or the maximum absolute deviation

R(y) = max
i∈I

|yi − µ(y)|. (20)

Note that the standard deviation σ (or the variance σ2) represents both the
deviation and the spread measurement as

σ(y) =

√

1

m

∑

i∈I

(yi − µ(y))2 =

√

1

2m2

∑

i∈I

∑

j∈I

(yi − yj)2. (21)

Deviational measures may be focused on the downside semideviations as re-
lated to worsening of outcome while ignoring upper semideviations related to
improvement of outcome. One may define the maximum (downside) semidevi-
ation

∆(y) = max
i∈I

(µ(y) − yi) (22)

and the mean (downside) semideviation

δ̄(y) =
1

m

∑

i∈I

(µ(y) − yi)+ (23)

where (.)+ denotes the nonnegative part of a number. Similarly, the standard
(downside) semideviation is given as

σ̄(y) =

√

1

m

∑

i∈I

(µ(y) − yi)2+. (24)

In economics, one usually considers relative inequality measures normalized
by mean outcome. Among many inequality measures perhaps the most com-
monly accepted by economists is the Gini coefficient, which is the relative mean
difference. One can easily notice that direct minimization of typical inequal-
ity measures (especially the relative ones) may contradict the optimization of
individual outcomes resulting in equal but very low outcomes (Erkut, 1993).
This contradiction cannot completely be resolved with the standard bicriteria
mean-equity model (Ogryczak, 2000):

max {(µ(f(x)),−̺(f(x))) : x ∈ Q} (25)

which takes into account both the efficiency with optimization of the mean
outcome µ(y) and the equity with minimization of an inequality measure ̺(y).
When considering a simple discrete problem with two allocation patterns P1
and P2 generating outcome vectors y′ = (0, 0) and y′′ = (2, 8), respectively,
for any dispersion type inequality measure one gets ̺(y′′) > 0 = ̺(y′), while
µ(y′′) = 5 > 0 = µ(y′). Hence, y′′ is not bicriteria dominated by y′ and vice
versa. Thus, for any dispersion type inequality measure ̺, allocation P1 with
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obviously worse outcome vector than that for allocation P2 is a Pareto-optimal
solution in the corresponding bicriteria mean-equity model (25).

Note that the lack of consistency of the mean-equity model (25) with the
outcomes maximization applies also to the case of the maximum semideviation
∆(y) (22) used as an inequality measure whereas subtracting this measure from
the mean µ(y) − ∆(y) = M(y) results in the worst outcome and thereby the
first criterion of the MMF model. In other words, although a direct use of the
maximum semideviation in the mean-equity model may contradict the outcome
maximization, the measure can be used to complement the mean, leading us
to the worst outcome criterion, which does not contradict the outcome max-
imization. This construction can be generalized for various (dispersion type)
inequality measures. Moreover, we allow the measures to be scaled with any
positive factor α > 0, in order to avoid creation of new inequality measures as
one could consider ̺α(X) = α̺(X) as a different inequality measure. For any
inequality measure ̺ we introduce the corresponding underachievement func-
tion defined as the difference of the mean outcome and the (scaled) inequality
measure itself, i.e.

Mα̺(y) = µ(y) − α̺(y). (26)

This allows us to replace the original mean-equity bicriteria optimization (25)
with the following bicriteria problem:

max{(µ(f(x)), µ(f(x)) − α̺(f(x))) : x ∈ Q} (27)

where the second objective represents the corresponding underachievement mea-
sure Mα̺(y) (26). Note that for any inequality measure ̺(y) ≥ 0 one gets
Mα̺(y) ≤ µ(y), thus really expressing underachievements (comparing to mean)
from the perspective of outcomes being maximized.

We will say that an inequality measure ̺ is fairly α-consistent if

y′ �e y′′ ⇒ µ(y′) − α̺(y′) ≥ µ(y′′) − α̺(y′′). (28)

The relation of fair α-consistency will be called strong if, in addition to (28),
the following holds

y′ ≻e y′′ ⇒ µ(y′) − α̺(y′) > µ(y′′) − α̺(y′′). (29)

Theorem 2 If the inequality measure ̺(y) is fairly α-consistent (28), then ex-
cept for outcomes with identical values of µ(y) and ̺(y), every efficient solution
of the bicriteria problem (27) is a fairly efficient allocation pattern. In the case
of strong consistency (29), every allocation pattern x ∈ Q efficient in terms of
(27) is, unconditionally, fairly efficient.

Proof. Let x0 ∈ Q be an efficient solution of (27). Suppose that x0 is not fairly
efficient. This means that there exists x ∈ Q such that y = f(x) ≻e y0 =

f(x0). Then, it follows that µ(y) ≥ µ(y0), and simultaneously µ(y) − α̺(y) ≥
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µ(y0) − α̺(y0), by virtue of the fair α-consistency (28). Since x0 is efficient in
terms of (27) no inequality can be strict, which implies µ(y) = µ(y0) and and
̺(y) = ̺(y0).

In the case of the strong fair α-consistency (29), the supposition y = f(x) ≻e

y0 = f(x0) implies µ(y) ≥ µ(y0) and µ(y) − α̺(y) > µ(y0) − α̺(y0), which
contradicts the efficiency of x0 with respect to (27). Hence, the allocation
pattern x0 is fairly efficient.

3.2. Fair consistency conditions

In this section we introduce simple sufficient conditions for the inequality mea-
sures to guarantee their fair α-consistency. We also analyze in details the fair
α-consistency properties for the typical inequality measures.

Typical dispersion type inequality measures are convex, i.e. ̺(λy′ + (1 −
λ)y′′) ≤ λ̺(y′) + (1 − λ)̺(y′′) for any y′, y′′ and 0 ≤ λ ≤ 1. Certainly,
the underachievement function Mα̺(y) must be also monotonic for the fair
consistency which enforces more restrictions on the inequality measures. We
will show further that convexity together with positive homogeneity and some
boundedness of an inequality measure is sufficient to guarantee monotonicity of
the corresponding underachievement measure and thereby to guarantee the fair
α-consistency of inequality measure itself.

We say that (dispersion type) inequality measure ̺(y) ≥ 0 is ∆-bounded if
it is upper bounded by the maximum downside deviation, i.e.,

̺(y) ≤ ∆(y) ∀y. (30)

Moreover, we say that ̺(y) ≥ 0 is strictly ∆-bounded if inequality (30) is a strict
bound, except from the case of perfectly equal outcomes, i.e., ̺(y) < ∆(y) for
any y such that ∆(y) > 0.

Theorem 3 Let ̺(y) ≥ 0 be a convex, positively homogeneous and translation
invariant (dispersion type) inequality measure. If α̺(y) is ∆-bounded, then ̺(y)
is fairly α-consistent in the sense of (28).

Proof. The relation of fair dominance y′ �e y′′ denotes that there exists a finite
sequence of vectors y0 = y′′, y1, . . . , yt such that yk = yk−1 − εkei′ + εkei′′ ,
0 ≤ εk ≤ yk−1

i′ − yk−1
i′′ for k = 1, 2, . . . , t and there exists a permutation π

such that y′
π(i) ≥ yt

i for all i ∈ I. Note that the underachievement function

Mα̺(y), similar as ̺(y) depends only on the distribution of outcomes. Further,
if y′ ≥ y′′, then y′ = y′′ + (y′ − y′′) and y′ − y′′ ≥ 0. Hence, due to concavity
and positive homogeneity, Mα̺(y

′) ≥ Mα̺(y
′′) + Mα̺(y

′ − y′′). Moreover, due
to the bound (30), Mα̺(y

′−y′′) ≥ µ(y′−y′′)−∆(y′−y′′) ≥ µ(y′−y′′)−µ(y′−
y′′) = 0. Thus, Mα̺(y) satisfies also the requirement of monotonicity. Hence,
Mα̺(y

′) ≥ Mα̺(y
t). Further, let us notice that yk = λȳk−1 + (1 − λ)yk−1

where ȳk−1 = yk−1 − (yi′ − yi′′)ei′ +(yi′ − yi′′)ei′′ and λ = ε/(yi′ − yi′′). Vector
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ȳk−1 has the same distribution of coefficients as yk−1 (actually it represents
results of swapping yi′ and yi′′). Hence, due to concavity of Mα̺(y), one gets
Mα̺(y

k) ≥ λMα̺(ȳ
k−1) + (1 − λ)Mα̺(y

k−1) = Mα̺(y
k−1). Thus, Mα̺(y

′) ≥
Mα̺(y

′′), which justifies the fair α-consistency of the inequality measure ̺(y).

For strong fair α-consistency some strict monotonicity and concavity prop-
erties of the underachievement function are needed. Obviously, there does not
exist any inequality measure which is positively homogeneous and simultane-
ously strictly convex. However, one may notice from the proof of Theorem 3 that
only convexity properties on equally distributed outcome vectors are important
for monotonous underachievement functions.

We say that inequality measure ̺(y) ≥ 0 is strictly convex on equally dis-
tributed outcome vectors, if

̺(λy′ + (1 − λ)y′′) < λ̺(y′) + (1 − λ)̺(y′′)

for 0 < λ < 1 and any two vectors y′ 6= y′′ representing the same out-
comes distribution as some y, i.e., y′ = (yπ′(1), . . . , yπ′(m)) π′ and y′′ =
(yπ′′(1), . . . , yπ′′(m)) for some permutations π′ and π′′, respectively.

Theorem 4 Let ̺(y) ≥ 0 be a convex, positively homogeneous and translation
invariant (dispersion type) inequality measure. If ̺(y) is also strictly convex on
equally distributed outcomes and α̺(y) is strictly ∆-bounded, then the measure
̺(y) is fairly strongly α-consistent in the sense of (29).

Proof. The relation of weak fair dominance y′ �e y′′ denotes that there exists a
finite sequence of vectors y0 = y′′, y1, . . . , yt such that yk = yk−1−εkei′+εkei′′ ,
0 ≤ εk ≤ yk−1

i′ − yk−1
i′′ for k = 1, 2, . . . , t and there exists a permutation π such

that y′
π(i) ≥ yt

i for all i ∈ I. The strict fair dominance y′ ≻e y′′ means that

y′
π(i) > yt

i for some i ∈ I or at least one εk is strictly positive. Note that the

underachievement function Mα̺(y) is strictly monotonous and strictly convex
on equally distributed outcome vectors. Hence, Mα̺(y

′) > Mα̺(y
′′) which

justifies the fair strong α-consistency of the measure ̺(y).

The specific case of fair 1-consistency is also called the mean-complementary
fair consistency. Note that the fair ᾱ-consistency of measure ̺(y) actually
guarantees the mean-complementary fair consistency of measure α̺(y) for all
0 < α ≤ ᾱ, and the same remain valid for the strong consistency properties. It
follows from a possible expression of µ(y) − α̺(y) as the convex combination
of µ(y) − ᾱ̺(y) and µ(y). Hence, for any y′ �e y′′, due to µ(y′) ≥ µ(y′′) one
gets µ(y′) − α̺(y′) ≥ µ(y′′) − α̺(y′′) in the case of the fair ᾱ-consistency of
measure ̺(y) (or respective strict inequality in the case of strong consistency).
Therefore, while analyzing specific inequality measures we seek the largest values
α guaranteeing the corresponding fair consistency.
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As mentioned, typical inequality measures are convex and many of them
are positively homogeneous. Moreover, the measures such as the mean absolute
(downside) semideviation δ̄(y) (23), the standard downside semideviation σ̄(y)
(24), and the mean absolute difference Γ(y) (17) are ∆-bounded. Indeed, one
may easily notice that yi − µ(y) ≤ ∆(y) and therefore δ̄(y) ≤ 1

m

∑

i∈I ∆(y) =

∆(y), σ̄(y) ≤
√

∆(y)2 = ∆(y) and Γ(y) = 1
m2

∑

i∈I

∑

j∈I(max{yi, yj} −
µ(y)) ≤ ∆(y). Actually, all these inequality measures are strictly ∆-bounded
since for any unequal outcome vector at least one outcome must be below the
mean thus leading to strict inequalities in the above bounds. Obviously, ∆-
bounded (but not strictly) is also the maximum absolute downside deviation
∆(y) itself. This allows us to justify the maximum downside deviation ∆(y)
(22), the mean absolute (downside) semideviation δ̄(y) (23), the standard down-
side semideviation σ̄(y) (24) and the mean absolute difference Γ(y) (17) as fairly
1-consistent (mean-complementary fairly consistent) in the sense of (28).

We emphasize that, despite the fact that the standard semideviation is a
fairly 1-consistent inequality measure, the consistency is not valid for variance,
semivariance and even for the standard deviation. These measures, in general,
do not satisfy all the assumptions of Theorem 3. Certainly, we have enumerated
only the simplest inequality measures studied in the resource allocation context
which satisfy the assumptions of Theorem 3 and thereby they are fairly 1-
consistent. Theorem 3 allows one to show this property for many other measures.
In particular, one may easily find out that any convex combination of fairly α-
consistent inequality measures remains also fairly α-consistent. On the other
hand, among typical inequality measures the mean absolute difference seems to
be the only one meeting the stronger assumptions of Theorem 4 and thereby
maintaining strong consistency.

As mentioned, the mean absolute semideviation is twice the mean absolute
upper semideviation which means that αδ(y) is ∆-bounded for any 0 < α ≤ 0.5.
The symmetry of mean absolute semideviations δ̄(y) =

∑

i∈I(yi − µ(y))+ =
∑

i∈I(µ(y) − yi)+ can be also used to derive some ∆-boundedness relations
for other inequality measures. In particular, one may find out that for m-
dimensional outcome vectors of unweighted problem, any downside semidevia-
tion from the mean cannot be larger than m−1 upper semideviations. Hence, the
maximum absolute deviation satisfies the inequality 1

m−1R(y) ≤ ∆(y), while

the maximum absolute difference fulfills 1
m

d(y) ≤ ∆(y). Similarly, for the
standard deviation one gets 1√

m−1
δ(y) ≤ ∆(y). Actually, ασ(y) is strictly ∆-

bounded for any 0 < α ≤ 1/
√

m − 1 since for any unequal outcome vector at
least one outcome must be below the mean, thus leading to strict inequalities
in the above bounds. These allow us to justify the mean absolute semidevia-
tion with 0 < α ≤ 0.5, the maximum absolute deviation with 0 < α ≤ 1

m−1 ,

the maximum absolute difference with 0 < α ≤ 1
m

and the standard deviation
with 0 < α ≤ 1√

m−1
as fairly α-consistent within the specified intervals of α.

Moreover, the α-consistency of the standard deviation is strong.
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Table 1. Fair consistency results for the basic inequality measures
Measure α–consistency

Mean absolute semideviation δ̄(y) (23) 1
Mean absolute deviation δ(y) (19) 0.5
Maximum upper semideviation ∆(y) (22) 1
Maximum absolute deviation R(y) (20) 1/(m − 1)
Mean absolute difference Γ(y) (17) 1 strong
Maximum absolute difference d(y) (18) 1/m
Standard upper semideviation σ̄(y) (24) 1
Standard deviation σ(y) (21) 1/

√
m − 1 strong

The fair consistency results for basic dispersion type inequality measures
considered in resource allocation problems are summarized in Table 1 where α
values for unweighted as well as weighted problems are given and the strong
consistency is indicated. Table 1 points out how the inequality measures can
be used in resource allocation models to guarantee their harmony both with
outcome maximization (Pareto-optimality) and with inequalities minimization
(Pigou-Dalton equity theory). Exactly, for each inequality measure applied with
the corresponding value α from Table 1 (or smaller positive value), every efficient
solution of the bicriteria problem (27), i.e. max{(µ(f(x)), µ(f(x)) − α̺(f(x))) :
x ∈ Q}, is a fairly efficient allocation pattern, except for outcomes with identical
values of µ(y) and ̺(y). In the case of strong consistency (as for mean absolute
difference or standard deviation), every solution x ∈ Q efficient in terms of (27)
is, unconditionally, fairly efficient.

4. Ordered outcomes

4.1. Multiple criteria model

In this section we introduce the multiple criteria model of the cumulative ordered
outcomes allowing to cover all equitable preferences and therefore providing us
with a tool for generating a variety of fair and efficient allocation patterns.

Multiple criteria optimization defines the dominance relation y′ �r y′′,
which may be expressed in terms of the vector inequality y′ ≥ y′′. Hence,
we can state that a feasible solution x0 ∈ Q is a Pareto-optimal solution of the
multiple criteria problem (1), if and only if there does not exist x ∈ Q such

that f(x) ≥ f(x
0
). The latter refers to the commonly used definition of the

Pareto-optimal (efficient) solutions as feasible solutions, for which one cannot
improve any criterion without worsening another (Vincke, 1992).

The theory of majorization (Marshall and Olkin, 1979) includes the results
which allow us to express the relation of fair (equitable) dominance as a vector
inequality on the cumulative ordered outcomes (Kostreva and Ogryczak, 1999).
The latter can be formalized as follows. First, we introduce the ordering map Θ :
Rm → Rm such that Θ(y) = (θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≤ θ2(y) ≤
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· · · ≤ θm(y) and there exists a permutation π of set I such that θi(y) = yπ(i) for
i = 1, . . . , m. Next, we apply to ordered outcomes Θ(y) a linear cumulative map,
with results in the cumulative ordering map Θ̄(y) = (θ̄1(y), θ̄2(y), . . . , θ̄m(y))
defined as

θ̄i(y) =
i

∑

j=1

θj(y) for i = 1, . . . , m. (31)

The coefficients of vector Θ̄(y) express, respectively: the smallest outcome, the
total of the two smallest outcomes, the total of the three smallest outcomes,
etc. Vector inequality on the cumulative ordered outcomes Θ̄(y) allows us to
represent the fair dominance relation (Kostreva and Ogryczak, 1999)

y′ �e y′′ ⇒ θ̄i(y
′) ≥ θ̄i(y

′′) for i = 1, . . . , m.

Fair solutions to problem (1) can be expressed as Pareto-optimal solutions for
the multiple criteria problem with objectives Θ̄(f(x))

max {(θ̄1(f(x)), θ̄2(f(x)), . . . , θ̄m(f(x))) : x ∈ Q}. (32)

Theorem 5 (Kostreva and Ogryczak, 1999) A feasible allocation pattern x ∈ Q
is a fair solution of the problem (1), iff it is a Pareto-optimal solution of the
multiple criteria problem (32).

Theorem 5 provides the relationship between fair solutions and the standard
Pareto-optimality. Hence, the multiple criteria problem (32) may serve as a
source of fair solution concepts. Although the definitions of quantities θ̄k(y),
used as criteria in (32), are very complicated, the quantities themselves can be
modeled with simple auxiliary variables and constraints. It is commonly known
that the smallest outcome may be defined by the following optimization: θ̄1(y) =
max {t : t ≤ yi for i = 1, . . . , m}, where t is an unrestricted variable. It turns
out that this can be generalized to provide an effective modeling technique for
quantities θ̄k(y) with arbitrary k (Ogryczak and Tamir, 2003). Note that for
any given vector y, the quantity θ̄k(y) is defined by the following optimization
problem:

θ̄k(y) = min
m

∑

i=1

yizki

s.t.

m
∑

i=1

zki = k, 0 ≤ zki ≤ 1 for i = 1, . . . , m.

(33)

The above problem is an LP for a given outcome vector y while it becomes
nonlinear for a variable y. This difficulty can be overcome by taking advantage
of the LP dual to (33):

θ̄k(y) = max ktk −
m

∑

i=1

dik

s.t. tk − yi ≤ dik, dik ≥ 0 for i = 1, . . . , m

(34)
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where tk is an unrestricted variable while nonnegative variables dik represent
the downside deviations of outcome values yi, from the value of t (Ogryczak and
Tamir, 2003).

Theorem 5 allows one to generate fairly efficient solutions of (1) as Pareto-
optimal solutions of the multicriteria problem:

max (η1, η2, . . . , ηm)
subject to x ∈ Q

ηk = ktk −
m

∑

i=1

dik for k = 1, . . . , m

tk − dik ≤ fi(x), dik ≥ 0 for i, k = 1, . . . , m.

(35)

4.2. Generation techniques

Various fairly efficient allocation patterns can be generated as Pareto-optimal
solutions to multiple criteria problem (35). In this section we examine various
such generation techniques.

The aggregation maximizing the sum of outcomes corresponds to maximiza-
tion of the last (m–th) objective (ηm) in problem (35). Similarly, the Max-Min
scalarization corresponds to maximization of the first objective (η1). For mod-
eling various fair preferences one may use some combinations of the criteria. In
particular, for the weighted sum

∑m

i=1 wiηi on gets equivalent combination of
the cumulative ordered outcomes θ̄i(y):

m
∑

i=1

wiθ̄i(y). (36)
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Figure 2. Isoline contours for a fair OWA aggregation.
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Note that, due to the definition of map Θ̄ with (31), the above function can
be expressed in the form with weights vi =

∑m

j=i wj (i = 1, . . . , m) allocated to
coordinates of the ordered outcome vector. Such an approach to aggregation of
outcomes was introduced by Yager (1988) as the so–called Ordered Weighted
Averaging (OWA). When applying OWA to problem (1) we get

max {
m

∑

i=1

viθi(f(x)) : x ∈ Q}. (37)

The OWA aggregation is obviously a piece wise linear function since it remains
linear within every area of the fixed order of arguments. If weights vi are strictly
decreasing and positive, i.e. v1 > v2 > · · · > vm−1 > vm > 0, then each optimal
solution of the OWA problem (37) is a fair solution of (1).

While equal weights define the linear aggregation, several decreasing se-
quences of weights lead to various fair aggregation functions. Thus, the
monotonic OWA aggregations provide a family of piece wise linear aggrega-
tions filling out the space between the piece wise linear aggregation functions
(6) and (7) as shown in Fig. 3. Actually, formulas (36) and (34) allow us to
formulate any monotonic (not necessarily strictly) OWA problem (37) as the
following LP extension of the original multiple criteria problem:

max

m
∑

k=1

wkηk

subject to x ∈ Q

ηk = ktk −
m

∑

i=1

dik for k = 1, . . . , m

tk − dik ≤ fi(x), dik ≥ 0 for i, k = 1, . . . , m

(38)

where wm = vm and wk = vk − vk+1 for k = 1, . . . , m − 1.
When differences among weights tend to infinity, the OWA aggregation ap-

proximates the lexicographic ranking of the ordered outcome vectors (Ogryczak
and Śliwiński, 2003). This means that, as the limiting case of the OWA problem
(37), we get the lexicographic problem:

lexmax {(θ1(f(x)), θ2(f(x)), . . . , θm(f(x))) : x ∈ Q} (39)

which represents the MMF approach to the original problem (1). Problem (39)
is a regularization of the standard Max-Min optimization (7), but in the former,
in addition to the worst outcome, we maximize also the second worst outcome
(provided that the smallest one remains as large as possible), maximize the third
worst (provided that the two smallest remain as large as possible), and so on.
Due to (31), the MMF problem (39) is equivalent to the problem:

lexmax {(θ̄1(f(x)), θ̄2(f(x)), . . . , θ̄m(f(x))) : x ∈ Q}
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Figure 3. Isoline contours for various fair OWA aggregations.

which leads us to a standard lexicographic optimization with predefined linear
criteria defined according to (34)

lexmax (η1, η2, . . . , ηm)
subject to x ∈ Q

ηk = ktk −
m

∑

i=1

dik for k = 1, . . . , m

tk − dik ≤ fi(x), dik ≥ 0 for i, k = 1, . . . , m.

(40)

Moreover, in the case of LP models, every fair solution can be identified as
an optimal solution to some OWA problem with appropriate monotonic weights
(Kostreva and Ogryczak, 1999) but such a search process is usually difficult to
control (Ogryczak, Śliwiński and Wierzbicki, 2003). Better controllability and
the complete parameterization of nondominated solutions even for non-convex,
discrete problems can be achieved with the direct use of the reference point
methodology introduced by Wierzbicki (1982) and later extended, leading to
efficient implementations of the so-called aspiration/reservation based decision
support (ARBDS) approach with many successful applications (Lewandowski
and Wierzbicki, 1989). The ARBDS approach is an interactive technique allow-
ing the DM to specify the requirements in terms of aspiration and reservation
levels, i.e., by introducing acceptable and required values for several criteria.
Depending on the specified aspiration and reservation levels, a special scalariz-
ing achievement function is built which may be directly interpreted as expressing
utility to be maximized. Maximization of the scalarizing achievement function
generates an efficient solution to the multiple criteria problem. The solution
is accepted by the DM or some modifications of the aspiration and reservation
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levels are introduced to continue the search for a better solution. The ARBDS
approach provides a complete parameterization of the efficient set to multi-
criteria optimization. Hence, when applying the ARBDS methodology to the
ordered cumulated criteria in (32), one may generate all fairly efficient solutions
of the original problem (1). Indeed, initial experiments with such an approach
to the problem of network dimensioning with elastic traffic have confirmed the
theoretical advantages of the method (Ogryczak and Wierzbicki, 2004).

Although defined with simple linear constraints, the auxiliary conditions (34)
introduce O(m2) additional variables and inequalities into the original model.
This may cause a serious computational burden for real-life problems containing
numerous outcomes. In order to reduce the problem size one may attempt to
restrict the number of criteria in the problem (32). Let us consider a sequence
of indices K = {k1, k2, . . . , kq}, where 1 ≤ k1 < k2 < . . . < kq−1 < kq ≤ m, and
the corresponding restricted form of the multiple criteria model (32):

max {(ηk1
, ηk2

, . . . , ηkq
) : ηk = θ̄k(f(x)) for k ∈ K, x ∈ Q} (41)

with only q < m criteria. Following Theorem 5, multiple criteria model (32)
allows us to generate any fairly efficient solution of problem (1). By reducing the
number of criteria we restrict these opportunities. Nevertheless, one may still
generate reasonable compromise solutions. First of all the following assertion is
valid.

Theorem 6 If xo is an efficient solution of the restricted problem (41), then
it is an efficient (Pareto-optimal) solution of the multiple criteria problem (1)
and it can be fairly dominated only by another efficient solution x′ of (41) with
exactly the same values of criteria: θ̄k(f(x

′
)) = θ̄k(f(x

o
)) for all k ∈ K.

Proof. Suppose that there exists x′ ∈ Q which dominates xo. This means that
y′

i = fi(x
′) ≥ yo

i = fi(x
0) for all i ∈ I with at least one inequality strict. Hence,

θ̄k(y′) ≥ θ̄k(yo) for all k ∈ K and θ̄kq
(y′) > θ̄kq

(yo), which contradicts efficiency
of xo within the restricted problem (41)

Suppose now that x′ ∈ Q fairly dominates xo. Due to Theorem 5, this
means that θ̄i(y

′) ≥ θ̄i(y
o) for all i ∈ I with at least one inequality strict.

Hence, θ̄k(y′) ≥ θ̄k(yo) for all k ∈ K and any strict inequality would contradict
efficiency of yo within the restricted problem (41). Thus, θ̄k(y′) = θ̄k(yo) for
all k ∈ K, which completes the proof.

It follows from Theorem 6 that while restricting the number of criteria in
the multiple criteria model (32) we can essentially still expect reasonably fair
efficient solution and the only unfairness may be related to the distribution of
outcomes within classes of skipped target values. In other words, we have guar-
anteed some rough fairness while it can be possibly improved by redistribution
of outcomes within the intervals (θkj

(y), θkj+1
(y)] for j = 1, 2, . . . , q − 1.
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5. Ordered targets

5.1. Multiple criteria model

In this section we introduce another multiple criteria model equivalent to eq-
uitable optimization thus allowing us to generate a variety of fair and efficient
allocation patterns. The model is based on the multiple targets values and
criteria representing mean shortfalls to these targets.

Vector Θ̄(y) can be viewed graphically with the absolute Lorenz curve, which
can be mathematically formalized as follows. First, we introduce the right-
continuous cumulative distribution function:

Fy(ξ) =

m
∑

i=1

1

m
δi(ξ) where δi(ξ) =

{

1 if yi ≤ ξ
0 otherwise

which for any real value ξ provides the measure of outcomes smaller or equal to

ξ. Next, we introduce the quantile function F
(−1)
y as the left-continuous inverse

of the cumulative distribution function Fy:

F (−1)
y

(ν) = inf {ξ : Fy(ξ) ≥ ν} for 0 < ν ≤ 1.

Hence, θi(y) = F
(−1)
y (i/m). Further, by integrating F

(−1)
y , one gets F

(−2)
y (0) =

0 and

F (−2)
y

(ν) =

∫ ν

0

F (−1)
y

(α)dα for 0 < ν ≤ 1

as the second order quantile function. Graphs of functions F
(−2)
y (ν) (with re-

spect to ν) take the form of convex curves (Fig. 4), the absolute Lorenz curves

(ALC). In our case of m outcomes, F
(−2)
y (i/m) = 1

m
θ̄i(y) for i = 1, . . . , m and

the absolute Lorenz curve is a piecewise linear curve connecting point (0,0) and
points (i/m, θ̄i(y)/m) for i = 1, . . . , m. Due to Theorem 5, a fairly dominated
outcome vector is represented by the ALC lying below that for a dominating
vector. Vector of equal outcomes is graphically represented as an ascent line and
it obviously dominates any unequal vector with the same mean. However, with
the relation of fair dominance an outcome vector of large unequal outcomes may
be preferred to an outcome vector with small equal outcomes. Fig. 4 presents
the absolute Lorenz curves for outcome distributions of three vectors. One can
easily see that vector of perfectly equal outcomes y′′ = (3, 3, 3) dominates vector
y′ = (1, 3, 5), but it is further dominated by vector y′′′ = (5, 4, 9) of unequal
larger outcomes.

The fair dominance is equivalent to the pointwise inequalities of the entire
absolute Lorenz curves

y′ �e y′′ ⇔ F
(−2)
y′ (ν) ≥ F

(−2)
y′′ (ν) for all 0 ≤ ν ≤ 1. (42)

Nevertheless, the fair dominance is completely characterized by comparison of

only m values F
(−2)
y (i/m) for i = 1, . . . , m.
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Figure 4. Fair dominance and the absolute Lorenz curves: y′′′ ≻e y′′ ≻e y′.

Recently, an intriguing duality relation between the second quantile function

F
(−2)
y and the second cumulative distribution function F

(2)
y (τ) =

∫ τ

−∞ Fy(ξ)dξ

has been shown (Ogryczak and Ruszczyński, 2002). Namely, function F
(−2)
y is

a conjugate (Rockafellar, 1970) of F
(2)
y , i.e., for every ν ∈ [0, 1], one gets

F (−2)
y

(ν) = sup
τ

{τν − F (2)
y

(τ)}. (43)

It follows from the duality theory that one may completely characterize the fair
dominance by the pointwise comparison the conjugate function F (2):

y′ �e y′′ ⇔ F
(2)
y′ (τ) ≤ F

(2)
y′′ (τ) for all τ ∈ R. (44)

In other words, the absolute Lorenz order is equivalent to the increasing con-
cave order, more commonly known as the Second Stochastic Dominance (SSD)
relation (Müller and Stoyan, 2002).

The SSD relation was widely studied while comparing general distributions

of uncertain outcome in the area of decision making under risk. Function F
(2)
y ,

used to define the SSD relation, can also be presented as follows (Ogryczak and
Ruszczyński, 1999):

F (2)
y

(τ) =
1

m

m
∑

i=1

(τ − yi)+. (45)

Hence, the SSD relation can be seen as a dominance for mean below-target
deviations from all possible targets. Similar to absolute Lorenz curves, graphs of

functions F
(2)
y define O-R curves (Ogryczak and Ruszczyński, 1999) (τ, F

(2)
y (τ))

allowing to depict the SSD relation, and thereby the fair dominance of several
outcome vectors y. For distributions of m outcomes we consider, the O-R curve
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is a piecewise linear convex curve with breakpoints at targets τ representing
some coordinates of outcome vector y. In the case of a perfectly equal outcome

vector (yi = µ(y) ∀ i), the graph of F
(2)
y consists of two line segments: the axis

τ for τ ≤ µ(y) and the ascent line τ −µ(y) for τ ≥ µ(y). Any unequal outcome
vector with the same mean value µ(y) yields an O-R curve above (precisely, not
below) these two line segments, including them for τ ≤ mini yi and τ ≥ maxi yi,
respectively. Fig. 5 presents the O-R curves for outcome distributions of three
vectors compared with absolute Lorenz curves in Fig 4. Recall that vector of
perfectly equal outcomes y′′ = (3, 3, 3) dominates vector y′ = (1, 3, 5), but it is
further dominated by vector y′′′ = (5, 4, 9) of unequal larger outcomes. Note
that according to (44), a fairly dominated outcome vector is represented by the
O-R curve above that for a dominating vector.
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Figure 5. Fair dominance and the O-R curves: y′′′ ≻e y′′ ≻e y′.

For m-dimensional outcome vectors we consider, the entire F
(2)
y is completely

defined by its values for at most m different targets representing values of several
outcomes yi while the remaining values follow from the linear interpolation.
Nevertheless, these target values are dependent on specific outcome vectors and
one cannot define any universal grid of targets allowing to define O-R curves
for all possible outcome vectors. Therefore, in order to get a computational
procedure one needs either to aggregate mean shortages for infinite number of
targets or to focus analysis on arbitrarily preselected finite grid of targets. The
former turns out to lead us to the mean utility optimization models (15). Indeed,
classical results of majorization theory (see Marshall and Olkin, 1979) relate the
mean utility comparison to the comparison of the weighted mean shortages

m
∑

i=1

u(y′
i) ≥

m
∑

i=1

u(y′′
i ) ⇔

∫ ∞

−∞
w(ξ)F 2

y′ (ξ)dξ ≤
∫ ∞

−∞
w(ξ)F 2

y′′ (ξ)dξ.

Actually, for bounded outcomes a ≤ yi ≤ b one has
∑m

i=1 u(yi) =
∫ b

a
u(ξ)dFy(ξ)

and therefore, integrating twice by parts, one may easily verify that
m

∑

i=1

u(y′
i) −

m
∑

i=1

u(y′′
i ) =

∫ b

a

u′′(ξ)F 2
y′ (ξ)dξ −

∫ b

a

u′′(ξ)F 2
y′′(ξ)dξ.



Multicriteria models for fair resource allocation 327

Hence, the maximization of a concave and increasing utility function u is equiv-

alent to minimization of the weighted aggregation
∫ b

a
w(ξ)F 2

y
(ξ)dξ with positive

weights w(ξ) = −u′′(ξ) (due to concavity of u).

5.2. Generation techniques

In order to take advantage of the multiple criteria methodology one needs to
focus on a finite set of target values. Let V = {v1, v2, . . . , vr} (where v1 <
v2 < · · · < vr) denote the set of target values for individual outcomes. For each
target value we introduce function hk(y) expressing the partial (below target)
cumulated outcomes

hk(y) =

m
∑

i=1

min{yi, vk} = mvk −
m

∑

i=1

(vk − yi)+ = m(vk − F 2
y
(vk)). (46)

Since the quantities hk(y) are complementary to F 2
y
(vk), following (44), we

can seek fairly efficient allocation patterns using the standard multiple criteria
optimization problem with r criteria:

max {(h1(f(x)), . . . , hr(f(x))) : x ∈ Q}. (47)

Theorem 7 In the case of finite outcome set f(Q) ⊂ V m, a feasible allocation
pattern x ∈ Q is a fair solution of problem (1), iff it is a Pareto-optimal solution
of the multiple criteria problem (47).

Proof. Let f(xo) ∈ Q be a Pareto-optimal solution of problem (47). Suppose
that there exists x′ ∈ Q such that y′ = f(x′) fairly dominates yo = f(xo).
Due to (44), this means that m(τ − F 2

y′(τ)) ≥ m(τ − F 2
yo(τ)) for all τ ∈ R

with at least one inequality strict. Hence, ĥk(y′) ≥ ĥk(yo) for all k = 1, . . . , r
and any strict inequality would contradict efficiency of xo within the problem
(47). Thus, ĥk(x′) = ĥk(xo) and F 2

y′(vk) = F 2
yo(vk) for all k = 1, . . . , r. Since

f(Q) ⊂ V m, the piecewise linear functions F 2
y′(τ) and F 2

y′′(τ) are completely

defined by their values at targets vk and thereby F 2
y′(τ) = F 2

yo(τ) for all τ ∈ R.

Let f(xo) ∈ Q be a fairly efficient solution of problem (1). Suppose that
f(xo) is not a Pareto-optimal solution of problem (47). This means that there
exists x′ ∈ Q such that y′ = f(x′) dominates yo = f(xo) in terms of criteria

hk(y). Hence, ĥk(y′) ≥ ĥk(yo) for all k = 1, . . . , r with at least one inequality
strict. Due to (46), this means that F 2

y′(vk) ≤ F 2
yo(vk) for all k = 1, . . . , r with

at least one strict inequality. Since f(Q) ⊂ V m, the piecewise linear functions
F 2

y′(τ) and F 2
y′′(τ) are completely defined by their values at targets vk and

thereby F 2
y′(τ) ≤ F 2

yo(τ) for all τ ∈ R with at least one inequality strict. The
latter contradicts fair efficiency of xo, which completes the proof.
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Corollary 1 In the case of finite outcome set f(Q) ⊂ V m, the MMF solution
(39) can be found by the standard lexicographic optimization with r criteria:

lexmax {(h1(f(x)), . . . , hr(f(x))) : x ∈ Q}. (48)

Note that multicriteria model (47) may be formulated as, similar to (35),
LP expansion to the original resource allocation problem

max (h1, h2, . . . , hm)
subject to x ∈ Q

hk =
m

∑

i=1

tik for k = 1, . . . , r

tik ≤ fi(x), tik ≤ vk for i = 1, . . . , m, k = 1, . . . , r.

(49)

Although while the ordered outcomes model (35) has always m criteria defined
by the number of outcomes, the latter model has r criteria according to the
number of target values. Following Theorem 7, multiple criteria model (47)
allows us to generate any fairly efficient allocation pattern, provided that the set
of target values covers all possible outcome values. This requirement may lead,
in general, to very numerous set of criteria or even may make impossible taking
full advantage of model (47). Nevertheless, there are many discrete resource
allocation problems where the outcomes take values from a quite small grid of
values. Actually, initial experiments with the MMF solution to discrete location
problems (Ogryczak and Śliwiński, 2006) have shown much higher efficiency of
the lexicographic optimization according to model (47) than the lexicographic
optimization (40).

Certainly, in many practical resource allocation problems one cannot con-
sider target values covering all attainable outcomes. Reducing the number of
criteria we restrict opportunities to generate all possible fair allocations. Never-
theless, one may still generate reasonable compromise solutions as the following
assertion is valid.

Theorem 8 If all attainable outcomes are upper bounded by the largest target
vr, then any xo Pareto-optimal solution of problem (47) is also an efficient
solution of the multiple criteria problem (1) and it can be fairly dominated only
by another efficient solution x′ of (47) with exactly the same values of criteria:

ĥk(f(x′)) = ĥk(f(xo)) for all k = 1, . . . , r.

Proof. Suppose that there exists x′ ∈ Q such that y′ = f(x′) dominates yo =
f(xo). This means that y′

i ≥ yo
i for all i ∈ I with at least one inequality

strict. Hence, ĥk(y′) ≥ ĥk(yo) for all k = 1, . . . , r and ĥr(y
′) > ĥr(y

o) which
contradicts efficiency of xo within the restricted problem (47).

Suppose now that y′ ∈ Q fairly dominates yo. Due to (44), this means that
m(τ −F 2

y′(τ)) ≥ m(τ −F 2
yo(τ)) for all τ ∈ R with at least one inequality strict.

Hence ĥk(y′) ≥ ĥk(yo) for all k = 1, . . . , r and any strict inequality would
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contradict efficiency of xo within the problem (47). Thus, ĥk(x′) = ĥk(xo) for
all k = 1, . . . , r.

It follows from Theorem 8 that even if the set of targets in the multiple
criteria model (47) does not cover all possible outcome values, we can essentially
still expect reasonably fair efficient solution and the only unfairness may be
related to the distribution of outcomes within classes of skipped targets. In other
words, we have guaranteed some rough fairness while it can be possibly improved
by redistribution of outcomes within the intervals (vk, vk+1] for k=1, 2, . . . , r−1.
Thus, we may generate various fairly efficient allocation patterns as Pareto-
optimal solutions to the multiple criteria problem (47) with a reasonably small
grid of target values. Various interactive multiple criteria techniques can be
used for such an analysis, including the reference point methods (Ogryczak,
Milewski and Wierzbicki, 2006).

6. Conclusions

The problems of efficient and fair resource allocation arise in various systems
which serve many users. Fairness is, essentially, an abstract socio-political con-
cept that implies impartiality, justice and equity. Nevertheless, in operations
research it was quantified with various solution concepts. In this paper we have
demonstrated that these solution concepts may be viewed as some specific ap-
proaches to multicriteria models while direct consideration of the multicriteria
models themselves may allow for a better decision support methodology. The
equitable optimization with the preference structure that complies with both
efficiency (Pareto-optimality) and the Pigou-Dalton principle of transfers has
been used to formalize the fair solution concepts. Bicriteria mean-equity mod-
els to search for fair and efficient allocations have been justified under some
requirements and limits on the inequality measures to be used. Two alternative
multiple criteria models equivalent to equitable optimization have been intro-
duced, thus allowing for generation of a variety of fair and efficient resource
allocation patterns by the possible use of the reference point approaches.
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