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Institute of Control & Computation Engineering
Warsaw University of Technology

00-665 Warsaw, Poland
∗W.Ogryczak@ia.pw.edu.pl

In the original Markowitz model for portfolio optimization the risk is measured by the
variance. Several polyhedral risk measures have been introduced leading to Linear Pro-
gramming (LP) computable portfolio optimization models in the case of discrete random
variables represented by their realizations under specified scenarios. The LP models typ-
ically contain the number of constraints (matrix rows) proportional to the number of
scenarios while the number of variables (matrix columns) proportional to the total of
the number of scenarios and the number of instruments. They can effectively be solved
with general purpose LP solvers provided that the number of scenarios is limited. How-
ever, real-life financial decisions are usually based on more advanced simulation models
employed for scenario generation where one may get several thousands scenarios. This
may lead to the LP models with huge number of variables and constraints thus decreasing
their computational efficiency and making them hardly solvable by general LP tools. We
show that the computational efficiency can be then dramatically improved by alternative
models taking advantages of the LP duality. In the introduced models the number of
structural constraints (matrix rows) is proportional to the number of instruments thus
not affecting seriously the simplex method efficiency by the number of scenarios and
therefore guaranteeing easy solvability.
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1. Introduction

The Asian financial markets have seen strong development during the last decade
of the XXth century and the beginning of the XXIth century. Actually, while the
largest market in the region, the Tokyo Stock Exchange (TSE) has been more
volatile reflecting instability in the Japanese economy over this period, the smaller
markets have experienced the growth reaching in total the size comparable to the
TSE (Comerton-Forde and Rydge, 2006). Net capital flows to the Asia Pacific region
over 1999 to 2003 constituted about 14% of the the world’s FDI flows whereas over
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90% of the flows has been in the form of equity and portfolio investments (Ding
and Charoenwong, 2006).

Following Markowitz (1952), the portfolio selection problem is modeled as a
mean-risk bicriteria optimization problem where the expected return is maximized
and some (scalar) risk measure is minimized. In the original Markowitz model the
risk is measured by the variance but several other risk measures have been later
considered thus creating the entire family of mean-risk (Markowitz-type) models.
While the original Markowitz model forms a quadratic programming problem, fol-
lowing Sharpe (1971a), many attempts have been made to linearize the portfolio
optimization procedure. Portfolio optimization models for some specific distribu-
tions of returns can be transformed into a Linear Programming (LP) problem,
like the chance-constrained portfolio selection problem under t-distribution (Wang
et al., 2007). More important, several polyhedral risk measures have been intro-
duced leading to LP computable portfolio optimization models in the case of dis-
crete random variables represented by their realizations under specified scenarios
(c.f., Speranza (1993) and references therein). The simplest LP computable risk
measures are dispersion measures similar to the variance. Konno and Yamazaki
(1991) introduced the portfolio selection model with the mean absolute deviation
(MAD) and demonstrated its good performance on the TSE. Young (1998) pre-
sented the Minimax model while earlier Yitzhaki (1982) introduced the mean-risk
model using Gini’s mean (absolute) difference as the risk measure. The Gini’s mean
difference turns out to be a special aggregation technique of the multiple criteria LP
model (Ogryczak, 2000a) based on the pointwise comparison of the absolute Lorenz
curves. The latter makes the quantile shortfall risk measures directly related to the
dual theory of choice under risk (Quiggin, 1982, 1993; Roell, 1987; Yaari, 1987).
Recently, the second order quantile risk measures have been introduced in different
ways by many authors (Artzner et al., 1999; Embrechts et al., 1997; Ogryczak, 1999,
2000; Rockafellar and Uryasev, 2000). The measure, usually called the Conditional
Value at Risk (CVaR) or Tail VaR, represents the mean shortfall at a specified confi-
dence level. The CVaR measures maximization is consistent with the second degree
stochastic dominance (Ogryczak and Ruszczyński, 2002). Several empirical analy-
ses confirm its applicability to various financial optimization problems (Andersson
et al., 2001; Mansini et al., 2003a). Analyzing the TSE historical data Konno et al.
(2002) confirmed that while monthly stock returns are almost normally distributed,
the daily data exhibits non-symmetric distribution. Similar properties were shown
for the Chinese stock markets (Chen and Wang, 2008) as well as for the Asian hedge
funds (Hakamada et al., 2007; Wong et al., 2008). This causes a need for the use of
LP computable portfolio optimization models capable to deal with non-symmetric
distributions and SSD consistent.

This paper is focused on computational efficiency of the LP computable port-
folio optimization models. We assume that the instruments returns are represented
by their realizations under T scenarios. The basic LP model, for instance for the
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CVaR portfolio optimization, contains then T auxiliary variables as well as T corre-
sponding linear inequalities. Actually, the number of structural constraints in the LP
model (matrix rows) is proportional to the number of scenarios T , while the number
of variables (matrix columns) is proportional to the total of the number of scenarios
and the number of instruments T + n. Hence, its dimensionality is proportional to
the number of scenarios T . It does not cause any computational difficulties for a
few hundreds scenarios as in computational analysis based on historical data. How-
ever, real-life financial analysis must be usually based on more advanced simulation
models employed for scenario generation (Carino et al., 1998). One may get then
several thousands scenarios (Pflug, 2001; Guastaroba et al., 2009) thus leading to
the LP model with huge number of auxiliary variables and constraints and thereby
hardly solvable by general LP tools. Actually, in the case of fifty thousand scenarios
and one hundred instruments the model may require more than an hour compu-
tation time with the state-of-art LP solver (CPLEX code) or remain unsolved. To
overcome this difficulty some alternative solution approaches are searched trying to
reformulate the optimization problems as two-stage recourse problems (Künzi-Bay
and Mayer, 2006), to employ nondifferential optimization techniques (Lim et al.,
2009), cutting planes (Fabian et al., 2009) or to approximate the returns with a fac-
tor representation (Konno et al., 2002). We show that the computational efficiency
can simply be achieved with an alternative model formulation taking advantages
of the LP duality. In the introduced model the number of structural constraints is
proportional to the number of instruments n while only the number of variables is
proportional to the number of scenarios T thus not affecting so seriously the sim-
plex method efficiency. Therefore, the model can effectively be solved with general
LP solvers even for very large numbers of scenarios. Indeed, the computation time
for the case of fifty thousand scenarios and one hundred instruments is then below
a minute.

Similar reformulations can be applied to the classical LP portfolio optimization
models based on the mean absolute deviation as well as to more complex quantile
risk measures. The MAD model was introduced by Konno and Yamazaki (1991)
with 2T auxiliary variables and 2T corresponding linear inequalities while reformu-
lated later by Feinstein and Thapa (1993) to the use T auxiliary variables and T

corresponding linear inequalities. In our model the number of structural constraints
is proportional to the number of instruments n while only the number of variables is
proportional to the number of scenarios T . The Tail Gini’s measures or the Weighted
CVaR measures defined as combinations of CVaR measures for m tolerance levels
lead to LP models with the number of structural constraints (matrix rows) pro-
portional to the respectively multiplied number of scenarios mT . In the alternative
model taking advantages of the LP duality the number of structural constraints
is proportional to the total of the number of instruments and number of tolerance
levels n+m. This guarantees a high computational efficiency of the dual model even
for a very large number of scenarios. The standard LP models for the Gini’s mean
difference (Yitzhaki, 1982) require T 2 auxiliary constraints which makes them hard
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already for medium numbers of scenarios, like a few hundred scenarios given by his-
torical data. The models taking advantages of the LP duality allow one to limit the
number of structural constraints making it proportional to the number of scenarios
T thus increasing dramatically computational performances for medium numbers
of scenarios although still remaining hard for very large numbers of scenarios.

The paper is organized as follows. In the next section we introduce briefly basics
of the mean-risk portfolio optimization with the LP computable risk measures. In
Sec. 3 we develop and test computationally efficient optimization models taking
advantages of the LP duality. Further, Sec. 4 is devoted to the similar analysis of
more complicated Gini’s mean difference LP models and their approximations by
the weighted multiple CVaR (WCVaR) measure models.

2. Portfolio Optimization and Risk Measures

The portfolio optimization problem considered in this paper follows the original
Markowitz’ formulation and is based on a single period model of investment. At the
beginning of a period, an investor allocates the capital among various securities,
thus assigning a nonnegative weight (share of the capital) to each security. Let
J = {1, 2, . . . , n} denote a set of securities considered for an investment. For each
security j ∈ J , its rate of return is represented by a random variable Rj with a
given mean µj = E{Rj}. Further, let x = (xj)j=1,2,...,n denote a vector of decision
variables xj expressing the weights defining a portfolio. The weights must satisfy a
set of constraints to represent a portfolio. The simplest way of defining a feasible set
Q is by a requirement that the weights must sum to one and they are nonnegative
(short sales are not allowed), i.e.

Q =


x :

n∑
j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n


 (2.1)

Hereafter, we perform detailed analysis for the set Q given with constraints (2.1).
Nevertheless, the presented results can easily be adapted to a general LP feasible set
given as a system of linear equations and inequalities, thus allowing one to include
short sales, upper bounds on single shares or portfolio structure restrictions which
may be faced by a real-life investor.

Each portfolio x defines a corresponding random variable Rx =
∑n

j=1 Rjxj that
represents the portfolio rate of return while the expected value can be computed
as µ(x) =

∑n
j=1 µjxj . We consider T scenarios with probabilities pt (where t =

1, . . . , T ). We assume that for each random variable Rj its realization rjt under
the scenario t is known. Typically, the realizations are derived from historical data
treating T historical periods as equally probable scenarios (pt = 1/T ). Although the
models we analyze do not take advantages of this simplification. The realizations of
the portfolio return Rx are given as yt =

∑n
j=1 rjtxj .

The portfolio optimization problem is modeled as a mean-risk bicriteria opti-
mization problem where the mean µ(x) is maximized and the risk measure �(x)
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is minimized. In the original Markowitz model, the standard deviation was used
as the risk measure. Several other risk measures have been later considered thus
creating the entire family of mean-risk models (c.f., Mansini et al., 2003, 2003a).
These risk measures, similar to the standard deviation, are not affected by any shift
of the outcome scale and are equal to 0 in the case of a risk-free portfolio while
taking positive values for any risky portfolio. Unfortunately, such risk measures are
not consistent with the stochastic dominance order (Müller and Stoyan, 2002) or
other axiomatic models of risk-averse preferences (Rotschild and Stiglitz, 1969) and
coherent risk measurement (Artzner et al., 1999).

In stochastic dominance, uncertain returns (modeled as random variables) are
compared by pointwise comparison of some performance functions constructed from
their distribution functions. The first performance function F

(1)
x is defined as the

right-continuous cumulative distribution function: F
(1)
x (η) = Fx(η) = P{Rx ≤ η}

and it defines the first degree stochastic dominance (FSD). The second function is
derived from the first as F

(2)
x (η) =

∫ η

−∞ Fx(ξ)dξ and it defines the second degree
stochastic dominance (SSD). We say that portfolio x′ dominates x′′ under the SSD
(Rx′ �

SSD
Rx′′), if F

(2)
x′ (η) ≤ F

(2)
x′′ (η) for all η, with at least one strict inequality.

A feasible portfolio x0 ∈ Q is called SSD efficient if there is no x ∈ Q such that
Rx �

SSD
Rx0 . Stochastic dominance relates the notion of risk to a possible failure

of achieving some targets. As shown by Ogryczak and Ruszczyński (1999), function
F

(2)
x , used to define the SSD relation, can also be presented as follows: F

(2)
x (η) =

E{max{η−Rx, 0}} and thereby its values are LP computable for returns represented
by their realizations yt.

When the mean µ(x) is used instead of the fixed target the value F
(2)
x

(µ(x)) defines the risk measure known as the downside mean semideviation from
the mean

δ̄(x) = E{max{µ(x) − Rx, 0}} = F (2)
x (µ(x)). (2.2)

The downside mean semideviation is always equal to the upside one and there-
fore we refer to it hereafter as to the mean semideviation. The mean semideviation
is a half of the mean absolute deviation (MAD) from the mean (Ogryczak and
Ruszczyński, 1999) δ(x) = E{|Rx − µ(x)|} = 2δ̄(x). Hence the corresponding port-
folio optimization model is equivalent to the MAD. Since δ̄(x) = F

(2)
x (µ(x)), the

mean semideviation (2.2) is LP computable (when minimized), for a discrete random
variable represented by its realizations yt. Although, due to the use of distribution
dependent target value µ(x), the mean semideviation cannot be directly consid-
ered an SSD consistent risk measure. SSD consistency (Ogryczak and Ruszczyński,
1999) and coherency (Mansini et al., 2003a) of the MAD model can be achieved
with maximization of for complementary risk measure µδ(x) = µ(x) − δ̄(x) =
E{min{µ(x), Rx}}, which also remains LP computable for a discrete random vari-
able represented by its realizations yt.

An alternative characterization of the SSD relation can be achieved with the
so-called Absolute Lorenz Curves (ALC) (Ogryczak, 1999; Shorrocks, 1983) which
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represent the second quantile functions defined as

F (−2)
x (p) =

∫ p

0

F (−1)
x (α)dα for 0 < p ≤ 1 and F (−2)

x (0) = 0, (2.3)

where F
(−1)
x (p) = inf{η : Fx(η) ≥ p} is the left-continuous inverse of the cumulative

distribution function Fx. The pointwise comparison of ALCs is equivalent to the
SSD relation (Ogryczak and Ruszczyński, 2002) in the sense that Rx′ �

SSD
Rx′′ if

and only if F
(−2)
x′ (β) ≥ F

(−2)
x′′ (β) for all 0 < β ≤ 1. Moreover,

F (−2)
x (β) = max

η∈R
[βη − F (2)

x (η)] = max
η∈R

[βη − E{max{η − Rx, 0}}] (2.4)

where η is a real variable taking the value of β-quantile Qβ(x) at the optimum. For
a discrete random variable represented by its realizations yt problem (2.4) becomes
an LP.

For any real tolerance level 0 < β ≤ 1, the normalized value of the ALC
defined as

Mβ(x) = F (−2)
x (β)/β (2.5)

is called the Conditional Value-at-Risk (CVaR) or Tail VaR or Average VaR. The
CVaR measure is an increasing function of the tolerance level β, with M1(x) = µ(x).
For any 0 < β < 1, the CVaR measure is SSD consistent (Ogryczak and
Ruszczyński, 2002) and coherent (Pflug, 2000). Opposite to deviation type risk
measures, for coherent measures larger values are preferred and therefore the mea-
sures are sometimes called safety measures (Mansini et al., 2003a). Due to (2.4), for
a discrete random variable represented by its realizations yt the CVaR measures are
LP computable. It is important to notice that although the quantile risk measures
(VaR and CVaR) were introduced in banking as extreme risk measures for very
small tolerance levels (like β = 0.05), for the portfolio optimization good results
have been provided by rather larger tolerance levels (Mansini et al., 2003a).

For β approaching 0, the CVaR measure tends to the Minimax measure

M(x) = min
t=1,...,T

yt (2.6)

introduced to portfolio optimization by Young (1998). Note that the maximum
(downside) semideviation

∆(x) = µ(x) − M(x) = max
t=1,...,T

(µ(x) − yt) (2.7)

and the conditional β-deviation

∆β(x) = µ(x) − Mβ(x) for 0 < β ≤ 1, (2.8)

respectively, represent the corresponding deviation risk measures. They may be
interpreted as the drawdown measures (Chekhlov et al., 2002). For β = 0.5 the
measure ∆0.5(x) represents the mean absolute deviation from the median (Mansini
et al., 2003) the risk measure suggested by Sharpe (1971) as the right MAD model.
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The commonly accepted approach to implementation of the Markowitz-type
mean-risk model (with deviation type risk measures) is based on the use of a spec-
ified lower bound µ0 on expected returns while optimizing the risk measure. This
bounding approach provides a clear understanding of investor preferences and a
clear definition of optimal portfolio to be sought. For deviation type risk measures
� the approach results in the following minimum risk problem:

min{�(x) : µ(x) ≥ µ0, x ∈ Q} (2.9)

While using the coherent and SSD consistent risk measures µ� one may focus on
the measure maximization without additional constraints

max{µ�(x) : x ∈ Q} (2.10)

or still consider some preferential constraints on the mean expectation

max{µ�(x) : µ(x) ≥ µ0, x ∈ Q}. (2.11)

We demonstrate that both models can be effectively solved for large numbers of
scenarios while taking advantages of appropriate dual formulations.

3. Computational LP Models for Basic Risk Measures

3.1. Coherent measures maximization

Let us consider portfolio optimization problem with security returns given by dis-
crete random variables with realization rjt thus leading to LP models for coherent
risk measures we consider. Let us focus first on measures maximization without
additional (preferential) constraints thus considering the optimization models of
type 2.10).

Following (2.4) and (2.5), the CVaR portfolio optimization model can be formu-
lated as the following LP problem:

max η − 1
β

T∑
t=1

ptdt

s.t.
n∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n

dt − η +
n∑

j=1

rjtxj ≥ 0, dt ≥ 0 for t = 1, . . . , T

(3.1)

where η is unbounded variable. Except from the core portfolio constraints (2.1),
model (3.1) contains T nonnegative variables dt plus single η variable and T

corresponding linear inequalities. Hence, its dimensionality is proportional to the
number of scenarios T . Exactly, the LP model contains T +n+1 variables and T +1
constraints. It does not cause any computational difficulties for a few hundreds sce-
narios as in several computational analysis based on historical data (Mansini et al.,
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2007). However, in the case of more advanced simulation models employed for sce-
nario generation one may get several thousands scenarios. This may lead to the
LP model (3.1) with huge number of variables and constraints thus decreasing the
computational efficiency of the model. If the core portfolio constraints contain only
linear relations, like (2.1), then the computational efficiency can easily be achieved
by taking advantages of the LP dual to model (3.1). The LP dual model takes the
following form:

min q

s.t. q −
T∑

t=1

rjtut ≥ 0 for j = 1, . . . , n

T∑
t=1

ut = 1

0 ≤ ut ≤ pt

β
for t = 1, . . . , T

(3.2)

The dual LP model contains T variables ut, but the T constraints correspond-
ing to variables dt from (3.1) take the form of simple upper bounds (SUB) on
ut thus not affecting the problem complexity. Actually, the number of constraints
in (3.2) is proportional to the total of portfolio size n, thus it is independent
from the number of scenarios. Exactly, there are T + 1 variables and n + 1 con-
straints. This guarantees a high computational efficiency of the dual model even
for very large number of scenarios. Note that possible additional portfolio struc-
ture requirements are usually modeled with rather small number of linear con-
straints thus generating small number of additional variables in the dual model.
Certainly, the optimal portfolio shares xj are not directly represented within the
solution vector of problem (3.2) but they are easily available as the dual variables
(shadow prices) for inequalities q − ∑T

t=1 rjtut ≥ 0. Moreover, the dual model
(3.2) may be considered a special case within the general theory of dual repre-
sentations of coherent measures of risk, following from conjugate duality (Exam-
ple 4.3 in Ruszczyński and Shapiro, 2006; Section 5 in Miller and Ruszczyński,
2008). This allows variables ut to have the interpretation of probability distribu-
tions, while one looks at the distribution of the portfolio returns with respect to this
measure.

The Minimax portfolio optimization model representing a limiting case of the
CVaR model for β tending to 0 is even simpler than the general CVaR model. It
can be written as the following LP problem:

max η

s.t.
n∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n

−η +
n∑

j=1

rjtxj ≥ 0, for t = 1, . . . , T

(3.3)
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Except from the portfolio weights xj , the model contains only one additional vari-
able η. Nevertheless, it still contains T linear inequalities in addition to the core
constraints (2.1). Hence, its dimensionality is (T +1)× (n+1). The LP dual model
takes then the following form:

min q

s.t. q −
T∑

t=1

rjtut ≥ 0 for j = 1, . . . , n

T∑
t=1

ut = 1

s.ut ≥ 0 for t = 1, . . . , T

(3.4)

with dimensionality (n+1)×(T+1). This guarantees a high computational efficiency
of the dual model even for very large number of scenarios. Comparing the model to
the dual CVaR model (3.2) one may notice that upper bounds are skipped. Indeed,
the upper bounds pt/β tend to the infinity with β approaching 0.

The SSD consistent and coherent MAD model with complementary risk measure
(µδ(x) = µ(x) − δ̄(x) = E{min{µ(x), Rx}}), leads to the following LP problem:

max
n∑

j=1

µjxj −
T∑

t=1

ptdt

s.t.
n∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n

dt −
n∑

j=1

(µj − rjt)xj ≥ 0, dt ≥ 0 for t = 1, . . . , T

(3.5)

The above LP formulation uses T + n variables and T + 1 constraints while the LP
dual model takes then the following form:

min q

s.t. q +
T∑

t=1

(µj − rjt)ut ≥ µj for j = 1, . . . , n

0 ≤ ut ≤ pt for t = 1, . . . , T

(3.6)

with dimensionality n× (T + 1). Hence, high computational efficiency is still guar-
anteed even for very large number of scenarios.

We have run two groups of computational tests. The medium scale tests of 5 000,
7 000 and 10 000 scenarios and 76 securities were generated following the FTSE 100
related data (Fabian et al., 2009). The large scale tests instances developed by Lim
et al. (2009) were generated from a multivariate normal distribution for 50 or 100
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Table 1. Computational times (in seconds) for the primal models.

Scenarios (T ) Securities (n) CVaR (3.1) with various tolerance levels β Minimax MAD

0.05 0.1 0.2 0.3 0.4 0.5 (3.3) (3.5)

5 000 76 2.1 2.5 3.6 5.0 6.4 7.3 0.5 18.0
7 000 76 3.9 4.2 6.6 9.0 11.5 13.7 0.8 7.3

10 000 76 5.8 7.8 13.0 17.3 22.2 26.8 1.2 14.4
50 000 50 3173.4 4687.9 — — — — 7.7 —
50 000 100 — — — — — — 24.1 —

Table 2. Computational times (in seconds) for the dual models.

Scenarios (T ) Securities (n) CVaR (3.1) with various tolerance levels β Minimax MAD

0.05 0.1 0.2 0.3 0.4 0.5 (3.3) (3.5)

5 000 76 0.6 0.8 0.8 0.8 0.8 0.8 0.5 0.5
7 000 76 1.0 1.0 1.2 1.2 1.2 1.2 0.6 0.8

10 000 76 1.4 1.7 1.9 2.0 2.0 2.1 0.9 1.1
50 000 50 14.8 19.2 24.2 27.1 27.7 28.7 3.7 25.4
50 000 100 40.4 53.9 70.5 77.6 80.7 78.0 8.4 80.6

securities with the number of scenarios 50 000 just providing an adequate approxi-
mation to the underlying unknown continuous price distribution. All computations
were performed on a PC with the Pentium 4 2.6GHz processor and 3GB RAM
employing the simplex code of the CPLEX 9.1 package.

In Tables 1 and 2 there are presented computation times for all the above pri-
mal and dual models. All results are presented as the averages of 10 different test
instances of the same size. For the medium scale test problems the solution times of
the dual CVaR models (3.2) ranging from 0.6 to 2.1 seconds are not much shorter
than those for the primal models ranging from 2.1 to 26.8 seconds, respectively.
However, an attempt to solve the primal CVaR model (3.1) of the large scale test
problems was successful only for β = 0.05 and β = 0.1 and the times were dramat-
ically longer than those for the dual model. For other values of β the timeout of
6000 seconds occurred (marked with ‘–’). For 100 securities the primal model was
not solvable within the given time limit, while the dual models could be successfully
solved in 40.4 to 80.7 seconds.

The Minimax models are computationally very easy. Running the computational
tests we were able to solve the medium scale test instances of the dual model (3.4)
in times below 1 second and the large scale test instances in up to 8.4 seconds on
average. In fact, even the primal model could be solved in reasonable time up to
24.1 seconds for large scale test instances.

The MAD models are computationally similar to the CVaR models. Indeed, only
medium scale test instances of the primal model (3.5) could be solved within the
given time limit. Much shorter computing times could be achieved for the dual MAD
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model (3.6) — not more than 1.1 second for the medium scale and 80.6 seconds for
the large scale test instances.

3.2. Mean-risk models

Let us consider now LP computable risk measures maximization with additional
preferential constraints as specified in model (2.11). Note that introducing a
lower bound on the required expected return in the primal portfolio optimization
model (3.1) result only in a single additional variable in the dual model (3.2). Indeed,
following (3.1), the corresponding CVaR portfolio optimization model according
to (2.11) can be formulated as the following LP problem:

max η − 1
β

T∑
t=1

ptdt

s.t.
n∑

j=1

µjxj ≥ µ0,

n∑
j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n

dt − η +
n∑

j=1

rjtxj ≥ 0, dt ≥ 0 for t = 1, . . . , T

(3.7)

where η is unbounded variable. Hence, its dimensionality is proportional to the
number of scenarios T . The LP model (3.7) contains T + n + 1 variables and T + 2
constraints. In the case of several thousands scenarios this may result huge number
of variables and constraints thus decreasing the computational efficiency of the
model. The computational efficiency can easily be achieved by taking advantages
of the LP dual to model (3.7) that takes the following form:

min q − µ0u0

s.t. q − µju0 −
T∑

t=1

rjtut ≥ 0 for j = 1, . . . , n

T∑
t=1

ut = 1

0 ≤ ut ≤ pt

β
for t = 1, . . . , T

(3.8)

The dual LP model contains T + 1 variables ut, but the T constraints correspond-
ing to variables dt from (3.7) take the form of simple upper bounds on ut (for
t = 1, . . . , T ) thus not affecting the problem complexity. Actually, the number of
constraints in (3.8) is proportional to the total of portfolio size n, thus it is inde-
pendent from the number of scenarios. Exactly, there are T + 1 variables and n + 1
constraints. This again guarantees a high computational efficiency of the dual model
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even for very large number of scenarios. Similarly, other portfolio structure require-
ments are modeled with rather small number of constraints thus generating small
number of additional variables in the dual model.

Similar to the CVaR model, introducing a lower bound on the required expected
return in the Minimax portfolio optimization model (3.9) result only in a single
additional variable in the dual model. Indeed, the Minimax portfolio optimization
model with mean return requirement can be written as the following simple LP
problem:

max η

s.t.
n∑

j=1

µjxj ≥ µ0,
n∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n

−η +
n∑

j=1

rjtxj ≥ 0, for t = 1, . . . , T

(3.9)

Except from the portfolio weights xj , the model contains only one additional vari-
able η. However, its dimensionality is (T +2)× (n+1). On the other hand, its dual
takes the following form:

min q − µ0u0

s.t. q − µju0 −
T∑

t=1

rjtut ≥ 0 for j = 1, . . . , n

T∑
t=1

ut = 1

ut ≥ 0 for t = 1, . . . , T

(3.10)

with dimensionality (n+1)×(T+2). This guarantees a high computational efficiency
of the dual model even for very large number of scenarios. The model from the dual
CVaR model (3.8) by omitting the upper bounds.

When introducing a lower bound on the required expected return into the coher-
ent version of the MAD risk measure (µδ(x) = µ(x) − δ̄(x) = E{min{µ(x), Rx}})
optimization we get:

max
n∑

j=1

µjxj −
T∑

t=1

ptdt

s.t.
n∑

j=1

µjxj ≥ µ0,

n∑
j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n

dt −
n∑

j=1

(µj − rjt)xj ≥ 0, dt ≥ 0 for t = 1, . . . , T

(3.11)
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with T +n variables and T +2 constraints. The LP dual model takes then the form:

min q − µ0u0

s.t. q − µju0 +
T∑

t=1

(µj − rjt)ut ≥ µj for j = 1, . . . , n

0 ≤ ut ≤ pt for t = 1, . . . , T

(3.12)

with dimensionality n× (T + 2). Hence, there is again guaranteed the high compu-
tational efficiency even for very large number of scenarios.

We have repeated the computational test of Table 2 for the dual mean-risk
models with the required return µ0 defined as the expected return of the portfolio
with equal weights (market value). As one can see in Table 3 the solution times
for the dual mean-risk CVaR models (3.8) are only slightly longer than those for
the basic dual CVaR models (3.2). The additional constraint does not increase also
solution times for the dual Minimax model (3.10). For the MAD model, while addi-
tional expected return constraint (3.12) increased slightly the solution times for the
medium scale test instances, the test problems with 50 000 scenarios could be solved
in 25.8 seconds on average for 50 securities and in 76.7 seconds for 100 instruments,
respectively, which is about the same as for the original dual models (3.6).

To see how the value of the required expected return affects the solution times
we have performed additional tests for the dual CVaR (with β = 0.1), Minimax and
MAD models. This time µ0 value (increased value) was set in the halfway between
the expected return of the market value and the maximum possible return for single
security portfolio. The results for one problem size of the medium scale problems

Table 3. Computational times (in seconds) for the dual mean-risk models.

Scenarios (T ) Securities (n) CVaR (3.1) with various tolerance levels β Minimax MAD

0.05 0.1 0.2 0.3 0.4 0.5 (3.3) (3.5)

5 000 76 0.9 0.9 1.1 1.3 1.4 1.6 0.5 2.1
7 000 76 1.2 1.4 1.8 2.0 2.2 2.3 0.7 3.1

10 000 76 2.0 2.3 2.9 3.4 3.9 4.0 1.0 10.8
50 000 50 14.9 19.4 24.0 26.8 28.2 27.9 3.9 25.8
50 000 100 40.0 54.6 68.7 77.7 78.2 78.8 8.2 76.7

Table 4. Computational times (in seconds) for the dual CVaR (β = 0.1), Minimax
and MAD models with different required expected return value µ0.

Scenarios Securities µ0 CVaR Minimax MAD

no constraint 1.7 0.9 1.1
10 000 76 market value 2.3 1.0 10.8

increased value 2.3 1.1 13.9

no constraint 53.9 8.4 80.6
50 000 100 market value 54.6 8.2 76.7

increased value 49.9 10.50 55.4
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(10 000 scenarios) and one of the large scale problems (100 securities) are shown
in Table 4. The computational times are generally comparable with those for the
market value constraints. One may notice a drop in computation times for large
scale CVaR and MAD models with increased required expected return.

4. Gini’s Mean Difference and Related Models

Yitzhaki (1982) introduced the portfolio optimization model using Gini’s
mean difference (GMD) as risk measure. The GMD is given as Γ(x) =
1
2

∫ ∫ |η − ξ|dFx(η)dFx(ξ) although several alternative formulae exist. For a dis-
crete random variable represented by its realizations yt, the measure Γ(x) =∑T

t′=1

∑
t′′ �=t′−1 max{yt′−yt′′ , 0}pt′pt′′ is LP computable (when minimized) leading

to the following portfolio optimization model:

max −
T∑

t=1

∑
t′ �=t

ptpt′dtt′

s.t.
n∑

j=1

µjxj ≥ µ0,

n∑
j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n

dtt′ ≥
n∑

j=1

rjtxj −
n∑

j=1

rjt′xj , dtt′ ≥ 0 for t, t′ = 1, . . . , T ; t �= t′

(4.1)

which contains T (T − 1) nonnegative variables dtt′ and T (T − 1) inequalities to
define them. This generates a huge LP problem even for the historical data case
where the number of scenarios is 100 or 200. Krzemienowski and Ogryczak (2005)
have shown with the earlier experiments that the CPU time of 7 seconds on average
for T = 52 has increased to above 30 sec. with T = 104 and even more than 180
sec. for T = 156. However, similar to the CVaR models, variables dtt′ are associated
with the singleton coefficient columns. Hence, while solving the dual instead of the
original primal, the corresponding dual constraints take the form of simple upper
bounds (SUB) which are handled implicitly outside the LP matrix. For the simplest
form of the feasible set (2.1) the dual GMD model takes the following form:

min q − µ0u0

s.t. q − µju0 −
T∑

t=1

∑
t′ �=t

(rjt − rjt′ )utt′ ≥ 0 for j = 1, . . . , n

0 ≤ utt′ ≤ ptpt′ for t, t′ = 1, . . . , T ; t �= t′

(4.2)

where original portfolio variables xj are dual prices to the inequalities. The dual
model contains T (T −1) variables utt′ but the number of constraints (excluding the
SUB structure) n + 1 is proportional to the number of securities. The above dual
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formulation can be further simplified by introducing variables:

ūtt′ = utt′ − ut′t for t, t′ = 1, . . . , T ; t < t′ (4.3)

which allows us to reduce the number of variables to T (T − 1)/2 by replacing (4.2)
with the following:

min q − µ0u0

s.t. v − µju0 −
T∑

t=1

∑
t′>t

(rjt − rjt′ )ūtt′ ≥ 0 for j = 1, . . . , n

−ptpt′ ≤ ūtt′ ≤ ptpt′ for t, t′ = 1, . . . , T ; t < t′

(4.4)

Such a dual approach may dramatically improve the LP model efficiency in the case
of larger number of scenarios. Actually, as shown with the earlier experiments of
Krzemienowski and Ogryczak (2005), the above dual formulations let us to reduce
the optimization time below 10 seconds for T = 104 and T = 156. Nevertheless, the
case of really large number of scenarios still may cause computational difficulties,
due to huge number of variables (T (T −1)/2). This may require some column gener-
ation techniques (Desrosiers and Luebbecke, 2005) or nondifferentiable optimization
algorithms (Lim et al., 2009).

As shown by Yitzhaki (1982) for the SSD consistency of the GMD model one
needs to maximize the complementary measure

µΓ(x) = µ(x) − Γ(x) = E{Rx ∧ Rx} (4.5)

where the cumulative distribution function of Rx ∧ Rx for any η ∈ R is given as
Fx(η)(2−Fx(η)). Hence, (4.5) is the expectation of the minimum of two independent
identically distributed random variables (i.i.d.r.v.) Rx thus representing the mean
worse return. This provides us with another LP model although it is not more
compact than that of (4.1) and its dual (4.2). Alternatively, the GMD may be
expressed with integral of the absolute Lorenz curve as

Γ(x) = 2
∫ 1

0

(αµ(x) − F (−2)
x (α))dα = 2

∫ 1

0

α(µ(x) − Mα(x))dα

and respectively

µΓ(x) = µ(x) − Γ(x) = 2
∫ 1

0

F (−2)
x (α)dα = 2

∫ 1

0

αMα(x)dα (4.7)

thus combining all the CVaR measures. In order to enrich the modeling capabilities,
one may treat differently some more or less extreme events. In order to model
downside risk aversion, instead of the Gini’s mean difference, the tail Gini’s measure
introduced by Ogryczak and Ruszczyński (2002, 2002a) can be used:

µΓβ
(x) = µ(x) − 2

β2

∫ β

0

(µ(x)α − F (−2)
x (α))dα =

2
β2

∫ β

0

F (−2)
x (α)dα (4.8)
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In the simplest case of equally probable T scenarios with pt = 1/T (historical
data for T periods), the tail Gini’s measure for β = K/T may be expressed as
the weighted combination of CVaRs Mβk

(x) with tolerance levels βk = k/T for
k = 1, 2, . . . , K and properly defined weights (Ogryczak and Ruszczyński, 2002a). In
a general case, we may resort to an approximation based on some reasonably chosen
grid βk, k = 1, . . . , m and weights wk expressing the corresponding trapezoidal
approximation of the integral in the formula (4.8). Exactly, for any 0 < β ≤ 1,
while using the grid of m tolerance levels 0 < β1 < · · · < βk < · · · < βm = β one
may define weights:

wk =
(βk+1 − βk−1)βk

β2
, for k = 1, . . . , m − 1, and wm =

β − βm−1

β
(4.9)

where β0 = 0. This leads us to the Weighted CVaR (WCVaR) measure (Mansini
et al., 2007) defined as

M (m)
w (x) =

m∑
k=1

wkMβk
(x),

m∑
k=1

wk = 1, wk > 0 for k = 1, . . . , m (4.10)

We emphasize that despite being only an approximation to (4.8), any WCVaR mea-
sure itself is a well defined LP computable measure with guaranteed SSD consistency
and coherency, as a combination of the CVaR measures. Hence, it needs not to be
built on a very dense grid to provide proper modeling of risk averse preferences.
While analyzed on the real-life data from the Milan Stock Exchange the weighted
CVaR models have usually performed better than the GMD itself, the Minimax or
the extremal CVaR models (Mansini et al., 2007).

Here we analyze only computational efficiency of the LP models representing
the WCVaR portfolio optimization. For returns represented by their realizations we
get the following LP optimization problem:

max
m∑

k=1

wkηk −
m∑

k=1

wk

βk

T∑
t=1

ptdtk

s.t.
n∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n

dtk − ηk +
n∑

j=1

rjtxj ≥ 0, dtk ≥ 0 for t = 1, . . . , T ; k = 1, . . . , m

(4.11)

where ηk (for k = 1, . . . , m) are unbounded variables taking the values of the cor-
responding βk-quantiles (in the optimal solution). Except from the core portfolio
constraints (2.1), model (4.11) contains T nonnegative variables dtk and T corre-
sponding linear inequalities for each k. Hence, its dimensionality is proportional to
the number of scenarios T and to the number of tolerance levels m. Exactly, the
LP model contains m × T + n variables and m × T + 1 constraints. It does not
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cause any computational difficulties for a few hundreds scenarios and a few toler-
ance levels, as in a simple computational analysis based on historical data (Mansini
et al., 2007). However, in the case of more advanced simulation models employed for
scenario generation one may get several thousands scenarios. This may lead to the
LP model (4.11) with huge number of variables and constraints thus decreasing the
computational efficiency of the model. If the core portfolio constraints contain only
linear relations, like (2.1), then the computational efficiency can easily be achieved
by taking advantages of the LP dual to model (4.11). The LP dual model takes the
following form:

min q

s.t. q −
T∑

t=1

rjt

m∑
k=1

utk ≥ 0 for j = 1, . . . , n

T∑
t=1

utk = wk for k = 1, . . . , m

0 ≤ utk ≤ ptwk

βk
for t = 1, . . . , T ; k = 1, . . . , m

(4.12)

The dual LP model contains m× T variables utk, but the m× T constraints corre-
sponding to variables dtk from (4.11) take the form of simple upper bounds (SUB) on
utk thus not affecting the problem complexity. Actually, the number of constraints
in (4.12) is proportional to the total of portfolio size n and the number of tolerance
levels m, thus it is independent from the number of scenarios. Exactly, there are
m × T + 1 variables and m + n constraints. This guarantees a high computational
efficiency of the dual model even for very large number of scenarios.

Similar to the CVaR model, introducing a lower bound on the required expected
return in the primal portfolio optimization model (4.11) results only in a single
additional variable in the dual model (4.12). Indeed, when introducing a lower
bound on the required expected return into the WCVaR model we get:

max
m∑

k=1

wkηk −
m∑

k=1

wk

βk

T∑
t=1

ptdtk

s.t.
n∑

j=1

µjxj ≥ µ0,

n∑
j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n

dtk − ηk +
n∑

j=1

rjtxj ≥ 0, dtk ≥ 0 for t = 1, . . . , T ; k = 1, . . . , m

(4.13)

Its dimensionality is proportional to the number of scenarios T and to the number
of tolerance levels m. Exactly, now the LP model contains m × T + n variables
and m × T + 2 constraints. In the case of large number of scenarios the compu-
tational efficiency can easily be improved by taking advantages of the LP dual to
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Table 5. Computational times (in seconds) for the dual WCVaR models.

Scenarios (T ) Securities (n) Model (4.12) Model (4.14)

m = 3 m = 5 m = 3 m = 5

5 000 76 3.3 7.4 6.2 13.8
7 000 76 5.4 11.7 10.0 22.8

10 000 76 9.2 20.5 16.2 37.7
50 000 50 123.7 285.1 121.8 281.0
50 000 100 335.1 731.0 335.3 731.7

model (4.13):

min q − µ0u0

s.t. q − µju0 −
T∑

t=1

rjt

m∑
k=1

utk ≥ 0 for j = 1, . . . , n

T∑
t=1

utk = wk for k = 1, . . . , m

0 ≤ utk ≤ ptwk

βk
for t = 1, . . . , T ; k = 1, . . . , m

(4.14)

that contains m × T variables utk, but the m × T constraints corresponding to
variables dtk from (4.13) take the form of simple upper bounds on utk thus not
affecting the problem complexity. Hence, again the number of constraints in (4.14)
is proportional to the total of portfolio size n and the number of tolerance levels m,
thus it is independent from the number of scenarios. Exactly, there are m × T + 2
variables and m + n constraints thus guaranteeing a high computational efficiency
of for very large number of scenarios.

We have tested computational efficiency of the dual models (4.12) and (4.14)
using the same randomly generated test instances as for testing of the CVaR and
other basic models in Sec 3. Table 5 presents average computation times of the dual
models for m = 3 with tolerance levels β1 = 0.1, β2 = 0.25, β3 = 0.5 and weights
w1 = 0.1, w2 = 0.4 and w3 = 0.5, thus representing the parameters leading to good
results on real life data (Mansini et al., 2007), as well as for m = 5 with uniformly
distributed tolerance levels β1 = 0.1, β2 = 0.2, β3 = 0.3, β4 = 0.4, β5 = 0.5 and
weights defined according to (4.9).

5. Concluding Remarks

The classical Markowitz model for portfolio selection using the variance as the risk
measure is well suited for normal distributions of returns. However, many studies
show that on various markets many stocks or other instruments do not follow normal
distribution. This was revealed, in particular, for Japanese (Konno et al., 2002)
and Chinese (Chen and Wang, 2008) stock markets as well as for the Asian hedge
funds (Hakamada et al., 2007; Wong et al., 2008). There were introduced several
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alternative risk measures which are appropriate for non-symmetric distributions
and computationally attractive as (for discrete random variables) they result in
solving linear programming (LP) problems. The LP solvability is very important
for applications to real-life financial decisions where the constructed portfolios have
to meet numerous side constraints and take into account transaction costs. A gamut
of LP computable risk measures has been presented in the portfolio optimization
literature although most of them are related to the absolute Lorenz curve and
thereby the CVaR measures. We have shown that all the risk measures used in the
LP solvable portfolio optimization models can be derived from the SSD shortfall
criteria. This allows us to guarantee their SSD consistency for any distribution of
outcomes.

The corresponding portfolio optimization models can be solved with general pur-
pose LP solvers. However, in the case of more advanced simulation models employed
for scenario generation one may get several thousands scenarios. This may lead to
the LP model with huge number of variables and constraints thus decreasing the
computational efficiency of the models. For the CVaR model, the number of con-
straints (matrix rows) is proportional to the number of scenarios. while the number
of variables (matrix columns) is proportional to the total of the number of scenarios
and the number of instruments. We have shown that the computational efficiency
can be then dramatically improved with an alternative model taking advantages
of the LP duality. In the introduced model the number of structural constraints
(matrix rows) is proportional to the number of instruments thus not affecting seri-
ously the simplex method efficiency by the number of scenarios. In particular, for
the case of 50 000 scenarios, it has resulted in computation times below 30 seconds
for 50 securities or below a minute for 100 instruments. Similar computational times
have also been achieved for the dual reformulation of the MAD and the Minimax
models.

Dual reformulation applied to the GMD portfolio optimization model results
in a dramatic problem size reduction with the number of constraints equal to the
number of instruments instead of the square of the number of scenarios. Although,
the remaining high number of variables (square of the number of scenarios) still
makes the problem computationally difficult for very large numbers of scenarios.
This requires further research on column generation techniques or nondifferentiable
optimization algorithms for the GMD model. On the other hand, the Weighted
CVaR models approximating the tail Gini’s measures after the dual reformulation
have been quite efficiently solved even on 50 000 scenario instances with computation
times below 5 minutes for 50 securities or about 10 minutes for 100 instruments.

This paper has been focused on computational efficiency of the LP computable
portfolio optimization models and it has been shown that large numbers of scenarios
do not cause any serious computational difficulties for the typical models. The
optimal portfolio shares are not directly represented within the solution vector of
the dual model problem but they are easily available as the dual variables (shadow
prices) for respective inequalities. Moreover, the dual models may be considered a



February 10, 2011 13:27 WSPC/S0217-5959 APJOR S0217595911003041.tex

60 W. Ogryczak & T. Śliwiński

special case within the general theory of dual representations of coherent measures
of risk (Ruszczyński and Shapiro, 2006; Miller and Ruszczyński, 2008) thus allowing
variables to have the interpretation of probability distributions.

Certainly, possible wider usage of the LP computable portfolio optimization
models still requires further research in many areas. The optimization results
strongly depend on the quality of forecasted scenarios data and there is a need
for powerful tools enabling effective forecasting while mining huge sets of financial
data of various types (Li et al., 2009). The LP computable portfolio optimization
allows to model various risk averse preferences expressed with (primal or dual) util-
ity functions (Ogryczak, 2002). The sensitivity analysis of models conducted with
respect to utility functions rather than numeric values (Churilov et al., 2004) seems
to be a promising direction for further research.
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