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Abstract—Network resource allocation problems are con-
cerned with the allocation of limited resources among competing
entities so as to respect some fairness rules while looking for the
overall efficiency. This paper presents the methodology of fair
optimization representing inequality averse optimization rather
than strict inequality minimization as foundation of fairness
in resource allocation. Commonly applied in network resource
allocation Max-Min Fairness or the lexicographic maximin opti-
mization are the most widely known concepts of fair optimization.
Alternative models of fair optimization are discussed showing that
they generate all the classical fair solution concepts as special
cases. However, the fair optimization concepts can effectively
generate various fair and efficient resource allocation schemes.

Keywords—Fairness; resource allocation; equitability; fair op-
timization; lexicographic maximin

I. INTRODUCTION

Resource allocation decisions are usually concerned with
the allocation of limited resources so as to achieve the best
system performance. However, in networking there is a need
to respect some fairness rules while looking for the overall
efficiency. A fair way of distribution of the bandwidth (or
other network resources) among competing network entities
(activities) becomes a key issue in computer networks and
communication network design in general [1], [2]. In order
to ensure fairness, all the entities have to be adequately
provided with the resources. Nevertheless, fair treatment of
all entities does not imply equal allocation of resources due to
network constraints. This leads to concepts of fair optimiza-
tion representing inequality averse optimization rather than
strict inequality minimization. The so-called Max-Min Fairness
(MMF) and its generalization to the lexicographic maximin
optimization, which is widely applied in networking, is such
a concept. As the MMF may cause a dramatic worsening
of the overall efficiency [3], [4], several other fair allocation
schemes are searched to get some tradeoff. We recall the
concept of fair efficiency as a basis for fair optimization.
It is a specific refinement of the Pareto-optimality which
remains in harmony with both inequality minimization and
outcomes maximization. Two alternative multicriteria models
of fair optimization are discussed showing that they generate
all the classical fairness solution concepts as special cases.
Nevertheless, the fair optimization methodology provides a
variety of techniques to generate fair and efficient solutions.

The paper is organized as follows. In the next section the
fair optimization with the preference structure that complies

with both the efficiency (Pareto-optimality) and with the Pigou-
Dalton principle of transfers is used to formalize the fair
solution concepts. In Section III the classical fairness solution
concepts are presented as special cases of fair optimization.
There is also shown that properties of convexity and positive
homogeneity together with some boundedness condition are
sufficient for a typical inequality measure to guarantee that
it can be used consistently with the fair optimization rules.
Further, two alternative multiple criteria models equivalent to
fair optimization are introduced thus allowing to generate a
larger variety of fair and efficient resource allocation schemes.
In Section V we show how importance weights allocated to
several entities can be introduced into fair optimization.

II. FAIR OPTIMIZATION

The generic resource allocation problem may be stated
as follows. There is a system dealing with a set I of m
entities (services, activities, agents). There is given a set Q
of allocation patterns (allocation decisions). For each entity
i ∈ I a function fi(x) of the allocation pattern x ∈ Q is
defined, which where the mean measures the outcome (effect)
yi = fi(x) of allocation pattern x for entity i. In network
applications, a larger value of the outcome usually means a
better effect (higher service quality). Otherwise, the outcomes
can be replaced with their complements to some large number.
Thus, we get a vector maximization problem:

max {f(x) : x ∈ Q} (1)

where f(x) is a vector-function that maps the decision space
X = Rn into the criterion space Y = Rm, and Q ⊂ X denotes
the feasible set. In order to make model (1) operational, one
needs to assume some solution concept specifying what it
means to maximize multiple objective functions. The solution
concepts may be defined by properties of the corresponding
preference model. This is completely characterized by the re-
lation of weak preference �, while the corresponding relations
of strict preference � and indifference ∼= are defined by the
following formulas: y′ � y′′ ⇔ (y′ � y′′ and y′′ 6� y′),
y′ ∼= y′′ ⇔ (y′ � y′′ and y′′ � y′). The standard pref-
erence model related to the Pareto-optimal (efficient) solution
concept assumes that the preference relation � is reflexive:

y � y, (2)

transitive:

(y′ � y′′ and y′′ � y′′′) ⇒ y′ � y′′′, (3)
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and strictly monotonic:

y + εei � y for ε > 0; i = 1, . . . ,m, (4)

where ei denotes the i–th unit vector in the criterion space.
The last assumption expresses that for each individual objec-
tive function more is better (maximization). The preference
relations satisfying axioms (2)–(4) are referred to as rational
preference relations. Outcome vector y′ rationally dominates
y′′ (y′ �r y′′), iff y′ � y′′ for all rational preference relations
�. The dominance relation y′ �r y′′ may be expressed in
terms of the vector inequality y′i ≥ y′′i for all i ∈ I . A feasible
solution x ∈ Q is called Pareto-optimal (efficient) solution of
the multiple criteria problem (1), iff y = f(x) is rationally
nondominated, i.e., one cannot improve any outcome without
worsening another.

In order to ensure fairness, all entities have to be equally
well provided with the system’s resources. This leads to
concepts of fairness expressed by the fair (equitable) rational
preferences [5]. First of all, the fairness requires impartiality of
evaluation, thus focusing on the distribution of outcome values
while ignoring their ordering. Hence, the preference model is
impartial (anonymous, symmetric), i.e.,

(yπ(1), . . . , yπ(m)) ∼= (y1, . . . , ym) ∀ π ∈ Π(I) (5)

where Π(I) denotes the set of all permutations of I . This
means that any permuted outcome vector is indifferent in terms
of the preference relation. Further, fairness requires equitability
of outcomes which causes that the preference model should
satisfy the (Pigou–Dalton) principle of transfers. The principle
of transfers states that a transfer of any small amount from an
outcome to any other relatively worse-off outcome results in a
more preferred outcome vector, i.e., whenever yi′ > yi′′ then

y − εei′ + εei′′ � y for 0 < ε < (yi′ − yi′′) (6)

The rational preference relations satisfying additionally prop-
erties (5) and (6) are called fair (equitable) rational. Outcome
vector y′ fairly dominates y′′, (y′ �e y′′), iff y′ is preferred to
y′′ for all fair rational preference relations. In other words, y′
fairly dominates y′′, if there exists a finite sequence of vectors
yj (j = 1, 2, . . . , s) such that y1 = y′′, ys = y′ and yj is
constructed from yj−1 by application of either permutation
of coordinates, equitable transfer, or increase of a coordinate.
An allocation pattern x ∈ Q is called fairly optimal or fairly
efficient if y = f(x) is fairly nondominated. Every fairly
optimal solution is also Pareto-optimal, but not vice verse.
Fair optimization depends on finding fairly optimal solutions.
Specific fair solution concepts are defined by optimization
according to a fairly rational preference relation (note that the
relation definition is different from that in [6]).

III. CLASSICAL FAIR OPTIMIZATION CONCEPTS

Specific fair solution concepts are defined by optimization
according to a fairly rational preference relation (note that the
relation definition is, in general, different from that considered
in [6]). Simple solution concepts are based on maximization
of some aggregation (or utility) functions g : Y → R:

max {g(f(x)) : x ∈ Q}. (7)

i.e., by preference relation y′ � y′′ iff g(y′) ≥ g(y′′). In
order to guarantee the consistency of the aggregated problem

(7) with the maximization of all individual objective functions
(or Pareto-optimality of the solution), the aggregation function
must be strictly increasing with respect to every coordinate.
Following the requirements of impartiality (5) and the principle
of transfers (6), to guarantee fairness of the solution concept
(7), the aggregation function must also be symmetric, i.e.
for any permutation π of I , g(yπ(1), yπ(2), . . . , yπ(m)) =
g(y1, y2, . . . , ym) as well as be equitable in the sense that
g(y1, . . . , yi′ − ε, . . . , yi′′ + ε, . . . , ym) > g(y1, y2, . . . , ym)
for any 0 < ε < yi′ − yi′′ . Such functions are referred to as
(strictly) Schur-concave [7]. In the case of a strictly increasing
and strictly Schur-concave function, every optimal solution
to the aggregated problem (7) defines some fairly optimal
solution of problem (1) [5].

The simplest aggregation functions commonly used for
the multiple criteria problem (1) are defined as the total
outcome (the total throughput in typical network problems)
T (y) =

∑
i∈I yi, equivalently as the mean (average) out-

come µ(y) = T (y)/m or alternatively as the worst outcome
M(y) = mini∈I yi. The mean (total) outcome maximization is
primarily concerned with the overall efficiency. It may generate
solutions where some entities are discriminated in terms of
performances even leading to starvation of many processes.
Maximization of the worst outcome M(y), i.e., the so-called
maximin solution concept is regarded as maintaining equity.
Indeed, in the case if the perfect equity solution is feasible
and Pareto-optimal, then it is the unique optimal solution of
the maximin model [8]. In general, the maximin model does
not guarantee equity either efficiency. The maximin solution
may be, however, regularized according to the Rawlsian prin-
ciple of justice. Formalization of this concept leads us to
the lexicographic maximin (LMM) optimization model where
the largest feasible performance function value for activities
with the smallest (i.e., worst) performance function value
(this is the maximin solution), is followed by the largest
feasible performance function value for activities with the
second smallest (i.e., second worst) performance function
value, without decreasing the smallest value, and so forth.
The seminal book [9] brings together much of the LMM
based so-called equitable resource allocation research from the
past thirty years and provides current state of art in models
and algorithm within wide gamut of applications. Within the
communications or network applications the LMM approach
has appeared already in [10], [11] as the MMF solution concept
defined by the lack of a possibility to increase of any outcome
without decreasing of some smaller outcome [11] and now
it is treated as one of the standard fairness concepts [12].
In the case of convex attainable set (as considered in [11])
such a characterization represents also the LMM solution. In
nonconvex case, as pointed out in [13], such strictly defined
MMF solution may not exist while the LMM always exists and
it covers the former if exists (see [14] for wider discussion).
Therefore, the MMF is commonly identified with the LMM
while the classical MMF definition is considered rather as
an algorithmic approach which is applicable only for convex
models. Indeed, while for convex problems it is relatively easy
to form sequential algorithms to execute LMM by recursive
maximin optimization with fixed smallest outcomes (see [9],
[12], [14]–[16]), for nonconvex problems the sequential algo-
rithms must be built with the use of some artificial criteria (see
[8], [15], [17], [18] and [9, Ch. 7]).
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For any strictly concave and strictly increasing utility
function u : R → R, the mean utility aggregation g(y) =
µ(u(y)) =

∑
i∈I u(yi)/m is a strictly monotonic and strictly

Schur-concave function thus defining a family of the fair
aggregations [5]. Various concave utility functions u can be
used to define fair solution concepts. In the case of positive
outcomes, like in most network resource allocation problems,
one may use the logarithmic function thus resulting in the
Proportional Fairness (PF) solution concept [19]. Actually, it
corresponds to the so-called Nash criterion which maximizes
the product of additional utilities compared to the status
quo. For positive outcomes also a parametric class of utility
functions:

u(yi, α) =

{
y1−α
i /(1− α) if α 6= 1

log(yi) if α = 1

may be used to generate various fair solution concepts for
α > 0 [20]. The corresponding solution concept, called α-
fairness, represents the PF approach for α = 1, while with
α tending to the infinity it converges to the LMM. For large
enough α one gets generally an approximation to the LMM
while for discrete problems large enough α guarantee the exact
LMM solution. Such a way to identify the LMM solution was
considered in location problems [17] as well as to content
distribution networking problems [21]. For a common case
of upper bounded outcomes yi ≤ u∗ one may maximize
power functions −

∑m
i=1 (u∗ − yi)p for 1 < p < ∞ which

is equivalent to minimization of the corresponding p-norm
distances from the common upper bound u∗ [5].

In system analysis fairness is usually quantified with so-
called fairness measures (or inequality measures), which are
functions % that maps y into (nonnegative) real numbers.
Various measures have been proposed throughout the years,
e.g., in [22]–[27] and references therein. Typical inequality
measures are deviation type dispersion characteristics. They
are translation invariant in the sense that %(y + ae) = %(y)
for any real number a (where e vector of units (1, . . . , 1)),
thus being not affected by any shift of the outcome scale.
Moreover, the inequality measures are also inequality relevant
which means that they are equal to 0 in the case of perfectly
equal outcomes while taking positive values for unequal ones,
thus to be minimized for fairness. Although some fairness
measures, like Jain’s index requires maximization.

The simplest inequality measures are based on the absolute
measurement of the spread of outcomes, like the maximum
absolute difference or the mean absolute difference

Γ(y) = 1
2m2

∑
i∈I
∑
j∈I |yi − yj |. (8)

Another group of measures is related to deviations from the
mean outcome, like the maximum absolute deviation or the
mean absolute deviation

δ(y) = 1
m

∑
i∈I |yi − µ(y)|. (9)

The standard deviation σ (or the variance σ2) represents both
the deviations and the spread measurement as

σ2(y) =
1

m

∑
i∈I

(yi−µ(y))2 =
1

2m2

∑
i∈I

∑
j∈I

(yi− yj)2. (10)

Deviational measures may be focused on the downside semide-
viations as related to worsening of outcome while ignoring

upper semideviations related to improvement of outcome. One
may define the maximum (downside) semideviation

∆(y) = max
i∈I

(µ(y)− yi) = µ(y)−M(y) (11)

and the mean (downside) semideviation

δ̄(y) = 1
m

∑
i∈I(µ(y)− yi)+ (12)

where (.)+ denotes the nonnegative part of a number. Simi-
larly, the standard (downside) semideviation is given as

σ̄(y) =
√

1
m

∑
i∈I(µ(y)− yi)2

+. (13)

In economics there are usually used relative inequality
measures normalized by mean outcome, so-called indices. The
most commonly accepted is the Gini index (Gini coefficient)
G(y) = Γ(y)/µ(y), which is the relative mean difference.
Considered in networking the Jain’s index [23] computes a
normalized square mean as J(y) = 1 − σ2(y)/µ(y2). One
can easily notice that direct minimization of typical inequality
measures (especially the relative ones) may contradict the opti-
mization of individual outcomes resulting in equal but very low
outcomes. The same applies to the Jain’s index maximization.
Moreover, this contradiction cannot completely be resolved
with the standard bicriteria mean-equity model [24] which
takes into account both the efficiency with optimization of the
mean outcome µ(y) and the equity with minimization of an
inequality measure %(y).

Note that the lack of consistency of the mean-equity model
with the outcomes maximization applies also to the case of
the maximum semideviation ∆(y) (11) used as an inequality
measure whereas subtracting this measure from the mean
µ(y)−∆(y) = M(y) results in the worst outcome and thereby
the first criterion of the LMM model. In other words, although
a direct use of the maximum semideviation in the mean-equity
model may contradict the outcome maximization, the measure
can be used complementary to the mean leading us to the
worst outcome criterion which does not contradict the outcome
maximization. This construction can be generalized for various
(dispersion type) inequality measures. Moreover, we allow
the measures to be scaled with any positive factor α > 0.
For any inequality measure % we introduce the corresponding
underachievement function defined as the difference of the
mean outcome and the (scaled) inequality measure itself, i.e.

Mα%(y) = µ(y)− α%(y). (14)

We say that (dispersion type) inequality measure %(y) ≥ 0 is
strictly ∆-bounded if it is upper bounded by the maximum
downside deviation %(y) ≤ ∆(y) ∀y and the inequality is
strict except from the case of perfectly equal outcomes, i.e.,
%(y) < ∆(y) for any y such that ∆(y) > 0. If α0%(y) is
strictly ∆-bounded, then a positively homogeneous and trans-
lation invariant (dispersion type) inequality measure %(y) ≥ 0
generates the monotonic underachievement function Mα%(y)
for any 0 < α ≤ α0 [8]. Hence, any such a strictly Schur-
convex inequality measure % defines a fair solution concept.
This applies, in particular, to the mean absolute difference (8)
generating a proper fair solution concept

MαΓ(y) =
1− α
m

∑
i∈I

yi +
α

m2

∑
i∈I

∑
j∈I

min{yi, yj} (15)
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for any 0 < α ≤ 1. Similar result is valid for the standard
semideviation (13) but not for variance [8].

IV. MULTICRITERIA MODELS OF FAIR OPTIMIZATION

The relation of fair dominance can be expressed as a
vector inequality on the cumulative ordered outcomes [28].
The latter can be formalized as follows. First, we introduce
the ordering map Θ(y) = (θ1(y), θ2(y), . . . , θm(y)), where
θ1(y) ≤ θ2(y) ≤ · · · ≤ θm(y) and there exists a permutation
π of set I such that θi(y) = yπ(i) for i ∈ I . Next, we apply
cumulation to the ordered outcome vectors to get quantities

θ̄i(y) =
∑i
j=1 θj(y) for i ∈ I (16)

expressing, respectively, the worst outcome, the total of the
two worst outcomes, the total of the three worst outcomes,
etc. Pointwise comparison of the cumulative ordered outcomes
Θ̄(y) for vectors with equal means was studied within the the-
ory of equity [29] or the mathematical theory of majorization
[7], where it is called the relation of Lorenz dominance or
weak majorization, respectively. It includes the classical results
allowing to express an improvement in terms of the Lorenz
dominance as a finite sequence of equitable transfers (6). It can
be generalized to vectors with various means [28] justifying
that outcome vector y′ fairly dominates y′′, iff θ̄i(y′) ≥ θ̄i(y′′)
for all i ∈ I where at least one strict inequality holds. Hence,
fairly optimal solutions to problem (1) can be generated as
Pareto-optimal solutions for the multiple criteria problem

max {(θ̄1(f(x)), θ̄2(f(x)), . . . , θ̄m(f(x))) : x ∈ Q}. (17)

Note, that the aggregation maximizing the total outcome,
corresponds to maximization of the last objective θ̄m(f(x))
in problem (17). Similar, the maximin corresponds to maxi-
mization of the first objective θ̄1(f(x)). As limited to a single
criterion they do not guarantee the fairness of the optimal
solution. On the other hand, when applying the lexicographic
optimization to problem (17)

lexmax {(θ̄1(f(x)), θ̄2(f(x)), . . . , θ̄m(f(x))) : x ∈ Q} (18)

one gets the lexicographic maximin solution concept,

lexmax {(θ1(f(x)), θ2(f(x)), . . . , θm(f(x))) : x ∈ Q} (19)

i.e., the classical equitable optimization [9] representing LMM.

For modeling various fair preferences one may use some
combinations of the criteria in problem (17). In particular, for
the weighted sum aggregation on gets

∑
i∈I siθ̄i(y), which

can be expressed in the form with weights ωi =
∑m
j=i sj

(i = 1, . . . ,m) allocated to the ordered outcomes, i.e., as the
so-called Ordered Weighted Average (OWA) [30]:

max {
∑
i∈I ωiθi(f(x)) : x ∈ Q}. (20)

If weights ωi are strictly decreasing and positive, i.e. ω1 >
ω2 > · · · > ωm > 0, then each optimal solution of the
OWA problem (20) is fairly optimal. Such OWA aggregations
are sometimes called Ordered Ordered Weighted Averages
[31]. Fair solution concept (15) based on the mean absolute
difference is actually such an OWA with constantly decreasing
weights ωi − ωi+1 = 2λ/m2 [24]. When differences between
weights tend to infinity, the OWA model becomes LMM [32].

The definition of quantities θ̄k(y) is complicated as requir-
ing ordering. Nevertheless, the quantities themselves can be
modeled with simple auxiliary variables and linear constraints.
Although, maximization of the k-th smallest outcome is a hard
(combinatorial) problem. The maximization of the sum of k
smallest outcomes is an LP problem as θ̄k(y) = maxt (kt −∑
i∈I(t−yi)+) where t is an unrestricted variable. This allows

one to implement the OWA optimization quite effectively as
an extension of the original constraints and criteria with simple
linear inequalities [33] and solve various network resource
allocation problems [34], [35] as well as to define sequential
methods for lexicographic maximin optimization of discrete
and non-convex models [18], [36]. Various fairly optimal
solutions of (1) may be generated as Pareto-optimal solutions
to multicriteria problem (17).

The ordered outcome vectors describe a distribution of
outcomes generated by a given allocation x. In the case
when there exists a finite set of all possible outcomes of the
individual objective functions, we can directly deal with the
distribution of outcomes described by frequencies of several
outcomes. However, in order to take into account the principle
of transfers we need to distinguish values of outcomes smaller
or equal to the target value thus focusing on mean shortfalls
(mean below-target deviations) to outcome targets τ :

δ̄τ (y) = 1
m

∑
i∈I(τ − yi)+. (21)

It turns out that one may completely characterize the fair
dominance by the pointwise comparison of the mean shortfalls
for all possible targets. Outcome vector y′ fairly dominates
y′′, iff δ̄τ (y′) ≤ δ̄τ (y′′) for all τ ∈ R where at least one strict
inequality holds [8].

For m-dimensional outcome vectors we consider, all the
shortfall values are completely defined by the shortfalls for
at most m different targets representing values of several
outcomes yi while the remaining shortfall values follow from
the linear interpolation. Nevertheless, these target values are
dependent on specific outcome vectors and one cannot define
any universal grid of targets allowing to compare all possible
outcome vectors. In order to take advantages of the multiple
criteria methodology one needs to focus on a finite set of target
values. Let τ1 < τ2 < · · · < τr denote the all attainable
outcomes. Fair solutions to problem (1) can be expressed as
Pareto-optimal solutions for the multiple criteria problem with
objectives δ̄τj (f(x)):

min {(δ̄τ1(f(x)), δ̄τ2(f(x)), . . . , δ̄τr (f(x))) : x ∈ Q}. (22)

Hence, the multiple criteria problem (22) may serve as a source
of fair solution concepts. When applying the lexicographic
minimization to problem (22) one gets the lexicographic
maximin solution concept, i.e., the classical equitable opti-
mization model [9] representing the LMM. However, for the
lexicographic maximin solution concept one simply perform
lexicographic minimization of functions counting outcomes
not exceeding several targets [17], [18], [36]. Certainly in many
network resource allocation problems one cannot consider
target values covering all attainable outcomes. In order to get
a computational procedure one needs to focus on arbitrarily
preselected finite grid of targets. By reducing the number of
targets one restricts opportunities to generate all possible fair
allocations. Nevertheless, one may still generate reasonable
compromise solutions [8], [37].
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V. FAIR OPTIMIZATION WITH IMPORTANCE WEIGHTS

Frequently, one may be interested in putting into allocation
models some additional entity weights vi > 0. Typically the
model of distribution weights is introduced thus defining distri-
bution of outcomes yi = fi(x) according to measures defined
by the weights vi for i = 1, . . . ,m. We will use the normalized
weights v̄i = vi/

∑
i∈I vi, rather than the original quantities vi.

Note that, in the case of unweighted problem (all vi = 1), all
the normalized weights are given as v̄i = 1/m. The importance
weights can be easily accommodated in solution concept of
the mean outcome µ(y) =

∑
i∈I v̄iyi as well as in most

typical inequality measures and thereby in the corresponding
underachievement measures (14). In particular, in the mean
absolute difference based underachievement measure (15) as

MαΓ(y) = (1− α)
∑
i∈I

v̄iyi + α
∑
i∈I

∑
j∈I

v̄iv̄j min{yi, yj}.

Similarly, for any utility function u : R → R one gets
µ(u(y)) =

∑
i∈I v̄iu(yi).

The fair dominance for general weighted problems can
be derived by their disaggregation to the unweighted ones
[38]. It can be mathematically formalized as follows. First, we
introduce the right-continuous cumulative distribution function
(cdf):

Fy(d) =
∑
i∈I

v̄iδi(d), δi(d) =

{
1 if yi ≤ d
0 otherwise (23)

which for any real (outcome) value d provides the measure
of outcomes smaller or equal to d. Next, we introduce the
quantile function F

(−1)
y as the left-continuous inverse of the

cumulative distribution function Fy:

F (−1)
y (β) = inf {η : Fy(η) ≥ β} for 0 < β ≤ 1.

By integrating F (−1)
y one gets F (−2)

y (0) = 0 and

F
(−2)
y (β) =

∫ β
0
F

(−1)
y (α)dα ∀ 0 < β ≤ 1, (24)

where F
(−2)
y (1) = µ(y). The graph of function F

(−2)
y (β)

(with respect to β) take the form of concave curves. It is
called Absolute Lorenz Curve (ALC) [39], due to its relation
to the classical Lorenz curve used in income economics as a
cumulative population versus income curve to compare equity
of income distributions. The ALC defines the relation (partial
order) equivalent to the fair dominance. Exactly, outcome
vector y′ fairly dominates y′′, iff F

(−2)
y′ (β) ≥ F

(−2)
y′′ (β)

for all β ∈ (0, 1] where at least one strict inequality holds.
Note that for the case of unweighted outcomes, the ALC is
completely defined by the values of the (cumulated) ordered
outcomes. Hence, θ̄i(y) = mF

(−2)
y (i/m) for i = 1, . . . ,m,

and pointwise comparison of cumulated ordered outcomes is
enough to justify fair dominance. In general case more β levels
must be considered. Although, similarly to the cumulated
ordered outcomes, maximization of a quantity F (−2)

y (β) is an
LP problem as F (−2)

y (β) = maxt (t − 1
β

∑
i∈I v̄i(t − yi)+)

where t is an unrestricted variable.

Within the weighted model, impartiality of the allocation
process (5) is considered in terms that two allocation schemes
leading to the same distribution of outcomes are indifferent

Fy′ = Fy′′ ⇒ y′ ∼= y′′. (25)

The principle of transfers (6) is considered for single units of
service. Although it can can be applied directly to the outcomes
of importance weighted entities in the following form: if yi′ >
yi′′ then

yε = y − ε
v̄i′

ei′ + ε
v̄i′′

ei′′ � y (26)

whenever 0 < ε ≤ (yi′ − yi′′) min{v̄i′ , v̄i′′} and Fyε 6= Fy.

Alternatively, the fair dominance can be expressed on the
cumulative distribution functions. Having introduced the right-
continuous cumulative distribution function one may further
integrate the cdf (23) to get the second order cumulative
distribution function F (2)

y (τ) =
∫ τ
−∞ Fy(ξ)dξ representing the

mean shortfall to any real target τ : F (2)
y (τ) =

∑
i∈I v̄i(τ −

yi)+ (thus expanding the definition of δ̄τ (y) (21) on the
weighted case). By the theory of convex conjugate functions,
the pointwise comparison of the second order cumulative
distribution functions provides an alternative characterization
of the fair dominance relation [39]. Exactly, y′ fairly dominates
y′′, iff F (2)

y′ (τ) ≤ F
(2)
y′′ (τ) for all τ where at least one strict

inequality holds.

Finally, there are three alternative analytical characteriza-
tions of the relation of fair dominance:

(i) F (−2)
y′ (β) ≥ F (−2)

y′′ (β) for all β ∈ (0, 1];

(ii) F (2)
y′ (τ) ≤ F (2)

y′′ (τ) for all real τ ;

(iii)
∑
i∈I v̄iu(y′i) ≥

∑
i∈I v̄iu(y′′i ) for any concave, in-

creasing function u.
Note that according to condition (iii), the fair dominance is
actually the so-called increasing convex order which is more
commonly known as the second degree stochastic dominance
(SSD) [40]. Condition (i) covers the ordered outcome ap-
proaches (17) while the condition (ii) generates the multiple
targets approaches (22). Actually, classical results of majoriza-
tion theory [40] relate the mean utility comparison of condition
(iii) to the comparison of the weighted mean shortfalls. Indeed,
maximization of a concave and increasing utility function u
is equivalent to minimization of the weighted aggregation of
F 2
y(τ) for several τ with positive weights representing minus

second derivatives of the utility function u at τ . Similarly, the
weighted aggregation may be applied to condition (i) thus gen-
eralizing the fair OWA solution concept (20) to the Weighted
OWA (WOWA) or general Choquet integrals [41]. The fair
WOWA optimization may be quite effectively implemented as
an LP extension of the original problem [42].

VI. CONCLUSION

Within the networking applications the lexicographic max-
imin approach (or the MMF) is the most widely used fair-
ness concept. Since, this approach may lead to significant
losses in the overall efficiency (throughput of the network),
a variety of techniques enabling to generate fair and efficient
solutions were proposed. We have demonstrated that these
solution concept may be viewed as some specific approaches
to models of the fair optimization with the preference structure
that complies with both the efficiency (Pareto-optimality) and
with the Pigou-Dalton principle of transfers. Two alternative
multiple criteria models equivalent to fair optimization have
been introduced thus allowing to generate a variety of fair and
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efficient resource allocation pattern by possible using of the
reference point approaches.

Fair allocation of multiple types of resources or more gen-
erally vector fair optimization approaches taking into account
multi-attribute outcomes are still under-explored. Recently
proposed (vector) fairness measure [43] allocates resources
according to the MMF on dominant resource shares. Köppen
[44] have extended the Jain’s fairness index [23] to multi-
attribute case by means of a lexicographic maximin procedure.
Nevertheless, extension of the fair dominance models and sev-
eral fair optimization concepts still remains an open problem.
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[6] M. Köppen, “Relational optimization and its application: From bottle-
neck flow control to wireless channel allocation,” Informatica, vol. 24,
no. 3, pp. 413–433, 2013.

[7] A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and Its
Applications, New York: Academic Press, 1979.

[8] W. Ogryczak, “Multicriteria models for fair resource allocation,” Con-
trol and Cybernetics, vol. 36, pp. 303–332, 2007.

[9] H. Luss, Equitable Resource Allocation: Models, Algorithms, and
Applications, Hoboken NJ: Wiley, 2012.

[10] J. Jaffe, “Bottleneck flow control,” IEEE Trans. Commun., vol. 7,
pp. 207–237, 1980.

[11] D. Bertsekas, R. Gallager, Data Networks, Englewood Cliffs: Prentice-
Hall, 1987.
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[36] W. Ogryczak, T. Śliwiński, “Sequential algorithms for exact and ap-
proximate max-min fair bandwidth allocation,” in Proc. NETWORKS
2012, pp. 1–6, IEEE 2012.

[37] W. Ogryczak, A. Wierzbicki, M. Milewski, “On fair and efficient
bandwith allocation by the multiple target approach,” in Proc. NGI
2006, IEEE, 2006, pp. 48–55.

[38] W. Ogryczak, “On principles of fair resource allocation for importance
weighted agents,” in Proc. SOCINFO 2009, IEEE 2009, pp. 57–62.
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