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Abstract. The portfolio optimisation problem is modelled as a mean-risk bicriteria optimi-
sation problem where the expected return is maximised and some (scalar) risk measure is
minimised. In the original Markowitz model the risk is measured by the variance while several
polyhedral risk measures have been introduced leading to Linear Programming (LP) com-
putable portfolio optimisation models in the case of discrete random variables represented by
their realisations under specified scenarios. Recently, the second order quantile risk measures
have been introduced and become popular in finance and banking. The simplest such measure,
now commonly called the Conditional Value at Risk (CVaR) or Tail VaR, represents the mean
shortfall at a specified confidence level. The corresponding portfolio optimisation models can
be solved with general purpose LP solvers. However, in the case of more advanced simulation
models employed for scenario generation one may get several thousands of scenarios. This
may lead to the LP model with a huge number of variables and constraints, thus decreasing
the computational efficiency of the model. We show that the computational efficiency can be
then dramatically improved with an alternative model taking advantages of the LP duality.
Moreover, similar reformulation can be applied to more complex quantile risk measures like
Gini’s mean difference as well as to the mean absolute deviation.
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1 Introduction

In the original Markowitz model [12] the risk is measured by the variance, but sev-
eral polyhedral risk measures have been introduced leading to Linear Programming
(LP) computable portfolio optimisation models in the case of discrete random vari-
ables represented by their realisations under specified scenarios. The simplest LP
computable risk measures are dispersion measures similar to the variance. Konno
and Yamazaki [6] presented the portfolio selection model with the mean absolute
deviation (MAD). Yitzhaki [25] introduced the mean-risk model using Gini’s mean
(absolute) difference as the risk measure. Gini’s mean difference turn out to be a
special aggregation technique of the multiple criteria LP model [17] based on the
pointwise comparison of the absolute Lorenz curves. The latter leads to the quantile
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shortfall risk measures that are more commonly used and accepted. Recently, the
second-order quantile risk measures have been introduced in different ways by many
authors [2, 5, 15, 16, 22]. The measure, usually called the Conditional Value at Risk
(CVaR) or Tail VaR, represents the mean shortfall at a specified confidence level.
Maximisation of the CVaR measures is consistent with the second-degree stochastic
dominance [19]. Several empirical analyses confirm its applicability to various finan-
cial optimisation problems [1,10]. This paper is focused on computational efficiency
of the CVaR and related LP computable portfolio optimisation models.

For returns represented by their realisations under T scenarios, the basic LP model
for CVaR portfolio optimisation contains T auxiliary variables as well as T corre-
sponding linear inequalities. Actually, the number of structural constraints in the LP
model (matrix rows) is proportional to the number of scenarios T , while the number
of variables (matrix columns) is proportional to the total of the number of scenarios
and the number of instruments T +n. Hence, its dimensionality is proportional to the
number of scenarios T . It does not cause any computational difficulties for a few hun-
dred scenarios as in computational analysis based on historical data. However, in the
case of more advanced simulation models employed for scenario generation one may
get several thousands of scenarios [21]. This may lead to the LP model with a huge
number of auxiliary variables and constraints, thus decreasing the computational effi-
ciency of the model. Actually, in the case of fifty thousand scenarios and one hundred
instruments the model may require more than half an hour of computation time [8]
with the state-of-art LP solver (CPLEX code). We show that the computational ef-
ficiency can be then dramatically improved with an alternative model formulation
taking advantage of the LP duality. In the introduced model the number of structural
constraints is proportional to the number of instruments n, while only the number of
variables is proportional to the number of scenarios T , thus not affecting the sim-
plex method efficiency so seriously. Indeed, the computation time is then below 30
seconds. Moreover, similar reformulation can be applied to the classical LP portfo-
lio optimisation model based on the MAD as well as to more complex quantile risk
measures including Gini’s mean difference [25].

2 Computational LP models

The portfolio optimisation problem considered in this paper follows the original
Markowitz’ formulation and is based on a single period model of investment. At
the beginning of a period, an investor allocates the capital among various securi-
ties, thus assigning a nonnegative weight (share of the capital) to each security. Let
J = {1, 2, . . . , n} denote a set of securities considered for an investment. For each
security j ∈ J , its rate of return is represented by a random variable R j with a given
mean μ j = E{R j }. Further, let x = (x j ) j=1,2,...,n denote a vector of decision vari-
ables x j expressing the weights defining a portfolio. The weights must satisfy a set
of constraints to represent a portfolio. The simplest way of defining a feasible set P
is by a requirement that the weights must sum to one and they are nonnegative (short
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sales are not allowed), i.e.,

P = {x :
n∑

j=1

x j = 1, x j ≥ 0 for j = 1, . . . , n}. (1)

Hereafter, we perform detailed analysis for the set P given with constraints (1).
Nevertheless, the presented results can easily be adapted to a general LP feasible set
given as a system of linear equations and inequalities, thus allowing one to include
short sales, upper bounds on single shares or portfolio structure restrictions which
may be faced by a real-life investor.

Each portfolio x defines a corresponding random variable Rx =∑n
j=1 R j x j that

represents the portfolio rate of return while the expected value can be computed as
μ(x) = ∑n

j=1μ j x j . We consider T scenarios with probabilities pt (where t =
1, . . . , T ). We assume that for each random variable R j its realisation r j t under the
scenario t is known. Typically, the realisations are derived from historical data treating
T historical periods as equally probable scenarios (pt = 1/T ). The realisations of
the portfolio return Rx are given as yt =∑n

j=1 r j t x j .
Let us consider a portfolio optimisation problem based on the CVaR measure op-

timisation. With security returns given by discrete random variables with realisations
r j t , following [1,9,10], the CVaR portfolio optimisation model can be formulated as
the following LP problem:

maximise η − 1

β

T∑
t=1

pt dt

s.t.
n∑

j=1

x j = 1, x j ≥ 0 for j = 1, . . . , n

dt − η+
n∑

j=1

r j t x j ≥ 0, dt ≥ 0 for t = 1, . . . , T,

(2)

where η is an unbounded variable. Except for the core portfolio constraints (1), model
(2) contains T nonnegative variables dt plus a single η variable and T corresponding
linear inequalities. Hence, its dimensionality is proportional to the number of scenar-
ios T . Exactly, the LP model contains T + n + 1 variables and T + 1 constraints.
For a few hundred scenarios, as in typical computational analysis based on historical
data [11], such LP models are easily solvable. However, the use of more advanced
simulation models for scenario generation may result in several thousands of sce-
narios. The corresponding LP model (2) contains then a huge number of variables
and constraints, thus decreasing its computational efficiency dramatically. If the core
portfolio constraints contain only linear relations, like (1), then the computational
efficiency can easily be achieved by taking advantage of the LP dual model (2). The
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LP dual model takes the following form:

minimise q

s.t. q −
T∑

t=1

r j t ut ≥ 0 for j = 1, . . . , n

T∑
t=1

ut = 1, 0 ≤ ut ≤ pt

β
for t = 1, . . . , T .

(3)

The dual LP model contains T variables ut , but the T constraints corresponding to
variables dt from (2) take the form of simple upper bounds (SUB) on ut thus not
affecting the problem complexity (c.f., [13]). Actually, the number of constraints in
(3) is proportional to the total of portfolio size n, thus it is independent from the
number of scenarios. Exactly, there are T + 1 variables and n + 1 constraints. This
guarantees a high computational efficiency of the dual model even for a very large
number of scenarios. Note that introducing a lower bound on the required expected
return in the primal portfolio optimisation model (2) results only in a single additional
variable in the dual model (3). Similarly, other portfolio structure requirements are
modelled with a rather small number of constraints, thus generating a small number
of additional variables in the dual model.

We have run computational tests on 10 randomly generated test instances devel-
oped by Lim et al. [8]. They were originally generated from a multivariate normal
distribution for 50 or 100 securities with the number of scenarios of 50,000 just pro-
viding an adequate approximation to the underlying unknown continuous price dis-
tribution. Scenarios were generated using the Triangular Factorization Method [24]
as recommended in [3]. All computations were performed on a PC with a Pentium 4
2.6 GHz processor and 1 GB RAM employing the simplex code of the CPLEX 9.1
package. An attempt to solve the primal model (2) with 50 securities resulted in 2600
seconds of computation (much more than reported in [8]). On the other hand, the
dual models (3) were solved in 14.3–27.7 CPU seconds on average, depending on the
tolerance level (see Table 1). For 100 securities the optimisation times were longer
but still about 1 minute.

Table 1. Computational times (in seconds) for the dual CVaR model (averages of 10 instances
with 50,000 scenarios)

Number of securities β = 0.05 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

n = 50 14.3 18.7 23.6 26.4 27.4 27.7
n = 100 38.1 52.1 67.9 74.8 76.7 76.0



On efficient CVaR optimisation 249

The SSD consistent [14] and coherent [2] MAD model with complementary risk
measure (μδ(x) = E{min{μ(x), Rx }}) leads to the following LP problem [18]:

maximise
n∑

j=1

μ j x j −
T∑

t=1

ptdt

s.t.
n∑

j=1

x j = 1, x j ≥ 0 for j = 1, . . . , n

dt −
n∑

j=1

(μ j − r j t )x j ≥ 0, dt ≥ 0 for t = 1, . . . , T .

(4)

The above LP formulation uses T + n variables and T + 1 constraints while the LP
dual model then takes the following form:

minimise q

s.t. q +
T∑

t=1

(μ j − r j t )ut ≥ μ j for j = 1, . . . , n

0 ≤ ut ≤ pt for t = 1, . . . , T,

(5)

with dimensionality n × (T + 1). Hence, there is guaranteed high computational
efficiency even for very large numbers of scenarios. Indeed, in the test problems with
50,000 scenarios we were able to solve the dual model (5) in 25.3 seconds on average
for 50 securities and in 77.4 seconds for 100 instruments.

For a discrete random variable represented by its realisations yt , Gini’s mean
difference measure�(x) =∑T

t ′=1
∑

t ′′ �=t ′−1 max{yt ′−yt ′′ , 0}pt ′ pt ′′ is LP computable
(when minimised). This leads us to the following GMD portfolio optimisation model
[25]:

max −
T∑

t=1

∑
t ′ �=t

pt pt ′dtt ′

s.t.
n∑

j=1

x j = 1, x j ≥ 0 for j = 1, . . . , n

dtt ′ ≥
n∑

j=1

r j t x j −
n∑

j=1

r j t ′ x j , dtt ′ ≥ 0 for t, t ′ = 1, . . . , T ; t �= t ′,

(6)

which contains T (T − 1) nonnegative variables dtt ′ and T (T − 1) inequalities to
define them. This generates a huge LP problem even for the historical data case
where the number of scenarios is 100 or 200. Actually, as shown with the earlier
experiments [7], the CPU time of 7 seconds on average for T = 52 has increased to
above 30 s with T = 104 and even more than 180 s for T = 156. However, similar to
the CVaR models, variables dtt ′ are associated with the singleton coefficient columns.
Hence, while solving the dual instead of the original primal, the corresponding dual
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constraints take the form of simple upper bounds (SUB) which are handled implicitly
outside the LP matrix. For the simplest form of the feasible set (1) the dual GMD
model takes the following form:

min v

s.t. v −
T∑

t=1

∑
t ′ �=t

(r j t − r j t ′ )utt ′ ≥ 0 for j = 1, . . . , n

0 ≤ utt ′ ≤ pt pt ′ for t, t ′ = 1, . . . , T ; t �= t ′,

(7)

where original portfolio variables x j are dual prices to the inequalities. The dual
model contains T (T − 1) variables utt ′ but the number of constraints (excluding the
SUB structure) n + 1 is proportional to the number of securities. The above dual
formulation can be further simplified by introducing variables:

ūt t ′ = utt ′ − ut ′t for t, t ′ = 1, . . . , T ; t < t ′, (8)

which allows us to reduce the number of variables to T (T − 1)/2 by replacing (7)
with the following:

min v

s.t. v −
T∑

t=1

∑
t ′>t

(r j t − r j t ′ )ūt t ′ ≥ 0 for j = 1, . . . , n

−pt pt ′ ≤ ūt t ′ ≤ pt pt ′ for t, t ′ = 1, . . . , T ; t < t ′.

(9)

Such a dual approach may dramatically improve the LP model efficiency in the case
of a larger number of scenarios. Actually, as shown with the earlier experiments
[7], the above dual formulations let us to reduce the optimisation time to below 10
seconds for T = 104 and T = 156. Nevertheless, the case of really large numbers
of scenarios still may cause computational difficulties, due to the huge number of
variables (T (T − 1)/2). This may require some column generation techniques [4] or
nondifferentiable optimisation algorithms [8].

3 Conclusions

The classical Markowitz model uses the variance as the risk measure, thus resulting in
a quadratic optimisation problem. Several alternative risk measures were introduced,
which are computationally attractive as (for discrete random variables) they result
in solving linear programming (LP) problems. The LP solvability is very important
for applications to real-life financial decisions where the constructed portfolios have
to meet numerous side constraints and take into account transaction costs [10]. The
corresponding portfolio optimisation models can be solved with general purpose LP
solvers, like ILOG CPLEX providing a set of C++ and Java class libraries allowing
the programmer to embed CPLEX optimisers in C++ or Java applications.
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Unfortunately, in the case of more advanced simulation models employed for sce-
nario generation one may get several thousands of scenarios. This may lead to the LP
model with a huge number of variables and constraints, thus decreasing the computa-
tional efficiency of the model. We have shown that the computational efficiency can
then be dramatically improved with an alternative model taking advantage of the LP
duality. In the introduced model the number of structural constraints (matrix rows)
is proportional to the number of instruments thus not seriously affecting the simplex
method efficiency by the number of scenarios. For the case of 50,000 scenarios, it has
resulted in computation times below 30 seconds for 50 securities or below a minute
for 100 instruments. Similar computational times have also been achieved for the dual
reformulation of the MAD model. Dual reformulation applied to the GMD portfolio
optimisation model results in a dramatic problem size reduction with the number of
constraints equal to the number of instruments instead of the square of the number of
scenarios. Although, the remaining high number of variables (square of the number of
scenarios) still generates a need for further research on column-generation techniques
or nondifferentiable optimisation algorithms for the GMD model.
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