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Abstract

In multiple criteria linear programming (MOLP) any efficient solution can be found
by the weighting approach with some positive weights allocated to several criteria. The
weights settings represent preferences model thus involving impreciseness and uncertain-
ties. The resulting weighted average performance may be lower than expected. Several
approaches have been developed to deal with uncertain or imprecise data. In this paper
we focus on robust approaches to the weighted averages of criteria where the weights
are varying. Assume that the weights may be affected by perturbations varying within
given intervals. Note that the weights are normalized and although varying independently
they must total to 1. We are interested in the optimization of the worst case weighted
average outcome with respect to the weights perturbation set. For the case of unlim-
ited perturbations the worst case weighted average becomes the worst outcome (max-min
solution). For the special case of proportional perturbation limits this becomes the condi-
tional average. In general case, the worst case weighted average is a generalization of the
conditional average. Nevertheless, it can be effectively reformulated as an LP expansion
of the original problem.
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Introduction

In multi-objective linear programming (MOLP) any efficient solution can be
found by the weighting approach with some positive weighting of criteria. The
weights settings represent preferences and inevitably involve impreciseness and
uncertainties causing that the resulting weighted average performance may be
lower than expected.
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Several approaches have been developed to deal with uncertain or imprecise
data in optimization problem. The approaches focused on the quality or on the
variation (stability) of the solution for some data domains are considered robust.
The notion of robustness applied to decision problems was first introduced by
Gupta and Rosenhead [2]. Practical importance of the performance sensitivity
against data uncertainty and errors has later attracted considerable attention to the
search for robust solutions. Actually, as suggested by Roy [18], the concept of
robustness should be applied not only to solutions but, more generally to various
assertions and recommendations generated within a decision support process. The
precise concept of robustness depends on the way the uncertain data domains and
the quality or stability characteristics are introduced. Typically, in robust analysis
one does not attribute any probability distribution to represent uncertainties. Data
uncertainty is rather represented by non-attributed scenarios. Since one wishes to
optimize results under each scenario, robust optimization might be in some sense
viewed as a multiobjective optimization problem where objectives correspond to
the scenarios. However, despite of many similarities of such robust optimization
concepts to multiobjective models, there are also some significant differences [3].
Actually, robust optimization is a problem of optimal distribution of objective val-
ues under several scenarios [9] rather than a standard multiobjective optimization
model.

A conservative notion of robustness focusing on worst case scenario results is
widely accepted and the min-max optimization is commonly used to seek robust
solutions. The worst case scenario analysis can be applied either to the absolute
values of objectives (the absolute robustness) or to the regret values (the devia-
tional robustness) [6]. The latter, when considered from the multiobjective per-
spective, represents a simplified reference point approach with the utopian (ideal)
objective values for all the scenario used as aspiration levels. Recently, a more
advanced concept of ordered weighted averaging was introduced into robust opti-
mization [16], thus, allowing to optimize combined performances under the worst
case scenario together with the performances under the second worst scenario,
the third worst and so on. Such an approach exploits better the entire distribu-
tion of objective vectors in search for robust solutions and, more importantly,
it introduces some tools for modeling robust preferences. Actually, while more
sophisticated concepts of robust optimization are considered within the area of
discrete programming models, only the absolute robustness is usually applied to
the majority of decision and design problems.

In this paper we focus on robust approaches to the weighted averages of cri-
teria where the weights are imprecise. Assume that the weights may be affected
by perturbations varying within given intervals. Note that the weights are normal-
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ized and although varying independently they must total to 1. We are interested
in the optimization of the worst case weighted average outcome with respect to
the weights perturbation set. For the case of unlimited perturbations the worst
case weighted average becomes the worst outcome (max-min solution). For the
special case of proportional perturbation limits this becomes the tail average. In
general case, the worst case weighted average is a generalization of the tail aver-
age. Nevertheless, it can be effectively reformulated as an LP expansion of the
original problem.

The paper is organized as follows. In the next section we recall the tail mean
(conditional min-max) solution concept providing a new proof of the computa-
tional model which remains applicable for more general problems related to the
robust solution concepts. Section 2 contains the main results. We show that the
robust solution for proportional upper limits on weights perturbations is the tail
β-mean solution for an appropriate β value. For proportional upper and lower
limits on weights perturbation the robust solution may be expressed as optimiza-
tion of appropriately combined the mean and the tail mean criteria. Finally, a
general robust solution for any arbitrary intervals of weights perturbations can be
expressed with optimization problem very similar to the tail β-mean and thereby
easily implementable with auxiliary linear inequalities.

1. Solution concepts

Consider a decision problem defined as an optimization problem with m linear
objective functions fi(x) = cix. They can be either maximized or minimized.
When all the objective functions are minimized the problem can be written as
follows:

min { (f1(x), f2(x), . . . , fm(x)) : x ∈ Q } (1)

where x denotes a vector of decision variables to be selected within the
feasible set Q ⊂ Rq, of constraints under consideration and f(x) =
(f1(x), f2(x), . . . , fm(x)) is a vector function that maps the feasible set Q into
the criterion space Rm. Let us define the set of attainable outcomes

A = {y : yi = fi(x) ∀ i, x ∈ Q} (2)

Model (1) only specifies that we are interested in minimization of all objective
functions fi for i = 1, 2, . . . ,m. In order to make the multiple objective model
operational for the decision support process, one needs to assume some solution
concept well adjusted to the decision maker’s preferences. The solution concepts
are defined by aggregation functions a : Rm → R. Thus the multiple criteria



200 Włodzimierz Ogryczak

problem (1) is replaced with the (scalar) minimization problem

min {a(f(x)) : x ∈ Q} (3)

The most commonly used aggregation is based on the weighted mean where pos-
itive importance weights wi (i = 1, 2, . . . ,m) are allocated to several objectives

a(y) =

m∑
i=1

yiwi (4)

The weights are typically normalized to the total 1

w̄i = wi/
m∑
i=1

wi for i = 1, 2, . . . ,m (5)

Note that, in the case of equal weights (all wi = 1), all the normalized weights
are given as w̄i = 1/m. Due to positive weights, every optimal solution to the
weighted mean aggregation (i.e. problem (3) with the aggregation function (4))
is an efficient solution of the original multiple criteria problem. Moreover, in the
case of MOLP problems for any efficient solution x ∈ Q there exists a weight
vector such that x is an optimal solution to the corresponding weighted problem
[19].

Exactly, for the weighted sum solution concept is defined by minimization of
the objective function expressing the mean (average) outcome

µ(y) =
m∑
i=1

w̄iyi

but it is also equivalent to minimization of the total outcome
∑m

i=1 wiyi. The
min-max solution concept is defined by minimization of the objective function
representing the maximum (worst) outcome

M(y) = max
i=1,...,m

yi

and it is not affected by the objective weights at all.
A natural generalization of the maximum (worst) outcome M(y) is the

(worst) tail mean defined as the mean within the specified tolerance level (amount)
of the worst outcomes. For the simplest case of equal weights, one may simply
define the tail mean µ k

m
(y) as the mean outcome for the k worst-off objectives (or

rather k/m portion of the worst objectives). This can be mathematically formal-
ized as follows. First, we introduce the ordering map Θ : Rm → Rm such that
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Θ(y) = (θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥ θ2(y) ≥ · · · ≥ θm(y) and
there exists a permutation τ of set I such that θi(y) = yτ(i) for i = 1, 2, . . . ,m.
The use of ordered outcome vectors Θ(y) allows us to focus on distributions of
outcomes impartially. Next, the linear cumulative map is applied to ordered out-
come vectors to get Θ̄(y) = (θ̄1(y), θ̄2(y), . . . , θ̄m(y)) defined as

θ̄k(y) =

k∑
i=1

θi(y), for k = 1, 2, . . . ,m. (6)

The coefficients of vector Θ̄(y) express, respectively: the largest outcome, the
total of the two largest outcomes, the total of the three largest outcomes, etc.
Hence, the tail k

m -mean µ k
m

(y) is given as

µ k
m

(y) =
1

k
θ̄k(y), for k = 1, 2, . . . ,m. (7)

According to this definition the concept of tail mean is based on averaging re-
stricted to the portion of the worst outcomes. For β = k/m, the tail β-mean
represents the average of the k largest outcomes.

For any set of weights and and tolerance level β the corresponding tail mean
can be mathematically formalized as follows [9,11]. First, we introduce the left-
continuous right tail cumulative distribution function (cdf):

Fy(d) =
m∑
i=1

w̄iκi(d) where κi(d) =

{
1 if yi ≥ d
0 otherwise

(8)

which for any real (outcome) value d provides the measure of outcomes greater or
equal to d. Next, we introduce the quantile function F (−1)

y as the right-continuous
inverse of the cumulative distribution function Fy:

F
(−1)
y (β) = sup {η : Fy(η) ≥ β} for 0 < β ≤ 1.

By integrating F (−1)
y one gets the (worst) tail mean:

µβ(y) =
1

β

∫ β

0
F

(−1)
y (α)dα for 0 < β ≤ 1. (9)

Minimization of the tail β-mean

min
y∈A

µβ(y) (10)
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defines the tail β-mean solution concept. When parameter β approaches 0, the
tail β-mean tends to the largest outcome (M(y) = limβ→0+ µβ(y)). On the
other hand, for β = 1 the corresponding tail mean becomes the standard mean
(µ1(y) = µ(y)).

Note that, due to the finite distribution of outcomes yi (i = 1, 2, . . . ,m) in our
MOLP problems, the tail β-mean is well defined by the following optimization

µβ(y) =
1

β
max
ui
{
m∑
i=1

yiui :
m∑
i=1

ui = β, 0 ≤ ui ≤ w̄i ∀ i}. (11)

The above problem is a Linear Program (LP) for a given outcome vector y while
it becomes nonlinear for y being a vector of variables as in the β-mean problem
(10). It turns out that this difficulty can be overcome by an equivalent LP for-
mulation of the β-mean that allows one to implement the β-mean problem (10)
with auxiliary linear inequalities. Namely, the following theorem is valid [15].
Although we introduce a new proof which can be further generalized for a family
of robust solution concepts we consider.

Theorem 1 For any outcome vector y with the corresponding objective weights
wi, and for any real value 0 < β ≤ 1, the tail β-mean outcome is given by the
following linear program:

µβ(y) = min
t,di
{t+

1

β

m∑
i=1

w̄idi : yi ≤ t+ di, di ≥ 0 ∀ i}. (12)

Proof. The theorem can be proven by taking advantage of the LP dual to problem
(11). Introducing dual variable t corresponding to the equation

∑m
i=1 ui = β and

dual variables di corresponding to upper bounds on ui one gets the LP dual (12).
Due to the duality theory, for any given vector y the tail β-mean µβ(y) can be
found as the optimal value of the LP problem (12).

Following Theorem 1, the tail β-mean solution can be found as an optimal
solution to the optimization problem:

min
y,d,t
{t+

1

β

m∑
i=1

w̄idi : y ∈ A; yi ≤ t+ di, di ≥ 0 ∀ i}, (13)

or in a more compact form:

min
y,t
{t+

1

β

m∑
i=1

w̄i(yi − t)+ : y ∈ A },
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where (.)+ denotes the nonnegative part of a number.
For the special case of equal weights (wi = 1/m for all i ∈ I) and β = k/m

one gets the tail k/m-mean. Model (13) takes then the form:

min
y,t
{t+

1

k

m∑
i=1

(yi − t)+ : y ∈ A} (14)

where (.)+ denotes the nonnegative part of a number and rk is an auxiliary (un-
bounded) variable. The latter, with the necessary adaptation to the location prob-
lems, is equivalent to the computational formulation of the k–centrum model in-
troduced in which is the same as the computational formulation of the k-centrum
introduced in [14]. Hence, Theorem 1 and model (13) providing an alternative
proof of that formulation generalize the k-centrum formulation of [14] allowing
to consider weights and arbitrary size parameter β but preserving the simple struc-
ture and dimension of the optimization problem. Within the decision under risk
literature, and especially related to finance application, the β-mean quantity is
usually called tail VaR, average VaR or conditional VaR (where VaR reads after
Value-at-Risk) [17].

2. Robust solutions

The weighted mean solution concept is usually very attractive solution concept
due to maximizing the system efficiency taking into account objective importance.
It is defined as

min
y∈A
{
m∑
i=1

w̄iyi} (15)

However, in practical problems the objective weights may vary. Therefore, a ro-
bust solution is sought which performs well under uncertain objective weights.

The simplest representation of uncertainty depends on a number of predefined
scenarios s = 1, . . . , r. Let w̄si denote the realization of weight i under scenario
s. Then one may seek a robust solution by minimizing the mean outcome under
the worst scenario

min
y∈A

max
s=1,...,r

{
m∑
i=1

w̄si yi} = min
y∈A
{z : z ≥

m∑
i=1

w̄si yi ∀ s}

or by minimizing the maximum regret [1]

min
y∈A

max
s=1,...,r

{
m∑
i=1

w̄si yi − b̄s} = min
y∈A
{z : z ≥

m∑
i=1

w̄si yi − b̄s ∀ s}
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where b̄s represent the best value under scenario s

b̄s = min
y∈A
{
m∑
i=1

w̄si yi}.

Frequently, uncertainty is represented by limits (intervals) on possible values
of weights varying independently rather than by scenarios for all the weights si-
multaneously. We focus on such representation to define robust solution concept.
Assume that the objective weights w̄i may be affected by perturbations varying
within intervals [−δi,∆i]. Note that the weights are normalized and although
varying independently they must total to 1. Thus the objective weights belong to
the hypercube:

u ∈W = {(u1, u2, . . . , um) :
m∑
i=1

ui = 1, w̄i − δi ≤ ui ≤ w̄i + ∆i ∀ i}.

Alternatively one may consider completely independent perturbations of un-
normalized weights wi and normalize they later to define set W . Focusing on the
mean outcome as the primary system efficiency measure to be optimized we get
the robust mean solution concept

min
y

max
u
{
m∑
i=1

uiyi : u ∈W, y ∈ A}. (16)

Further, taking into account the assumption that all the constraints of attainable
set A remain unchanged while the importance weights are perturbed, the robust
mean solution can be rewritten as

min
y∈A

max
u∈W

m∑
i=1

uiyi = min
y∈A
{max
u∈W

m∑
i=1

uiyi} = min
y∈A

µw(y) (17)

where

µw(y) = max
u∈W

m∑
i=1

uiyi

= max
ui
{
m∑
i=1

yiui :

m∑
i=1

ui = 1, w̄i − δi ≤ ui ≤ w̄i + ∆i ∀ i}

(18)
represents the worst case mean outcome for given outcome vector y ∈ A.

Note that in the case of δi = ∆i = 0 (no perturbations/uncertainty at all)
one gets the standard mean outcome µw(y) =

∑m
i=1 yiw̄i thus the original mean
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solution concept. On the other hand, for the case of unlimited perturbations (δi =
w̄i and ∆i = 1− w̄i) the worst case mean outcome

µw(y) = max
ui
{
m∑
i=1

yiui :

m∑
i=1

ui = 1, 0 ≤ ui ≤ 1 ∀ i} = max
i=1,...,m

yi

becomes the worst outcome thus leading to the min-max solution concept.
For the special case of proportional perturbation limits δi = δw̄i and ∆i =

∆w̄i with positive parameters δ and ∆, one gets

µw(y) = max
ui
{
m∑
i=1

yiui :
m∑
i=1

ui = 1, w̄i(1− δ) ≤ ui ≤ w̄i(1 + ∆) ∀ i} (19)

In particular, when lower limits are relaxed (δ = 1) this becomes the classical tail
mean outcome [12,15] with β = 1/(1 + ∆). Thus the tail mean represents the
robust mean solution concept for proportionally upper bounded perturbations.

Theorem 2 The tail β-mean represents a concept of robust mean solution (17)
for proportionally upper bounded perturbations ∆i = ∆w̄i with ∆ = (1− β)/β
and relaxed the lower ones δi = w̄i for all i ∈ I .

Proof. For proportionally bounded upper perturbations ∆i = ∆w̄i and δi = w̄i
the corresponding worst case mean outcome (18) can be expressed as follows

µw(y) = max
ui
{
m∑
i=1

yiui :

m∑
i=1

ui = 1, 0 ≤ ui ≤ w̄i(1 + ∆) ∀ i}

= (1 + ∆) max
u′i

{
m∑
i=1

yiu
′
i :

m∑
i=1

u′i =
1

1 + ∆
, 0 ≤ u′i ≤ w̄i ∀ i}

= (1 + ∆)µ 1
1+∆

(y)

As the tail mean is easily defined by auxiliary LP constraints, the same applies
to the robust mean solution concept for proportionally bounded upper perturba-
tions and relaxed the lower ones.

Corollary 1 The robust mean solution concept (17) for proportionally bounded
upper perturbations ∆i = ∆w̄i and relaxed the lower limits δi = w̄i for all
i ∈ I can be found by simple expansion of the optimization problem with auxiliary
linear constraints and variables to the following:

min
y,d,t
{t+ (1 + ∆)

m∑
i=1

w̄idi : y ∈ A; yi ≤ t+ di, di ≥ 0 ∀ i}. (20)
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Example 1 Consider the following MOLP problem with two objectives:

min {(x1, x2) : 3x1 + 5x2 ≥ 36, x1 ≥ 2, x2 ≥ 3}. (21)

The efficient set for this problem is

{(x1, x2) : 3x1 + 5x2 = 36, x1 ≥ 2, x2 ≥ 3},

i.e. the entire line segment between vertices (2, 6) and (7, 3), including both ver-
tices.

Let us assume that the DM preferences has been recognized as represented by
equal weights w̄1 = w̄2 = 0.5 although the weights may actually vary around this
values thus belonging to the hypercube:

W = {(u1, u2) : u1 + u2 = 1, 0 ≤ u1 ≤ 0.5(1 + ∆), 0 ≤ u2 ≤ 0.5(1 + ∆)}

for some ∆ > 0. The ideal weights w̄ generate the best efficient solution in the
vertex (2, 6). However, for weights (0.35, 0.65) one gets rather the vertex (7, 3)
as the best solution. Hence, it is quite natural to look for a robust solution which
is based on the worst weights within the set W . Following Corollary 1, such a
robust solution can be found by solving the expanded LP problem:

min{t+ (1 + ∆)(0.5d1 + 0.5d2) : 3x1 + 5x2 ≥ 36,
x1 ≥ 2, x2 ≥ 3,
x1 ≤ t+ d1, x2 ≤ t+ d2,
d1 ≥ 0, d2 ≥ 0}.

(22)

In our case, due to only to outcomes and equal weights, one can easily notice
that for any (x1, x2) the best values of auxiliary variables are defined as t =
min{x1, x2}, d1 = x1 − t and d2 = x2 − t. Hence, d1 + d2 = max{x1, x2} −
min{x1, x2} = |x1 − x2| and the auxiliary variables can be eliminated leading to
the ordered weighted objective [13]

t+ (1 + ∆)(0.5d1 + 0.5d2) = 0.5(1 + ∆) max{x1, x2}
+0.5(1−∆) min{x1, x2}

= 0.5(1 + ∆)θ1(x) + 0.5(1−∆)θ2(x)

or alternatively to its cumulated form

t+ (1 + ∆)(0.5d1 + 0.5d2) = ∆ max{x1, x2}+ 0.5(1−∆)(x1 + x2)
= ∆θ̄1(x) + 0.5(1−∆)θ̄2(x).
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Hence, our robust optimization problem (22) can be simplified to the following
form:

min{∆ max{x1, x2}+(1−∆)0.5(x1 +x2) : 3x1 +5x2 ≥ 36, x1 ≥ 2, x2 ≥ 3}

thus representing a convex combination of the original weighted optimization and
the minimax optimization models. One may easily verify that for ∆ = 0.1 the
optimal vertex (2, 6) remains the corresponding robust solution. On the other
hand, for ∆ = 0.5 the minimax point (4.5, 4.5) becomes the corresponding robust
solution.

Certainly, in the case of unequal weights or especially for more than two crite-
ria the robust optimization problem cannot be simply expressed as a combination
of the original weighted aggregation with minimax criterion. Nevertheless, the LP
formulation (20) can be effectively solved.

In the general case of proportional perturbation limits (19) the robust mean so-
lution concept cannot be directly expressed as an appropriate tail β-mean. It turns
out, however, that it can be expressed by the optimization with combined criteria
of the tail β-mean and the original mean as shown in the following theorem.

Theorem 3 The robust mean solution concept (17) for proportionally bounded
perturbations ∆i = ∆w̄i and δi = δw̄i for all i ∈ I is equivalent to the convex
combination of the mean and tail β-mean criteria minimization

min
y∈A

µw(y) = min
y∈A

(1 + ∆)[λµβ(y) + (1− λ)µ(y)] (23)

with β = δ/(∆ + δ) and λ = (∆ + δ)/(1 + ∆).

Proof. For proportionally bounded perturbations ∆i = ∆w̄i and δi = δw̄i the
corresponding worst case mean outcome (18) can be expressed as follows

µw(y) = max
ui
{
m∑
i=1

yiui :
m∑
i=1

ui = 1, w̄i(1− δ) ≤ ui ≤ w̄i(1 + ∆) ∀ i}

= (1 + ∆) max
u′i

{
m∑
i=1

yiu
′
i :

m∑
i=1

u′i =
1

1 + ∆
, w̄i

1− δ
1 + ∆

≤ u′i ≤ w̄i ∀ i}

= (1 + ∆) max
u′′i

{
m∑
i=1

yiu
′′
i :

m∑
i=1

u′′i =
δ

1 + ∆
, 0 ≤ u′′i ≤ w̄i

∆ + δ

1 + ∆
∀ i}+

+ (1− δ)
m∑
i=1

yiw̄i
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= (∆ + δ) max
u′′′i

{
m∑
i=1

yiu
′′′
i :

m∑
i=1

u′′′i =
δ

∆ + δ
, 0 ≤ u′′′i ≤ w̄i ∀ i}+

+ (1− δ)µ(y)

= (1 + ∆)[
∆ + δ

1 + ∆
µ δ

∆+δ
(y) +

1− δ
1 + ∆

µ(y)]

which completes the proof.
Following Theorems 1 and 3, the robust mean solution concept (17) can be

expressed as an LP expansion of the original mean problem.

Corollary 2 The robust mean solution concept (17) for proportionally bounded
perturbations ∆i = ∆w̄i and δi = δw̄i for all i ∈ I can be found by simple
expansion of the mean problem with auxiliary linear constraints and variables to
the following problem:

min
y,d,t
{

m∑
i=1

w̄iyi +
∆ + δ

1− δ
t+

(∆ + δ)2

δ(1− δ)

m∑
i=1

w̄idi :

y ∈ A; yi ≤ t+ di, di ≥ 0 ∀ i}.
(24)

In general case of arbitrary intervals of weights perturbations, the worst case
mean outcome (18) cannot be expressed as a tail β-mean or its combination. Nev-
ertheless, the structure of optimization problem (18) remains very similar to that
of the tail β-mean (11). Note that problem (18) is an LP for a given outcome vec-
tor y while it becomes nonlinear for y being a vector of variables. This difficulty
can be overcome similar to Theorem 1 for the tail β-mean.

Theorem 4 For any arbitrary intervals [−δi,∆i] (for all i ∈ I) of weights per-
turbations, the corresponding worst case mean outcome (18) can be given as

µw(y) = min
t,dui ,d

l
i

{ t+
m∑
i=1

(w̄i + ∆i)d
u
i −

m∑
i=1

(w̄i − δi)dli :

t+ dui − dli ≥ yi, dui , dli ≥ 0 ∀ i}.
(25)

Proof. The theorem can be proven by taking advantages of the LP dual to (18).
Introducing dual variable t corresponding to the equation

∑m
i=1 ui = 1 and vari-

ables dui and dli corresponding to upper and lower bounds on ui, respectively, one
gets the following LP dual to problem (18). Due the duality theory, for any given
vector y the worst case mean outcome µw(y) can be found as the optimal value
of the LP problem (25).

Following Theorem 4, the robust mean solution concept (17) can be expressed
similar to the tail β-mean with auxiliary linear inequalities expanding the original
constraints.
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Corollary 3 For any arbitrary intervals [−δi,∆i] (for all i ∈ I) of weights per-
turbations, the corresponding robust mean solution (17) can be given by the fol-
lowing optimization problem:

min
y,t,dui ,d

l
i

{ t+

m∑
i=1

(w̄i + ∆i)d
u
i −

m∑
i=1

(w̄i − δi)dli :

y ∈ A; t+ dui − dli ≥ yi, dui , dli ≥ 0 ∀ i}.
(26)

Actually, there is a possibility to represent general robust mean solution (17)
with optimization problem even more similar to the tail β-mean and thereby with
lower number of auxiliary variables than in (26).

Theorem 5 For any arbitrary intervals [−δi,∆i] (for all i ∈ I) of weights per-
turbations, the corresponding robust mean solution (17) can be given by the fol-
lowing optimization problem

min
y,t,di

{
m∑
i=1

(w̄i − δi)yi + δ̄t+
m∑
i=1

(∆i + δi)di :

y ∈ A; t+ di ≥ yi, di ≥ 0 ∀ i}
(27)

where δ̄ =
m∑
i=1

δi.

Proof. Note that the worst case mean (18) may be transformed as follows

µw(y) = max
ui
{
m∑
i=1

yiui :
m∑
i=1

ui = 1, w̄i − δi ≤ ui ≤ w̄i + ∆i ∀ i}

= max
u′i

{
m∑
i=1

yiu
′
i :

m∑
i=1

u′i =
m∑
i=1

δi, 0 ≤ u′i ≤ ∆i + δi ∀ i}+

+
m∑
i=1

yi(w̄i − δi).

(28)

Next, replacing the maximization over variables ui with the corresponding dual
we get

µw(y) = min
t,di
{(

m∑
i=1

δi)t+

m∑
i=1

(∆i+δi)di : t+di ≥ yi, di ≥ 0 ∀ i}+
m∑
i=1

(w̄i−δi)yi

Further, minimization over y ∈ A leads us to formula (27) which completes the
proof.

For a special case of arbitrary upper bounds ∆i and completely relaxed lower
bound we get the following result.
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Corollary 4 For any arbitrary upper bounds ∆i and and relaxed the lower ones
δi = w̄i (for all i ∈ I) on weights perturbations, the corresponding robust mean
solution (17) can be given by the following optimization problem

min
y,t,di

{t+
m∑
i=1

(∆i + w̄i)di : y ∈ A; t+ di ≥ yi, di ≥ 0 ∀ i}. (29)

Note that optimization problem (29) is very similar to the tail β-mean model
(13). Indeed, in the case of proportional upper limits ∆i = ∆w̄i (for all i ∈ I
problem (29) simplifies to (20) as stated in Corollary 1.

Concluding remarks

For multiple objective linear programming problems with objective weights the
mean solution concept is well suited for system efficiency maximization. How-
ever, real-life objective weights inevitably involve errors and uncertainties and
thereby the resulting performance may be lower than expected. We have ana-
lyzed the robust mean solution concept where weights uncertainty is represented
by limits (intervals) on possible values of weights varying independently. Such an
approach, in general, leads to complex optimization models with variable coeffi-
cients (weights).

We have shown that in the case of the weighted multiple objective linear pro-
gramming problem the robust mean solution concepts can be expressed with aux-
iliary linear inequalities, similarly to the tail β-mean solution concept [15] based
on minimization of the mean in β portion of the worst outcomes. Actually, the ro-
bust mean solution for proportional upper limits on weights perturbations turns out
to be the tail β-mean for an appropriate β value. For proportional upper and lower
limits on weights perturbation the robust mean solution may be sought by opti-
mization of appropriately combined the mean and the tail mean criteria. Finally,
a general robust mean solution for any arbitrary intervals of weights perturbations
can be expressed with optimization problem very similar to the tail β-mean and
thereby easily implementable with auxiliary linear inequalities.

Our analysis has shown that the robust mean solution concept is closely related
with the tail mean which is the basic equitable solution concept. It corresponds to
recent approaches to the robust optimization based on the equitable optimization
([7], [16], [5]). Further study on equitable solution concepts and their relations to
robust solutions seems to be a promising research direction.
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