Tail Gini’'s Risk Measures and Related Linear
Programming Models for Portfolio Optimization

Renata Mansifj Wlodzimierz Ogryczak and M. Grazia Speranza

I University of Brescia, Department of Electronics for Autation, 25123 Brescia, Italy
2 Warsaw University of Technology, Department of Electrsnémd Information
Technology, 00-665 Warsaw, Poland
3 University of Brescia, Department of Quantitative Metho@5122 Brescia, Italy

Abstract

Several polyhedral risk measures have been recently intextileading to Linear Programming (LP) models
for portfolio optimization. In this paper we study LP solNalportfolio optimization models based on the tail Gini’'s
mean difference risk measurement. We use combinationsaEtnditional Value at Risk (CVaR) measures to get
some approximations to the tail Gini's mean difference wlith advantage of being computationally much simpler
than the Gini's measure itself. We introduce the weightedRYWCVaR) measures defined as simple combinations
of a very few CVaR measures with specific type of weights sgstiwhich relates the WCVaR measure to the tail
Gini's mean difference. This allows us to use a few tolerdacels as only parameters specifying the entire WCVaR
measures while the corresponding weights are automatipedidefined by the requirements of the corresponding
tail Gini's measure. All the studied models are SSD congtst@d LP computable. We analyze both the theoretical
properties of the models and their performances on thelifealata.

Index Terms

Portfolio optimization, linear programming, risk meassjretochastic dominance, Conditional Value at Risk,
Gini's mean difference.

I. INTRODUCTION

OLLOWING Markowitz [4], the portfolio optimization probha is modeled as a mean-risk bicriteria

optimization problem where the expected return is maxichiaad some (scalar) risk measure is
minimized. In the original Markowitz model the risk is meest by the standard deviation or variance.
Several other risk measures have been later consideredctbating the entire family of mean-risk
(Markowitz-type) models. In particular, the polyhedrakimeasures have been introduced which leads
to Linear Programming (LP) solvable models in the case ofrdte random variables, i.e., in the case
of returns defined by their realizations under specified @tes. The LP solvability is very important for
applications to real-life financial decisions where thestarcted portfolios have to meet numerous side
constraints (including the minimum transaction lots, sa&ation costs and mutual funds characteristics).
The introduction of these features leads to mixed integepidblems.

The simplest polyhedral risk measures are dispersion messimilar to the variance. Yitzhaki [17]
introduced the mean-risk model using Gini's mean (abspldiference as the risk measure. The Gini’s
mean difference turn out to be special aggregation teclesiqtithe multiple criteria LP model [6] based on
the pointwise comparison of the absolute Lorenz curvesldtter leads the quantile shortfall risk measures
which are more commonly used and accepted. Recently, trendemrder quantile risk measures have
been introduced in different ways by many authors [5], [Ttje measure, usually called the Conditional
Value at Risk (CVaR) or Tail VaR, represents the mean sHb#faa specified confidence level. It leads
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to LP solvable portfolio optimization models in the case sicdete random variables represented by their
realizations under specified scenarios. The CVaR measuaggnization is consistent with the second
degree stochastic dominance [8]. Several empirical aaalgsnfirm its applicability to various financial
optimization problems. Thus, the CVaR models seem to aerie measure of Value-at-Risk (VaR)
defined as the maximum loss at a specified confidence levehwhicommonly used in banking.
Although any CVaR measure is risk relevant, it representg tre mean within a part (tail) of the
distribution of returns. Therefore, such a single criteris in some manner crude for modeling various
risk aversion preferences. The Gini’'s mean difference modmbines all CVaR measures averaging all
shortfalls. In order to enrich the modeling capabilitieage meeds to treat differently some more or less
extreme events. This require some techniques to enhancaotieside risk aversion [1]. Alternatively,
the Tail GMD measures may be applied [9], which averages lioetfall within specified quantiles. The
latter may be approximated with appropriate combinatidnsialtiple CVaR measures. In this paper we
study such LP solvable portfolio optimization models basadhe use of multiple CVaR measures. Our
analysis has been focused on the Weighted CVaR measuresdlafrsimple combinations of a very few
CVaR measures. This allows us to use a few tolerance levetsilgsparameters specifying the entire
WCVaR measures while the corresponding weights are auicetigtpredefined by the requirements of
the Tail Gini’'s measures. Theoretical properties and cdatfmnal efficiency of the models is studied as
well as their practical achievements are tested. All theistimodels are shown to be SSD consistent.

1. PORTFOLIO OPTIMIZATION AND CVAR MEASURES

Our analysis is focused on the portfolio optimization pesbl following the original Markowitz’
formulation and is based on a single period model of investmAt the beginning of a period, an
investor allocates the capital among various securitiess Bssigning a nonnegative weight (share of the
capital) to each security. Let = {1,2,...,n} denote a set of securities considered for an investment.
For each security € J, its rate of return is represented by a random varigbjewith a given mean
w; = E{R;}. Further, letx = (z;),-12,.., denote a vector of decision variablesexpressing the weights
defining a portfolio. To represent a portfolio, the weightasinsatisfy a set of constraints that form a
feasible sefP. The simplest way of defining a feasible set is by a requirdrniet the weights must sum
to one and short sales are not allowed, i.e.

P={x: ijzl, z; >0 forj=1,...,n} Q)
j=1

Hereatfter, it is assumed th& is a general LP feasible set given in a canonical form as &sysf linear
equations with nonnegative variables: This allows one tbuthe upper bounds on single shares as well
as several more complex portfolio structure restrictiomsctv may be faced by a real-life investor.

Each portfoliox defines a corresponding random variaBle= 2?21 R;x; that represents the portfolio
rate of return. We considef scenarios with probabilitieg; (wheret = 1,...,T). We assume that for
each random variablé?; its realizationr;, under the scenario is known. Typically, the realizations
are derived from historical data treatifig historical periods as equally probable scenarigs= 1/7).
The realizations of the portfolio returR, are given asy, = Z;‘:lrﬁxj and the expected value can

be computed ag(x) = Sy = Sooy [Z;;l rjtxj] p.. Similarly, several risk measures can be LP
computable with respect to the realizatiops

The portfolio optimization problem is modeled as a meak-pisriteria optimization problem where the
meanu(x) is maximized and the risk measugéx) is minimized. In the original Markowitz model, the
standard deviation was used as the risk measure. Seveaalrigh measures have been later considered
thus creating the entire family of mean-risk models (seeaff] [3]). These risk measures, similar to the
standard deviation, are not affected by any shift of the @ui scale and are equal to 0 in the case of a
risk-free portfolio while taking positive values for anysky portfolio. Unfortunately, such risk measures



are not consistent with the stochastic dominance order §t6dther axiomatic models of risk-averse
preferences.

In stochastic dominance, uncertain returns (modeled asorarnvariables) are compared by pointwise
comparison of some performance functions constructed fifwair distribution functions. The first per-
formance function/" is defined as the right-continuous cumulative distributfanction: F,El)(n) =
Fx(n) =P{Rx <n} and |t deflnes the flrst degree stochastic dominance (FSD¥.s€bond function is
derived from the first agi{* f” ¢) d¢ and it defines the second degree stochastic dominance

(SSD). We say that portfollcx domlnatesd’ under the SSORy >, Rx), if F)E (n) < Ff,( ) for
all n, with at least one strict inequality. A feasible portfol € P is calledSSD efficientf there is no
x € P such thatRy >, Rxo.

Several portfolio performance measures were introduceshfiefy measures to be maximized, like the
worst realization, analyzed by Young [18], and the CVaR ms&asures we consider further. Opposite
to risk measures, the safety measures may be consistenfostittal models of risk-averse preferences
[12], [16]. Actually, for any risk measure(x) a correspondingafety measurey,(x) = p(x) — o(x)
can be defined and viceversa [2], [3]. Note that while risk sneap(x) is a convex function ok, the
corresponding safety measumg( ) is concave. We say that the safety meaguyex) is SSD consistent
(or that the risk measur@(x) is SSD safety consistgrit Ry =, Rxs implies p,(x') > p,(x"). If the
safety measure is SSD consistent, then except for porsfalith identical values ofi(x) and z,(x) (and
therebyo(x)), every efficient solution of the bicriteria problem

max{[u(x), pe(x)] - x € P} )

is an SSD efficient portfolio [7]. Therefore, we will focus ¢ime mean-safety bicriteria optimization (2)
rather than on the classical mean-risk model.

Stochastic dominance relates the notion of risk to a pasdailure of achieving some targets. Note
that function £, used to define the SSD relation, can also be presented asvs$o[l7]: F,Ez)(n) =
E{max{n— Ry, 0}} and thereby its values are LP computable for returns repteddy their realizations
y;. In this paper we focus on quantile shortfall risk measuedated to the so-calledbsolute Lorenz
Curves(ALC) [5], [13] which represent the second quantile funoBalefined as

D
F&(p) = / F{Y(a)da foro<p<1 and FU?(0) =0, (3)
0

where F,E‘l)(p) = inf {n : Fx(n) > p} is the left-continuous inverse of the cumulative distribnt
function Fy. Actually, the pointwise comparison of ALCs provides areaittive characterization of the
SSD relation [8] and
F2(8) = max [Bn — FP ()] = max [3n — E{max{y — Rx,0}}] (4)
neR neER
wherer is a real variable taking the value gtquantile@s(x) at the optimum.

For any real tolerance leveél < 5 < 1, the normalized value of the ALC defined dd;(x) =
F{P(B)/p is called theConditional Value-at-Risk (CVaRJhe corresponding risk measure;(x) =
u(x) — Mg(x) is called hereafter the (worstpnditional semideviatiarNote that, for any) < g < 1, the
CVaR measures defined @y~ (3), opposite to below-target mean deviatiai€) (n), are risk relevant.
They are also SSD consistent [8]. For a discrete randomblariapresented by its realizatiogsproblem
(4) becomes an LP. Thus

T
1
Mps(x) = max [n—BZdt_pt] st. d;, >n—wy, dy >0 fort=1,...,T. (5)

Yitzhaki [17] introduced the GMD model using Gini's mean gahute) difference as risk measure.
For a discrete random variable represented by its reaizatj;, the Gini's mean differencd’(x) =



%Zle ZtT,,_zl lys — yu|peper is LP computable (when minimized). Yitzhaki [17] suggesteduse the
corresponding safety measure

pr (%) = p(x) = T(x) = E{Rx A\ Ry} (6)

to take advantages of its SSD consistency and LP compuyabili
Both the Gini’'s mean difference and the CVaR measures aaterkto the ALC (3). One may notice that
1

Ay(x) = %(,u(x)ﬁ—F,g_z) (8)) while the Gini's mean difference may be expresseti@g = 2 [ (u(x)o—
0

B ())da = 2faA x)da. Hence, the GMD safety measure summarizes all the CVaR mesass

pe(x) = p(x) —T'(x) = QfF (a)da = 2faM x)da. Therefore, the stronger SSD consistency

results have been recently shown for the GMD model [8], &, >, Rx implies pup(x') > pr(x”)
which guarantees that every efficient solution of the bacidt problem (2) is an SSD efficient portfolio.
On the other hand, its computational LP model (even whenIfietghby taking its LP dual [1]) requires
T? variables. which makes it much more complicated than theRCMmdel (5) using onlyl” variables.
In the next sections we will demonstrate that models based tsw CVaR criteria offer a very good
compromise between the computationally complex GMD modédl simplified CVaR.

[Il. TAIL GINI'S AND WEIGHTED CVAR MEASURES

In order to model downside risk aversion, instead of the '&miean difference, th&il Gini's measure
[8], [9] is used. It is defined for any < (0, 1] by averaging the vertical diameteds(x) within the tail
intervalp < (8 as:
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For any0 < § < 1, the tail Gini's measurd's(x) is SSD safety consistent. One may notice that the
corresponding safety measuyie, (x) = u(x) — I's(x) can be expressed as

[s(x) =

B s
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0

which allows us to consider it as a second degree CVaR measure
In the simplest case of equally probafilescenarios withp, = 1/7" (historical data forl" periods), the

tail Gini's measure for3 = K/T may be expressed as the weighted conditional semideviéﬂéfﬁ(x)
with tolerance levelss, = k/T for k = 1,2,..., K and properly defined weights [9]. In a general case,
we may resort to an approximation based on some reasonatelyrids,, £ = 1,..., m and weights
wy, expressing the corresponding trapezoidal approximatidhenintegral in the formula (7). This leads
us to the Weighted CVaR (WCVaR) measure defined as

ZwkMﬁk Zwk—l wg > 0 forkzl,...,m (8)
The WCVaR measure is, obV|oust, a safety measure and isksrdlevant in the sense that for any
risky portfolio its value is less than that for the risk-frpertfolio with the same expected return. The

corresponding risk measure turns out to be the weighted duimea\ 5, (x) measures thus forming the
weighted conditional semideviation:

ALY (x) = p(x) = M{ (x Zkaﬁk X), Zwkﬁl, wp, >0 fork=1,....m (9)



The latter is not affected by any shift of the outcome scal# iais equal to O in the case of a risk-free

portfolio while taking positive value for any risky portfol thus representing a translation invariant and
risk relevant dispersion parameter. Therefore, we aréxgi¢o consider the corresponding Markowitz-type
model and its mean-safety formalization (2):

max{[u(x), MV (x)] : x € P} = max{[u(x), p(x) — AJY (x)] : x € P} (10)

Since the CVaR measures are SSD consistent [9], the samesafpthe WCVaR measure. Actually, the
following assertion is valid.

Theorem 1:For any set of level$ < 5, < 5, < ... < (B, < 1, except for portfolios with identical
values ofy(x) and all conditional semideviations;, (x), every efficient solution of the bicriteria problem
(10) is an SSD efficient portfolio.

Proof: Let x° € P be an efficient solution to the bicriteria mean-safety mode€l). Suppose
that there existx’ € P such thatRy .., Rx. Then, due to SSD consistengy(x’) > n(x°) and
Mpg, (x') > Mg, (x°) for all k = 1,...,m. The latter together with the fact that is efficient, implies that
pu(x') = pu(x®) and Y )" wiMp, (x') = > - wp Mg, (x°). Hence, Mg, (x') = Mg, (x°) for k =1,...,m,
and thereforeAg, (x') = Ag, (x°) for all k£ =1,...,m, which completes the proof. u

Exactly, for any0 < § < 1, while using the grid ofn tolerance leveld < ) < ... < G < ... <
G, = 3 one may define weights:

(ﬁm - 6m—1)6m

wk:(ﬁkﬂ 626’“_1)6’“, fork=1,....m—1, and w,, = 7 (11)
where3, = 0. This results in the weighted sul," | w,Ag, (x) expressing the trapezoidal approximation
to the tail Gini's measure (7). Note thatf," , w, = 32 /3* = 1 and thus we get a regular weighted
conditional semideviation (9&353”) (x) = I's(x). Further, weights (11) generate a WCVaR measure (8)
such thatV ™ (x) = piry (X).

We emphasize that despite being only an approximation toa@y WCVaR measure with weights
defined by (11) itself is a well defined LP computable measutk guaranteed SSD consistency in the
sense of Theorem 1. Hence, it needs not to be built on a veryedgnd to provide proper modeling of
risk averse preferences. While using the uniform grid oélew, = (k3)/m for k =1,2,...,m and gets
weights defined as, = (2k)/m? for k=1,2,...,m — 1 andw,, = 1/m.

The commonly accepted approach to implementation of thekiwétz-type mean-risk models is based
on the use of a specified lower boupg on expected return while minimizing the risk criterion. laro
analysis we use the bounding approach applied to the maxiimizof the safety measures, i.e.

max{p,(x): xE€P, pu(x) > po} (12)

For small values of the boungd,, the constrainf.(x) > 1, does not influence the optimization (12). In
this case, the portfolio obtained is the so called MaximurfetgaPortfolio (MSP). In our analysis we

have used the bounding approach (12) applied to the maximrizaf the WCVaR measures. For returns
represented by their realizations we get an LP optimizgpiailem:

m m T
- Wy
maximize E Wrqx — E EE Pedy
k=1 k=1 t=1

subject to x € P and Y px; > o (13)

Jj=1

dpe —qe+ Y 1w >0, dg >0 fort=1,...T;, k=1,...,m
j=1
wheregq, (for £k =1,...,m) are unbounded variables taking the values of the correBpgw,-quantiles
(in the optimal solution). Except from the core portfolionstraints (1), model (13) contaifisnonnegative



variablesd,, andT' corresponding linear inequalities for eachHence, its dimensionality is proportional
to the number of scenarids and to the number of tolerance leveis Exactly, the LP model contains
m x T+ n variables andn x T + 2 constraints. It does not cause any computational diffiesiltor a few
hundreds of scenarios and a few tolerance levels, as in ooputational analysis based on historical data.
However, in the case of more advanced simulation models @maglfor scenario generation one may
get several thousands of scenarios. This may lead to the LdeIn(d3) with huge number of variables
and constraints thus decreasing the computational effigiehthe model. If the core portfolio constraints
contain only linear relations, like (1), then the compuwtatl efficiency can easily be achieved by taking
advantages of the LP dual to model (13). The LP dual modektéhe following form:

minimize 7 — poé

T m
subjectto n — ;6 — Y Y up >0 forj=1,... n
T t=1 k=1 (14)
ZutRZwk fork=1,....m

t=1
>0, Ogutkgptwk/ﬁk fort=1,....T; k=1,....m

The dual LP model contains x T" variablesu,, but them x T' constraints corresponding to variablgs
from (13) take the form of simple upper bounds (SUB)wpthus not affecting the problem complexity.
Actually, the number of constraints in (14) is proportiot@athe total of portfolio size» and the number
of tolerance levelsn, thus it is independent from the number of scenarios. Exaitiere arem x T+ 2
variables andn + n constraints. This guarantees a high computational effigier the dual model even
for vary large number of scenarios.

V. EXPERIMENTAL ANALYSIS

In our computational analysis we examine the MSPs for thierdift tested models. The analysis is
performed on historical data are represented by weeklys ratereturn obtained by using stock prices
from Milan Stock Exchange. The rates are computed as relgiice variations. The data set consists
of 157 securities quoted with continuity. The historicatipd covers six years during which the Italian
Stock Exchange has shown alternate short periods of up amd ttends. A set of 7 instances has been
created, each of which takes into account the complete sstaifrities over a different time period. For
each instance the Maximum Safety Portfolio (MSP) has bedairdd through the use of the various
tested models. In this section we only summarize and comthentnain figures out of the huge amount
of computational results we obtained.

The model based on the safety measure corresponding to iiie @ean difference, i.e. the mean worse
return, is referred simply as GMD. The CVaR model associatea given tolerance levet is identified
as CVaR(). We have tested the CVaR model for five different valuegoiie. CVaR(0.05), CVaR(0.1),
CVaR(0.25) and CVaR(0.5). All the CVaR and the weighted Cyadtlels have been formulated according
to (13). We have also tested two Tail WCVaR models:

« Model WCVaR(TG2) with two tolerance levels, = 0.1, 3, = 0.25 and weightsw; = 0.4 and

Wy = 0.6.
« Model WCVaR(TG3) with three tolerance levels = 0.1, 5, = 0.25, #3 = 0.5 and weightsy; = 0.1,
wy = 0.4 and ws = 0.5.

While analyzing for all the models over all the periods, theetkification of the optimal portfolios
(MSPs), one may notice that, in general, all the models heselted in diversified portfolios. The number
of selected securities for the Minimax model ranges betw&amd 29 securities. The GMD model has
generated portfolios of 12 to 26 securities. The basic CVaidets as well as the WCVaR models provide
portfolios similarly well diversified (14-30 securities).



TABLE |
OUT-OF-SAMPLE RESULTS ONMSPS: SINGLE PERIOD RETURNS

Max. safety Periods
models 1 2 3 4 5 6 N Tmin  Tmaz Tmed Tav

Minimax 39.77 85.43 348.50 -24.86 -60.31 0.99 10.3%.31 348.50 10.33 57.12
CVaR(0.05) |39.77 85.43 348.50 -24.86 -49.44 -2.84 9519.44 348.50 9.51 58.01
CVaR(0.1) 39.23 78.16 352.58 -25.94 -48.17 -7.46 39.98.17 352.58 39.23 61.19
CVaR(0.25) |20.16 71.22 392.11 10.28 -54.66 31.95 34.981.66 392.11 31.95 72.28
CVaR(0.5) 10.14 58.21 434.77 7.51 -55.21 39.74 58.%b.21 434.77 39.74 79.15
GMD 9.75 36.80 431.47 10.76 -53.08 47.40 10.&8B.08 431.47 10.76 70.49
WCVaR(TG2)(28.27 71.23 385.45 -17.94 -47.15 10.67 140.97.15 385.45 28.27 81.63
WCVaR(TG3)[21.41 52.27 404.90 7.78 -53.40 29.80 66.83.40 404.90 29.80 75.58

We have also analyzed the models performances with respegtiong-run portfolio management.
Each of the portfolios selected by a specific model in the Tam=es has been evaluated ex-post in the
three months period following the date of selection. Tabfgdvides the single period returns for each
model expressed on a yearly basis. It is worth noticing thrgle period ex-post returns quite perfectly
represent the upward and downward movements of the mar&etingtance, the high returns of all the
models in period 3 can be partially interpreted as a consesuef the positive trend of the market
at the beginning of the 1998 with a high positive jump of MIBB8rformances in March. Similarly,
negative results showed by all the models in the periods Sraxi@ly due to the negative trend of the
market in August 1998. To describe better out-of-samplaltesve have included into Table | also the
following ex-post parameters: the minimum, average andimam portfolio return €,,.;,, 7e aNd7,,42,
respectively); the median(.4) of the average returns; Such performance criteria have bemputed
for all the models over all the periods and can be used to comipee out-of-sample behavior of the
maximum safety portfolios selected by the different models

TABLE 1l
OUT-OF-SAMPLE RESULTS ONMSPS: CUMULATIVE RETURNS.
Max. safety Periods
models 1 1-2 -3 14 15 16 1-7

Minimax 39.77 60.99 115.24 71.91 28.23 23.22 22.83
CVaR(0.05) |39.77 60.99 115.24 71.91 34.59 27.47 24.74
CVaR(0.1) 39.23 57.50 112.92 69.81 33.93 25.93 27.84
CVaR(0.25) |20.16 43.44 106.15 78.28 38.32 37.24 36.90
CVaR(0.5) 10.14 32.00 100.87 77.91 35.02 35.79 38.88
GMD 9.75 22,53 91.36 72.42 32.90 35.21 31.34
WCVaR(TG2) 28.27 48.21 109.51 71.99 35.84 31.28 43.17
WCVaR(TG3) 21.41 35.97 100.98 78.10 36.20 35.12 39.19

Further, we cumulated the returns over the horizon up to bger21 months) to better analyze each
model achievements. The figures shown in Table Il are the tative returns of the portfolios selected
by each model. Each column of the table refers to a period aoddes the cumulative return of the
portfolios selected over the preceding periods. For beitelerstanding of the figures let us consider the
first line of Table Il which refers to the model Minimax. Eachtle 7 portfolios selected by the Minimax
model in the 7 instances has been evaluated ex-post in tee thonths investment period following the
date of its selection. We define as, r,, ..., 77, the ex-post returns of these 7 portfolios. Then, the first
column of Table Il gives the ex-post return (after 3 monthisihe first portfolio selected, i.e:; (notice
that such value is identical in Tables Il and I). The secondroa of Table Il gives the cumulative return
of the portfolio selected in the first period and then modiaé&er three months with the portfolio selected
in the second period: the value is computed(as- r)(1 + r3) — 1 wherer; is the ex-post quarterly
return for the first portfolio and, is the ex-post quarterly return for the second one. Simyildor all the
other columns of the table; in particular, the last one mesithe cumulated return over all the 7 periods.



These results have been computed to simulate a multi-psgticthg where, at no transaction cost, the
portfolio changes over time. Rates are expressed on a yeasig.

In Table Il, it can be noticed that except for the Minimax ahd extremal CVaR model$} (= 0.05 or
£ =0.1) all the other models resulted in similar cumulative retouer the entire horizon of 21 months
with (annual) rate of return exceeding 30%. The Minimax amel éxtremal CVaR modelsi (= 0.05 or
£ = 0.1) perform much worse than all the other models. Note that le¢hTail WCVaR models and
the CVaR(0.5) here have the best cumulative performantesinteresting to notice that Also the GMD
model is outperformed by simple Tail WCVaR models and the Yaodels for larger tolerance levels.

V. CONCLUDING REMARKS

In this paper we have studied LP solvable portfolio optirti@a models based on extensions of the
Conditional Value at Risk (CVaR) measure. The models usdiphellCVaR measures thus allowing for
more detailed risk aversion modeling. All the studied medek SSD consistent and may be considered
some approximations to the Gini's mean difference with tdeaatage of being computationally much
simpler than the GMD model itself. Our analysis has been deduon the weighted CVaR measures
defined as simple combinations of a very few CVaR measureshaWe introduced the specific type of
weights settings which relate the WCVaR measure to the fail<Gnean difference. This allows us to use
a few tolerance levels as only parameters specifying theee?WiCVVaR measures while the corresponding
weights are automatically predefined by the requirementhefcorresponding tail Gini's measure.

Our experimental analysis of the models performance on da¢life data from the Milan Stock
Exchange has confirmed their attractiveness. The weight@RCGnodels have usually performed better
than the GMD itself, the Minimax or the extremal CVaR modédlkese promising results show a need
for further comprehensive experimental studies analypragtical performances of the weighted CVaR
models within specific areas of financial applications. linportant to notice that although the quantile
risk measures (VaR and CVaR) were introduced in banking &®rae risk measures for very small
tolerance levels (like3 = 0.05), for portfolio optimization good results have been pr@ddby rather
larger tolerance levels.
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