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Abstract

This paper discusses connections between the multi-criteria techniques of goal program-

ming (GP) and the reference point method (RPM). Both approaches use a certain target

point in the criterion (outcome) space as a key element to model decision maker preferences.

Therefore, RPM can be expressed, similarly to GP, in the modelling framework of deviational

variables. The paper gives a systematic survey and analysis of the lexicographic GP models

of RPM. The corresponding preference models are formalised and analysed with respect to

target values interpretations as well as the Pareto-efficiency of their solutions. The properties

of equity among the individual achievements of solutions are also analysed with respect to

the Rawlsian principle of justice.
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Introduction

The techniques of Goal Programming (GP),1 and the Reference Point Method (RPM)2,3 form the

well-known multi-criteria decision making (MCDM) methodologies. The approaches have a clear

common root: they use a certain target point in the criterion (outcome) space to model decision

maker (DM) preferences. This point within GP is a vector of aspiration levels which represents

the most desired values for the several criteria (outcomes). Within RPM the target point is a

vector of reference levels to be used in an interactive way by the DM. Moreover, both approaches

assume that a solution with all individual outcomes equal to the corresponding target values is

preferred to any solution with at least one outcome worse than the corresponding target value.

Thus each of the approaches may be considered as some specification of the satisficing model4 for

the decision process. Typical GP approaches aim to minimise the distance between the target

point and the actual outcome values thus implementing the strict satisficing model where no

solution can be considered to be better than that generating the target values. This requires a

carefully selected target point to guarantee Pareto-efficiency of solutions. RPM implements the

so-called quasi-satisficing decision model5 where the target points are interpreted consistently

with basic concepts of Pareto-efficiency in the sense that the optimisation is continued even when

the target point has been reached already. This allows DMs to use targets as mobile reference

points since the generated solutions are always efficient.

Despite the similarities in the approaches of GP and RPM, they are usually introduced in

the literature as completely independent methodologies. Moreover, different tools are usually

employed to present the methodology. In particular, GP approaches focus on modelling the

preferences via the deviational variables and they widely use the lexicographic order. RPM is

usually introduced via the scalarising achievement function which may be directly interpreted

as a utility function (temporal in the interactive process). RPM can be expressed in the GP

modelling framework of deviational variables. However, the corresponding RPM models6,7,8

differ from typical GP formulations since RPM always guarantees the efficiency of solutions.

This paper is organised as follows. In the next section we systematically summarise the

lexicographic GP models of RPM. There are covered all the models present in the literature as

well as introducing a new parametric model allowing the consideration of some level of com-

pensation between individual achievements. The main results of the paper are related to the

analysis of the preference models underlying the approaches of GP and RPM. To the extent of

our knowledge, it is the first strictly formalised comparison of the corresponding preference rela-
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tions. First, the preference relations are analysed with respect to the target value interpretations

as well as the Pareto efficiency of their solutions. Next, the property of equity among the indi-

vidual achievements in the RPM solutions is examined. There it is shown that the RPM models

generate efficient solutions satisfying the perfect equity of individual achievements, whenever

such an efficient solution exists. When there does not exist an efficient solution with perfectly

equal individual achievements, then RPM generates another efficient solution but still provides

some equitability of individual achievements by the implementation of an approximation to the

Rawlsian principle of justice.

Lexicographic models

In this paper, without loss of generality, it is assumed that all the criteria are maximised (that

is, for each outcome ‘more is better’). Hence, we consider the following multi-criteria problem:

max { [f1(x), f2(x), . . . , fq(x)] : x ∈ Q } (1)

where x denotes a vector of decision variables to be selected within the feasible set Q, and fi(x)

is a mathematical expression for the ith outcome (the ith criterion). Note that neither any

specific form of the feasible set Q is assumed nor any special form of criteria fi(x) is required.

The following notation is further used for the techniques under examination:

yi = the ith outcome, value of the ith criterion (yi = fi(x))

bi = aspiration or reference level attached to the ith outcome

b∗i = ideal value corresponding to the ith outcome (b∗i = max{fi(x) : x ∈ Q})

ni = negative deviational variable (ni = max{bi − fi(x), 0})

pi = positive deviational variable (pi = max{fi(x) − bi, 0})

RPM is an interactive technique where the DM specifies preferences in terms of reference

levels. Depending on the specified reference levels a scalarising achievement function is built

which, when optimised, generates an efficient solution to the problem. The scalarising achieve-

ment function may be directly interpreted as expressing utility to be maximised. However,

to keep the discussion consistent with GP models we will assume that the scalarising achieve-

ment function is minimised (thus representing dis-utility). The generic scalarising achievement

function takes then the following form:3

max
1≤i≤q

{si(bi, fi(x))} + ε
q

∑

i=1

si(bi, fi(x)) (2)
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where ε is an arbitrary small positive number and si : R2 → R, for i = 1, 2, . . . , q, are the

individual achievement functions measuring actual achievement of the ith outcome with respect

to the corresponding reference levels bi. For any reference value bi, function si(bi, yi) must be

strictly decreasing with respect to yi (the ith outcome) and it has to take value 0 for yi = bi.

It has been indicated by Steuer9 that, when the regularisation constant ε in (2) is used as

a parameter, one may generate efficient solutions compatible with different DM’s structure of

preferences. The consequences of a direct use of the analytic scalarising achievement function

with not necessarily arbitrarily small value of ε were widely studied in the RPM literature.10,11

It was shown that any given value of ε restricts the search for efficient solutions to a subset of

properly efficient solutions12 with actually bounded trade-off coefficients, where the bound is

given with a simple function of ε.

The standard RPM methodology2,3 assumes the parameter ε in formula (2) to be arbitrarily

small. Thus, when accepting the loss of a direct utility interpretation, one may consider a

limiting case with ε → 0+ which results in the lexicographic order being applied to two separate

terms of function (2). Therefore, RPM may be also considered as the following lexicographic

problem:6,7,13

lex min

{ [

max
1≤i≤q

{si(bi, fi(x))} ,
q

∑

i=1

si(bi, fi(x))

]

: x ∈ Q

}

(3)

The advantage of the above lexicographic model is that it allows the DM to generate all efficient

solutions whereas only properly efficient solutions can be obtained with the minimisation of (2).5

Problem (3) is a lexicographic regularisation of the minmax aggregation:

min

{

max
1≤i≤q

{si(bi, fi(x))} : x ∈ Q

}

(4)

The latter was widely studied in the multi-criteria optimisation methodology.9 The optimal set of

the minmax aggregation always contains an efficient solution. Thus the unique optimal solution

of (4) is efficient. In the case of multiple optimal solutions, one of them is efficient but also

some of them may be inefficient. It is a serious flaw since practical large problems usually have

multiple optimal solutions and typical optimisation solvers generate one of them (essentially at

random). Therefore, to overcome this flaw of the minmax aggregation in the RPM, problem (3)

is additionally regularised with the weighted additive aggregation which guarantees the efficiency

of solutions.

Various functions si provide a wide modelling environment for measuring individual

achievements.14,10,15 For the sake of computational robustness, the piecewise linear functions
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si are usually employed. In the simplest models, they take a form of two segment piecewise

linear functions:

si(bi, yi) =











vn
i (bi − yi), for yi ≤ bi

vp
i (bi − yi), for yi > bi

(5)

where vn
i and vp

i are positive weights corresponding to underachievements and overachievements,

respectively, for the ith outcome. It is usually assumed that vn
i is much larger than vp

i . Moreover,

RPM is frequently implemented in the form of so-called aspiration/reservation based decision

support (ARBDS)14 which in addition to the main target (aspiration) levels bi employs also

reservation levels ri, so that the DM can specify desired as well as required values for given

outcomes. This allows implicit definition of weights as vn
i = 1/(bi − ri) and vp

i = βvn
i where β

is a small positive parameter (0 < β ≪ 1).

Under the assumption that vn
i ≥ vp

i > 0 for i = 1, 2, . . . , q, the lexicographic RPM model (3)

with piecewise linear individual achievement functions (5) can be expressed in terms of the GP

implementation environment as the following RGP model:7

lex min

[

max
1≤i≤q

{vn
i ni − vp

i pi} ,
q

∑

i=1

(vn
i ni − vp

i pi)

]

(6)

subject to

fi(x) + ni − pi = bi; ni, pi ≥ 0 i = 1, 2, . . . , q (7)

x ∈ Q (8)

As shown by Ogryczak,7 the RGP model always generates an efficient solution to the original

multi-criteria problem satisfying simultaneously the RPM rules. It provides a complete param-

eterisation of the efficient set, in the sense that for any efficient solution x̄ ∈ Q there exist the

reference levels allowing to find x̄ as an optimal solution of the corresponding RGP problem.

Moreover, a solution with all individual outcomes equal to the corresponding reference values is

preferred to any solution with at least one outcome worse than its reference level.

The RGP model (6)–(8) is similar to the standard Minmax (fuzzy) GP model:16

min

[

max
1≤i≤q

{vn
i ni}

]

(9)

subject to (7) and (8)

However, the RGP model differs from (9) due to the use of negative weights (−vp
i ) attached

to positive deviational variables and the additional regularisation term
∑q

i=1(vn
i ni − vp

i pi) to

be minimised lexicographically. The Minmax GP itself does not guarantee the efficiency of
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solutions, even when reference levels are fixed at their ideal values.17,18 Thus, for any reference

levels, the use of the additional regularisation term is important to guarantee the efficiency of

solutions generated by the minmax aggregations.

Recall that under the assumption vn
i ≥ vp

i > 0 for i = 1, 2, . . . , q, the lexicographic RPM

model (3) with piecewise linear individual achievement functions (5) can be expressed as the

RGP model (6)–(8). It is usually assumed5 that minimisation of any negative deviation ni is

preferred to maximisation of each positive deviation pi for i = 1, 2, . . . , q. This can be modelled

with vn
i much larger than vp

i or, as a limiting case, with the (four level) lexicographic problem:8

lex min

[

max
1≤i≤q

{vn
i ni} ,

q
∑

i=1

vn
i ni , max

1≤i≤q
{−vp

i pi} ,−
q

∑

i=1

vp
i pi

]

(10)

subject to (7) and (8)

called hereafter lexicographic RGP (LRGP) model. As shown by Ogryczak,8 the above model for

any reference values bi and for any positive weights (vn
i > 0 and vp

i > 0 for i = 1, 2, . . . , q) always

generates an efficient solution to the original multi-criteria problem, satisfying simultaneously the

RPM rules. Note that vn
i and vp

i represent here a freely selected preferential weights attached to

the ith outcome for minimisation its underachievements or maximisation its overachievements,

respectively, when comparing to the target bi. As usual in the lexicographic optimisation,

the objective terms placed in lower priorities become redundant if the optimisation problem

corresponding to a higher priority level has no alternative solutions. Nevertheless, all four

objective terms (priority levels) are important in a general case. Arbitrary skipping of any

objective17 may result in inefficient solutions.18

The LRGP model (10) excludes any compensation among individual achievements (devi-

ations from the targets) whereas a specific DM structure of preferences may be considered

additive.17 One can introduce some level of compensation, and therefore additive preferences,

by the use of the regularisation constant ε (instead of lexicographic optimisation) applied to

the objective terms with weighted deviations (ie to the second and the fourth terms in (10)).

Avoiding impracticably large values of ε, it can be formulated as the following parameterisation

of LRGP:

lex min

[

(1 − ε) max
1≤i≤q

{vn
i ni} + ε

q
∑

i=1

vn
i ni , (1 − ε) max

1≤i≤q
{−vp

i pi} − ε
q

∑

i=1

vp
i pi

]

(11)

subject to (7) and (8)

where the parameter ε by taking values between zero and one (0 < ε ≤ 1) defines the (relative)

level of compensation. This is a new parametric model covering the LRGP model (10) as a
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limiting case when ε → 0+. For ε = 1, model (11) becomes the lexicographic additive model

introduced by Romero et al:17

lex min

[

q
∑

i=1

vn
i ni ,−

q
∑

i=1

vp
i pi

]

(12)

subject to (7) and (8)

Note that, opposite to (2), the use of the regularisation constant ε in (10) does not restrict

the search to a subset of properly efficient solutions. In the Appendix we show that model (11)

guarantees the efficiency of solutions (Theorem 2) and that it is possible to generate all efficient

solutions using model (11) by appropriately choosing the reference point (Theorem 3). Thus

model (11) and additive model (12) as its special case (ε = 1) satisfy the basic requirements

for the RPM approaches. The reasons why the additive model is not considered in the RPM

methodology are related to the interactive nature of RPM. Namely, worse controllability of

the interactive analysis based on the weighted additive aggregation of individual achievements,

when comparing to the minmax aggregation, is usually noticed.7,19 Theorem 3, although formally

justifying the controllability, has limited practical importance, since in order to generate certain

efficient solution the reference point has to be the efficient solution itself.

Preference relations

Every optimisation model, either scalar or lexicographic, defines a corresponding preference

model which ranks the outcome vectors with a complete preorder. The preference model is

completely characterized by the relation of weak preference,20 denoted hereafter with �. Namely,

we say that outcome vector y′ is (strictly) preferred to y′′ (y′ ≻ y′′) iff y′ � y′′ and y′′ 6� y′.

Similarly, we say that outcome vector y′ is indifferent or equally preferred to y′′ (y′ ∼= y′′) iff

y′ � y′′ and y′′ � y′. In this section we use the preference relation to introduce a formal

comparison of the GP and RPM models with respect to their specifications of the satisficing

approach4 to the decision process. Although the specifications have been widely discussed10 ‘in

words’, to extent of our knowledge, it is the first analysis based on strictly formalised properties

of the preference relation.

The presented RPM models show that this approach can be expressed in the GP modelling

framework of deviational variables and lexicographic optimisation. However, RPM indepen-

dently from the target specification always generates an efficient solution. To meet this require-

ment all valid RPM models need to define preference models satisfying the principle of (strict)
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monotonicity which can be written as:

(y′ ≥ y′′ and y′ 6= y′′) ⇒ y′ ≻ y′′ (13)

or, taking advantages of transitivity, as:

y + εei ≻ y ∀ i = 1, . . . , q; ε > 0 (14)

where ei denotes the ith unit vector. Therefore, the RPM models differ from typical GP for-

mulations due to the use of negative weights and additional regularisation of the minmax ag-

gregation. Both these elements are important to guarantee the strict monotonicity and thereby

the efficiency of solutions. When the negative and positive deviational variables are optimised

hierarchically, then each separate minmax aggregation requires the corresponding regularisation

to guarantee the efficiency of solutions.

Both GP and RPM may be considered as some specification of the satisficing approach4

to the decision process. In this approach, depending on recurrent observation, it is assumed

that people tend to summarize their learning of the state of the world by forming aspirations

of desirable outcomes for their decisions. When the outcomes fail to satisfy their aspirations,

people tend to seek ways to improve the outcomes. When their aspirations are satisfied (or

outcomes cannot be improved), however, their attention turns to other outcomes. The quasi-

satisficing approach5 extends the decision process assuming that, due to the learning factor,

having achieved all aspirations (or having achieved some aspirations and having no possibility

to improve other outcomes) one further tries to improve the outcomes (advances the aspirations

when attainable).

Classical GP models (including model (9)) specify the satisficing approach with the as-

sumption that no outcome vector can be preferred to the aspiration vector b.16 In terms of the

preference relation, this can be formalised as the following specification:

b � y ∀y (15)

Specification (15), in general, contradicts the monotonicity principle (13). Therefore, the classi-

cal GP models require a carefully selected target point to guarantee the efficiency of solutions.

Within RPM the target points are interpreted consistently with the monotonicity principle. It is

assumed that a solution with all individual outcomes equal to the corresponding reference values

is preferred to any solution with at least one outcome worse than the corresponding reference

level.5 This leads us to the following formal specification:

y 6≥ b ⇒ b ≻ y (16)
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This specification of the quasi-satisficing behaviour is satisfied by the lexicographic RPM model

(3) as well as by all the GP formulations of RPM, ie models (6), (10), (11) and (12).

Both specifications (15) and (16) focus on the case when all the target values bi are achieved

while leaving unspecified the situations when only some target values can be achieved. One may

notice that having given an aspiration vector b, according to the (quasi-)satisficing model one

should prefer outcome vector (b1 − 1, b2, b3) to outcome vector (b1 − 1, b2 − 1, b3 + 10). This is,

in general, not guaranteed by generic RPM. In the RGP model this preference depends on a

specific setting of the weights. On the other hand, the LRGP model (10) and the additive model

(12) both guarantee that (b1 − 1, b2, b3) is always preferred to (b1 − 1, b2 − 1, b3 + 10). Namely,

the lexicographic models with negative deviations minimised prior to the maximisation of pos-

itive deviations specify better the quasi-satisficing behaviour. They implement an additional

assumption that any (small) improvement of an outcome not reaching its aspiration is preferred

to any (large) improvement of an outcome already satisfying its aspiration. Formally, this can

be written as:

yi < bi and yj > bj ⇒ y + ε′ei ≻ y + ε′′ej ∀ 0 < ε′ ≤ bi − yi; 0 < ε′′ ≤ yj − bj (17)

Equity of individual achievements

Every RPM (or GP) technique builds the individual achievement functions which measure actual

achievement of each outcome with respect to the corresponding reference level. Thus, all the

outcomes are transformed into a uniform scale of individual achievements. Romero et al17 have

raised an important issue of equity among individual achievements in the context of the RPM

and GP approaches. Unfortunately, the issue is not quite resolved in that paper. Romero et

al17 (p 987) claim that when reference levels are fixed at their ideal values, then any solution

of the corresponding Minmax GP model (9) is perfectly equilibrated; that is, the weighted gaps

between the ideal values and the actual achievement of goals are equal:

vn
1 (b∗1 − f1(x)) = · · · = vn

i (b∗i − fi(x)) = · · · = vn
q (b∗q − fq(x)) (18)

This assertion is quite intuitive and valid in the case of bi-criteria convex problems.21 However,

in general, it is too strong and not true. One can easily build examples that no solution of

the corresponding Minmax GP problems satisfies (18).18 Actually, the feasible set may do not

contain any solution satisfying the requirement of perfect equilibration (18).
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On the other hand, for any reference levels bi and any strictly decreasing individual achieve-

ment functions si(bi, yi), RPM generates an efficient solution providing the perfect equity of the

individual achievements:

s1(b1, f1(x)) = · · · = si(bi, fi(x)) = · · · = sq(bq, fq(x)) (19)

if such an efficient solution exists. More precisely, the following assertion is valid.

Theorem 1 For any reference levels bi and any individual achievement functions si(bi, yi)

strictly decreasing with respect to yi, if there exists an efficient solution x̄ ∈ Q satisfying the

equilibration requirement (19), then each optimal solution of the minmax problem (4) is efficient

and perfectly equilibrated.

Proof. Let x̄ ∈ Q be an efficient solution satisfying the equilibration requirement (19) with

some reference levels bi and strictly decreasing individual achievement functions si(bi, yi), i =

1, 2, . . . , q. This means, there exists a number α such that si(bi, fi(x̄)) = α for i = 1, 2, . . . , q.

Let x ∈ Q be an optimal solution of the minmax problem (4). If fi(x) = fi(x̄) for i =

1, 2, . . . , q, then x is, obviously, efficient and perfectly equilibrated. Suppose, there exists some

index i0 such that fi0(x) 6= fi0(x̄). Due to the optimality of x, we have:

si(bi, fi(x)) ≤ max
1≤j≤q

{sj(bj , fj(x))} ≤ max
1≤j≤q

{sj(bj , fj(x̄))} = α = si(bi, fi(x̄)) ∀ i = 1, . . . , q

Thus, due to strictly decreasing individual achievement functions si(bi, yi), we get fi(x) ≥ fi(x̄)

for all i = 1, . . . , q and fi0(x) 6= fi0(x̄) which contradicts the assumption that x̄ is efficient. 2

Note that if every solution of the minmax aggregations (4) satisfies the condition of perfect

equity (19), then all the solutions generate the same values of the outcomes (they are equal in

the criterion space). Therefore, the property of perfect equity is not disturbed by any additional

regularisation. Hence, the lexicographic RPM model (3) and its specifications in the form of

RGP and LRGP models, for any reference levels bi, generate efficient solutions satisfying the

perfect equity of individual achievements, whenever it is possible (whenever such an efficient

solution exists). Certainly, this does not apply to the additive model (12). When there does

not exist an efficient solution with perfectly equal individual achievements, then RPM generates

another efficient solution but still providing some equitability of individual achievements by

implementation of an approximation to the Rawls22 principle of justice. We take an opportunity

to explain this approximation23 as it has not been discussed in the international literature.

The Rawls22 principle of justice defines a ranking for different ‘social states’ by the rule that

any two states should be ranked according to the least well-off individuals in these societies; if
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the comparison yields a tie, one should consider the next-least well-off individuals, and so on.

Thus the principle of justice defines in words the mathematical concept of the lexicographic

minmax optimisation24 known also as the nucleolus in the game theory.

Let ai denote the individual achievement for the ith outcome (ai = si(bi, fi(x)) for i =

1, 2, . . . , q) and a = (a1, a2, . . . , aq) represent the achievement vector. The lexicographic minmax

approach can be mathematically formalised as follows. Within the space of achievement vectors

we introduce map Θ = (θ1, θ2, . . . , θq) which orders the coordinates of achievements vectors in

a nonincreasing order, i.e., Θ(a1, a2, . . . , aq) = (ā1, ā2, . . . , āq) iff there exists a permutation τ

such that āi = aτ(i) for all i and ā1 ≥ ā2 ≥ . . . ≥ āq. Note that the standard minmax approach

(4) depends on minimisation of ā1 = θ1(a) and it ignores values of āi for i ≥ 2. In order to

take into account all the achievement values, we look for a lexicographic minimum among the

ordered achievement vectors. The lexicographic minmax solution is an optimal solution of the

following lexicographic problem:

lex min { [θ1(a), θ2(a), . . . , θq(a)] : ai = si(bi, fi(x)), i = 1, . . . , q; x ∈ Q } (20)

The concept of lexicographic minmax solution is a consequent regularisation of the minmax

aggregation according to the Rawlsian principle of justice. It is the only one regularisation of

the minmax approach satisfying the reduction (addition/deleting) principle.25 Namely, if the

individual achievement of an outcome does not distinguish two solutions, then it does not affect

the preference relation:

(a′1, . . . , a
′
i, a

∗, a′i+1, . . . , a
′
q) � (a′′1 , . . . , a

′′
i , a

∗, a′′i+1, . . . , a
′′
q ) ⇔ a′ � a′′ (21)

Moreover, due to strictly monotonic individual achievement functions, the reduction principle

is also satisfied in the original outcome space.

Every optimal solution of the lexicographic minmax model (20) is an efficient solution to

the original multi-criteria optimisation problem.24 Note that every lexicographic minmax so-

lution is also an optimal solution to the standard minmax problem (4). Hence, by virtue of

Theorem 1, the lexicographic minmax model (20), for any reference levels bi, generates efficient

solutions satisfying the perfect equity of individual achievements (19), whenever such an efficient

solution exists. When there does not exist any efficient solution with perfectly equal individual

achievements, then the lexicographic minmax model generates another efficient solution but still

providing equitability of individual achievements with respect to the Pigou-Dalton principle of

transfers.26 The principle of transfers states, in the context considered here, that a transfer of
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small amount from an individual achievement to any relatively worse-off individual achievement

results in a more preferred achievement vector, ie:

ai < aj ⇒ a + εei − εej ≻ a ∀ 0 < ε ≤ aj − ai (22)

Recall that this property applies to uniformly measured individual achievements and it does not

enforce any equitability of the original outcomes.

One may consider the lexicographic minmax problem (20) as a basis for a corresponding

nucleolar RPM model. In the case of multi-criteria linear programming the lexicographic minmax

optimisation can be solved, like the standard lexicographic optimisation problems, by sequential

optimisation with elimination of the dominating functions.24 Thus the nucleolar RPM model

(with piecewise linear individual achievement functions) may be considered implementable in the

case of linear problems with a limited number of criteria. However, in general, the lexicographic

minmax problem (20) is too complex to be solved during an interactive analysis.

Note that the lexicographic RPM model (3) can be expressed as the following problem:

lex min

{ [

θ1(a),
q

∑

i=2

θi(a)

]

: ai = si(bi, fi(x)), i = 1, . . . , q; x ∈ Q

}

thus representing exactly the lexicographic minmax (20) in the case of two criteria (q = 2). For

larger number of criteria (q > 2) model (3) only approximates the lexicographic minmax (20)

as all the lower priority objective terms are aggregated at the second priority level. Hence, the

lexicographic RPM model (3) fulfills the principle of transfers only in the case of an improvement

of the worst individual achievement, ie:

ai < aj ∀ i : i 6= j ⇒ a + εei − εej ≻ a ∀ 0 < ε ≤ aj − ai (23)

The same applies to the RGP model (6) with respect to individual achievements defined by the

piecewise linear functions (5).

The additive aggregation, in general, does not maintain any equitable preferences. However,

the additive model (12), due to minimisation of all negative deviations prior to the maximisation

of any positive deviation, supports some equitability of individual achievements. It follows

from (17) that, for individual achievements ai defined by the piecewise linear function (5), the

additive model (12) fulfills the principle of transfers restricted to the case of improvement of the

underachievements and worsening of the overachievements, ie:

ai < 0 < aj ⇒ a + εei − εej ≻ a ∀ 0 < ε ≤ min{aj , |ai|} (24)
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The four level LRGP model (10), being based on the minmax aggregation and minimising

negative deviations prior to the maximisation of positive deviations, combines the equitability

properties of the standard RGP model (6) and that of the additive model (12). Namely, with

respect to individual achievements ai defined by the piecewise linear function (5), the LRGP

model fulfills both (23) and (24).

Conclusions

The RPM approach can be expressed in the GP modelling framework of deviational variables

and lexicographic optimisation. However, the preference models of RPM and those of typical GP

represent different specifications of the satisficing approach to the decision process. Therefore,

the corresponding RGP model differs from typical GP formulations. It makes use of negative

weights assigned to the positive deviational variables and of the additional regularisation of the

minmax aggregation. Both these elements are important to guarantee the efficiency of solutions.

For better modelling of the satisficing behaviour, one may consider the lexicographic RGP model

where the negative and positive deviational variables are optimised hierarchically. However, each

separate minmax aggregation requires then the corresponding regularisation to guarantee the

efficiency of solutions.

The RPM models generate efficient solutions satisfying the perfect equity of individual

achievements, whenever such an efficient solution exists. When there does not exist an efficient

solution with perfectly equal individual achievements, then RPM generates another efficient so-

lution but still providing some equitability of individual achievements by implementation of an

approximation to the Rawlsian principle of justice. The lexicographic RGP model, where the

negative and positive deviational variables are optimised hierarchically, enhances the equitability

properties of the standard RGP model.

We hope that the analysis presented in this paper gives a clear overview of GP models of

the RPM approaches and their properties. Real-life applications of the RPM methodology usu-

ally deal with more complex individual achievement functions. They are defined with multiple

reference points14,10,15 which enriches the preference models and simplifies the interactive anal-

ysis. Nevertheless, the main properties of the RPM models remain the same as discussed in this

paper.
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Appendix

In this Appendix we formally prove the relations between the efficient solutions of the multi-

criteria optimisation problem (1) and the optimal solutions of the corresponding parametric

model (11). Note that the following theorems cover also to the case of ε = 1 thus justifying the

lexicographic additive RGP model (12) as a limiting case.

Theorem 2 For any reference levels bi, any positive weight coefficients vn
i , vp

i > 0 and 0 < ε ≤

1, if (x̄, n̄, p̄) is an optimal solution of the problem (11), then x̄ is an efficient solution of the

corresponding multi-criteria problem (1).

Proof. Let (x̄, n̄, p̄) be an optimal solution of the problem (11) with some vn
i , vp

i > 0 and

0 < ε ≤ 1. Note that, due to vn
i , vp

i > 0 and 0 < ε ≤ 1, the deviations n̄ and p̄ satisfy

n̄i = max{bi − fi(x̄), 0} and p̄i = max{fi(x̄) − bi, 0} for i = 1, 2, . . . , q (25)

thus n̄ip̄i = 0 for all i.

Suppose that x̄ is not efficient to the multi-criteria problem (1). This means, there exists a

decision vector x ∈ Q such that

fi(x) ≥ fi(x̄) for i = 1, 2, . . . , q and fio(x) > fio(x̄) (26)

where io is some outcome index (0 ≤ io ≤ q). Let us define:

ni = max{bi − fi(x), 0} and pi = max{fi(x) − bi, 0} for i = 1, 2, . . . , q (27)

The triple (x, n, p) is then a feasible solution of problem (11). Moreover, from (25), (26) and

(27) it follows that ni ≤ n̄i and pi ≥ p̄i for i = 1, 2, . . . , q where either strict inequality nio < n̄io

or strict inequality pio > p̄io holds. Due to vn
i , vp

i > 0 and 0 < ε ≤ 1, the latest assertion

contradicts the optimality of (x̄, n̄, p̄) for problem (11), which completes the proof. 2

Theorem 3 If x̄ is an efficient solution of the multi-criteria problem (1), then there exist ref-

erence levels bi such that the triple x̄, n̄ = (max{bi − fi(x̄), 0})i=1,...,q and p̄ = (max{fi(x̄) −

bi, 0})i=1,...,q is an optimal solution of the corresponding problem (11), for any positive weight

coefficients vn
i , vp

i > 0 and 0 < ε ≤ 1.

Proof. Let us set the reference levels as bi = fi(x̄), for i = 1, 2, . . . , q. One can easily verify

that the triple: x̄, n̄ = (max{bi−fi(x̄), 0})i=1,...,q = 0 and p̄ = (max{fi(x̄)−bi, 0})i=1,...,q = 0 is a

feasible solution of the corresponding problem (11), for any positive weight coefficients vn
i , vp

i > 0

and 0 < ε ≤ 1. Moreover,

(1 − ε) max
1≤i≤q

{vn
i n̄i} + ε

q
∑

i=1

vn
i n̄i = 0 and (1 − ε) max

1≤i≤q
{−vp

i p̄i} − ε
q

∑

i=1

vp
i p̄i = 0

13



Suppose that for some vn
i , vp

i > 0 and 0 < ε ≤ 1 the triple (x̄, 0, 0) is not an optimal solution

of the corresponding problem (11). This means, there exists a feasible triple (x, n, p) such that

[

(1 − ε) max
1≤i≤q

{vn
i ni} + ε

q
∑

i=1

vn
i ni , (1 − ε) max

1≤i≤q
{−vp

i pi} − ε
q

∑

i=1

vp
i pi

]

<lex [0, 0]

Hence, ni = 0 for all i = 1, 2, . . . , q and there exists io (1 ≤ io ≤ q) such that pio > 0. Recall

that bi = fi(x̄). This implies fi(x) = bi + pi ≥ fi(x̄) for all i = 1, 2, . . . , q and fio(x) > fio(x̄),

which contradicts the efficiency of x̄. 2
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