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Abstract—Most classical location studies focus on the minimisation of the average distance or the
minimisation of the maximum distance to service facilities. In this paper, we analyse solution
concepts related to the bicriteria model, providing some compromise between these two criteria.
We show that the classical approaches based on the J-cent-dian and the generalised centre
solution concepts have some flaws, when applied to a general network. In order to avoid these
flaws, we propose a new solution concept of the Chebyschev A-cent-dian. This parametric solution
concept allows us to identify all Pareto-optimal compromise locations on any network. We also
show how the algorithm for finding Z-cent-dian can be modified to generate Chebyschev /-cent-
dians. © 1997 Elsevier Science Ltd. All rights reserved
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1. INTRODUCTION

Public goods and services are typically provided and managed by governments in response to
perceived and expressed need. The spatial distribution of public goods and services is strictly
related to facility location decisions. A host of operational models has been developed to
deal with facility location optimization; see, for example, Francis et al., 1992; Handler and
Mirchandani, 1979; Labbé et al., 1995. Most classical location studies focus on the minimiza-
tion of the average (or total) distance or the minimization of the maximum distance to
service facilities (Morrill and Symons, 1977).

Approaches based on the minimization of aggregate or average weighted distance are
primarily concerned with spatial efficiency. The corresponding solution concept is called
median. Since the median approach is based on averaging, it often provides solutions in
which remote and low-population density areas are discriminated against in terms of accessi-
bility to public facilities, as compared with centrally situated and high-population density
areas. For this reason, an alternative approach, involving the minimization of the maximum
distance (or travel time) between any consumer and the closest facility, can be applicd. This
approach is referred to as the centre solution concept (Hakimi, 1965). The minimax objective
primarily addresses geographical equity issues. It is of particular importance in spatial
organization of emergency service systcms, such as fire, police. medical ambulance services,
civil defense, and accident rescuc.

The centre approach is consistent with the Rawlsian (Rawls, 1971) theory of justice
(Harvey, 1972). On the other hand, locating a facility at the centre may cause a large increase
in the total distance, thus generating a substantial loss in spatial efficiency. This has led to a
search for some compromise solution concept. Halpern (1976, 1978) introduces the Ai-cent-
dian as a parametric solution concept based on the bicriteria centre/median model. He
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16 W. OGRYCZAK

modeled the corresponding trade-offs with a convex combination of two objectives. Hansen
et al. (1991) introduce a solution concept of the generalised centre, which minimises the
difference between the maximum distance and the average distance.

In this paper, we show some flaws of the i-cent-dian and the generalised centre solution
concepts from the perspective of compromise solutions to the bicriteria centre/median model.
We discuss possible modifications to avoid these flaws. As both the solution concepts were
introduced for the location of a single facility on a network, we focus on this location model.
Nevertheless, the analysis presented can be extended to the multiple facility location problem
on a network (Labbé er al., 1995, and references therein) as well as to discrete location
problems (Francis ef al., 1992, and references therein).

The paper is organised as follows. In Section 2, we review the problem statement and the
solution concepts of the A-cent-dian and the generalised centre. In Section 3, we deal with
the generalised centre. We give a paradoxical example, where there exists a location that is
simultancously a centre and a median, but the generalised centre is located at another centre
with the worst possible value of the median function. In order to avoid this flaw, the
generalised centre solution concept needs to be restricted to locations that are Parcto-
optimal for the bicriteria centre/median model. However, with this restriction, the
generalised centre turns out to be always a centre, thus not providing us with any compro-
mise location. In Section 4, we show that the solution concept of Z-cent-dian, which allows us
to identify all the compromisc locations on a tree, may fail to do so in the case of a general
network. To overcome this flaw of z-cent-dians, we introduce the solution concept of the
Chebyschev /-cent-dian, which allows us to identify all the Pareto-optimal compromise loca-
tions on a general network. Finally, in Section 5, we show how the algorithm for finding
A-cent-dians can be modificd to gencrate the Chebyschev /-cent-dians.

2. THE MODEL

We assume the usual definition of a network (Labbé et al., 1995), where: V= {v,v,,... v,
denotes the set of vertices of the network, and N is the union of a finite number of edges
[v., v;]. For any two points x,,x> € N,d(x,.x>) denotes their distance. For any two points
belonging to the same edge x, x> € [v;, 1], ! [x1, x2] denotes the length of the subedge [x,, x2].
For each vertex v; € V there is given a nonnegative weight w,.

The average weighted distance between a point x € N and the vertices of N is given by

F (x)=1/w(V) ZV w,d(x.v)

where w (V) = Z, . v w,. A point minimizing F in N is called a median.
The maximum distance between a point x € N and the vertices of N is defined as

G(x)=max {d(x,v,): v,e V, w;>0}

A point minimizing G in N is called a centre.

Note that weights w; do not appear in thc formula for the maximum distance G(x). In
typical applications, the weight represents the number of clients located at the corresponding
vertex. Integer weights can be interpreted as numbers of unweighted vertices located at
cxactly the same place (with distances 0 among them). The number of identical vertices
affccts the average distance but it does not affcct the maximum distance.
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Halpern (1976, 1978) introduces a parametric solution concept of J-cent-dian as a point
x € N which minimises

H,(0) = 2G(x)+H(1 — A)F (x) (1)

The Ai-cent-dian covers as special cases the centre (4 = 1) and the median (4 = 0) solution
concepts. For </ <1, the /-cent-dian minimises a convex combination of the average and
maximum distance, thus taking into account both spatial efficiency and equity criteria.

The A-cent-dian solution concept may be viewed as the weighting approach (Steuer, 1986)
to the bicriteria centre/median model

min{|G(x),F (x)]: x e N} (2)

where both (G(x) and F(x) have to be minimised. A point x € N is a Pareto-optimal solution
to the bicriteria centre/median problem (2) if there does not exist another point v € N for
which

GO <G and F(M<F(x)

where at least one of the inequalities is satisfied as a strict tnequality. We denote the set of
all Pareto-optimal solutions to problem (2) as PO,. Note that set PO, represents all rational
compromises between the values of G(v) and F(x). For any point v¢ PO, one can find
x € PO, such that G(x) <G(y) and F(x) <F(y) where at least one strict inequality holds. It
means that, for points not belonging to P(),, we may improve one criterion (G(x) or F(x))
without worsening the other. For points of PO, any decrease of G(x) must be offset by some
increase of F(x) and vice versa.

Hansen et «l. (1991) consider the location of a facility to reduce as much as possible
discrepancies in accessibility among users. For this purpose, they introduce the solution
concept of the generalised centre, which minimiscs the difference between the maximum and
the average distances to the vertices. Note that JG(x) —F(x)| = G(x) — F(x) as G(x)=F(x) for
any x € N. In order to avoid selection of a clearly ‘unreasonable’ location, which may happen
with such a criterion, the selection is restricted to the set PO of points, which are Pareto-
optimal (or efficient) with respect to the distances. A point x € N is Pareto-optimal with
respect to the distances if there does not exist another point y € N for which

d(v;, v) <d(v,, x) for all v; e V such that w,; >0
where at least one of the inequalities is satisfied as a strict inequality. Thus, the generalised
centre is defined as an optimal solution of the following problem
min{G(x)— F(x): x € PO} 3)

Moreover, due to H;(x) = F(x)+.(G(x) —F(x)), Hansen ef a/. (1991) have noticed that the
generalised centre can be viewed as a limiting casc of A-cent-dian when 4 — oc. Conscquently,
they consider A-cent-dians associated with 2> 1 as solutions to a location problem where
both efficiency and equity are important.

3. GENERALISED CENTRE

In this section, we analyze the solution concept of the generalised centre and the A-cent-dians
associated with 4> 1, when applied to a general network. These solution concepts depend on
minimization of the difference G(x)—F(x) which, in gencral, does not comply with the
bicritcria minimization model (2). Note that function H;(x) can be written as
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H (1) = GO+ — ING(x) — F(x))

This form shows that, when minimizing H,(x) with 4> 1 (in particular .- oc), having
several possible locations with the same value G(x), the location with the largest (i.e. the
worst) value of F(x) will be selected among them. We show a paradoxical example, where
there exists a location that is simultancously a centre and a median, but the generalised
centre and all the A-cent-dians for 1 > 1 are located in another centre with the worst possible
value of the median function F(x).

Example 1. Let us consider a simple cyclic network as presented in Fig. 1. Notice that all
the points of the network are Pareto-optimal with respect to the distances, provided that all
the weights are positive. There are four centres located at points ¢, ¢,, ¢; and ¢4 Let us
consider a set of weights favouring one centre. For instance, let w, = w,» w3 =w, > 0, thus
generating the set of median solutions on the edge [v,,v,]. Hence, ¢, is an optimal solution
to both the centre and the median problem. Note that, due to symmetry of the network, all
the centres generate exactly the same set of distances (two distances 1/2 and two 3/2).
Nevertheless, they are quite different with respect to the spatial efficiency. Centre ¢, is the
most efficient (minimum of F(x) on the entire network) whereas centre ¢, is the least
efficient (maximum of F(x) on the entire network).

Now, let us look for the generalised centre of the network. One may easily find that the
generalised centre is located at point ¢, i.e., the centre that is the least efficient. Moreover,
all the A-cent-dians for 4 > | are also located at ¢5.

Example 1 calls into question the solution concept of the generalised centre as stated by
Hansen et al. (1991). Let us analyze whether there is a way to modify this solution concept
to eliminate paradoxes similar to Example 1. Note that in order to eliminate such paradoxes,
we cannot accept worsening of the value of F(x) without simultaneous improvement of the
value of G(x) and vice versa. Thus, we should restrict the set of feasible locations to the set
PO, of points, which are Pareto-optimal for the bicriteria problem (2).

C
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Fig. 1. Sample network for Example 1.
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Let us define the restricted generalised centre as an optimal solution of the problem
min{G(x)—F(x): x € PO,} 4)

Certainly PO, is a subset of PO. Thus, we have restricted the feasible set in comparison
to the standard generalised centre defined with (3). Similarly, we may introduce the restricted
A-cent-dian defined as an optimal solution to the problem

min{H ,(x): x € PO} (5)

For 0< /<1 the corresponding i-cent-dian always belongs to the set PO,. Thus, in this
case, the restricted A-cent-dian is simply a ‘-cent-dian. We will show that for all A>1,
including the limiting case of the restricted gencralised centre, the corresponding restricted
/-cent-dian is always a centre,

Note, that the centre of a general network may be nonunique and in such a case not all
centres belong to PO». For instance, among four centres in Example [, only ¢, belongs to
PO,. To belong to PO,, the centre must be unique or it must be a centre with the best value
of F(x). Thus, the centre belonging to PO, is an optimal solution of the following lexico-
graphic (two-level) problem

lex min{[G(x), F(x)]: xe N} (6)

The lexicographic minimization in (6) means that first we minimise G(x) on x € N, and
next we minimise £(x) on the optimal set of G(x). The second minimization is only needed
when the optimal solution of G(x) is not unique. We will call the optimal solution of problem
(6) lexicographic cent-dian. The lexicographic cent-dian is also a centre and the unique centre
is the lexicographic cent-dian.

Proposition 1. On any network N, the restricted generalised centre, as well as any restricted
/-cent-dian for > 1, is a lexicographic cent-dian.

Proof. Let x be the lexicographic cent-dian. This means G{x)<G(y) for any y e N and
F(x)<F(y) for any y € N such that G(x) = G(v). First, note that x € PO,. let ye N be a
point of PO,. 1f y is not the lexicographic cent-dian, then G(x)# G(y) or F(x)=F(y). Hence,
being in PO,, v has to satisfy inequalitics

G(y)>G(x) and F(y)<F(x) (6)

Hence, G(y)—F(y) > G(x)—F(x), which proves that the restricted generalised centre is a
lexicographic cent-dian. Moreover, for all 1> 1

H(vY=GO)HA— G y)—F(¥) > GOH(A— ING(x)— F(x)) = H ;(x)

which proves that for A>1 each restricted A-cent-dian is a lexicographic cent-dian. &

Hansen et al. (1991) have proven that, on a tree, the centre is the unique A-cent-dian for all
4= 1. Note that, on a trec, the centre is unique and therefore it is, in fact, the lexicographic
cent-dian. Thus, Proposition 1 may be considered as an analog of that result for the case of
a general network.

Proposition 1 can be illustrated in the 2-dimensional criterion space (G(x), F(x)), as in Fig.
2. Let g:N—R’ be a mapping from the network N into the plane R? defined as
g(x) = (G(x),F(x)). Further, let m denote the median with the best value of G(x) (among all
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Fig. 2. Image of PO, in the criterion space ((r (x), F(x)).

th¢ medians) and ¢ denote the centre with the best value of F(x) (i.e. a lexicographic cent-
dian). The image g(PO-) is included in rectangle P defined by the vertices (G(c),F(m)),
(G(m),F(m)), (G(m),F(c)) and (G(c),F(c)), where the last vertex is the image of c. Note that
all points (y,,y.) € P satisfy inequality y,>y,. While looking for a restricted generalised
centre, we are interested in a point (y;, y2) € g(PO;) which is closest to the line y, = y>. Point
g(c) € g(PO-) is the closest point of P Dg(PO,). Therefore, ¢ is the restricted generalised
centre. Similarly, while considering the restricted Z-cent-dian, for all A>1 point g(c) is the
best in P.

Proposition 1 provides us with a very simple characteristic of the restricted «-cent-dian for
all 2>1. They are simply the centres with the best median values. That means, finding them
is not more difficult than the identification of all the centres. On the other hand, it means
that the solution concept of the restricted generalised centre does not provide us with any
compromise between the average and the maximum distances.

4. COMPROMISE CENT-DIANS

The solution concept of the A-cent-dian has been introduced by Halpern (1976, 1978) to
provide some compromise between the spatial efficiency (average distance minimization) and
the spatial equity (maximum distance minimization). As proven by Halpern (1976), in the
case of a tree, the i-cent-dians with various 0< /<1 allow us to model various compromises
between these two criteria. This compromise can be stated in the form of the following
proposition.
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Fig. 3. Sample network for Example 2.

Proposition 2. On a tree, for each x € PO, there exists 0 <A< | such that x is the corresponding
A-cent-dian.

Thus, in the case of a tree, A-cent-dians with 0 </ <1 provide a complcte parameterization
of the set PQ,. Unfortunately, due to the lack of convexity (Dearing et al., 1976), this
property of A-cent-dians is not valid in the case of a general network. We illustrate this with
Example 2.

Example 2. Let us consider a simple network as presented in Fig. 3. The network has
the unique centre at point ¢ (in the middle of edge [vs,vs]). Let us consider a set of
weights favouring locations close to v, and v,. For instance, let w, =w,=47 and
Wi =ws =ws =W, =w; =wq =1 thus generating the set of median solutions on the edge
[vi,v2]. Among them, point m (in the middle of edge [v,,v-]) is the median with the best
value of the maximal distance. Both m and ¢ belong to the set PO,. They genecrate two
corners of rectangle P in Fig. 2,

There are several other points belonging to PO,. Among them point a (in the middic of
edge [vs,v4]) scems to be a very interesting compromise location to satisfy both criteria. Notc
that g(a) = (7.1,3.14) whereas g(c¢) = (5,4.88) and g(m) = (9,1.28). One may easily verify that,
for any 0< i<, H;(m)y<H;(a) or H;(c)<H(a). Thus, point ¢ cannot be found as a /-cent-
dian for any 0<.<1. In fact, for the network under consideration, m and ¢ are the only
A-cent-dians; not other points of the set PO, can be generated in that way.

One may suspect that the presented flaw of A-cent-dians is related to the lack of weights
in function G(x). While replacing function G(x) with the maximum weighted distance

G (xy=max {w;d(x, v,): v, € V} (6)

In Example 2, we obtain the weighted centre located at the median point m and the same for
all the corresponding A-cent-dians. Thus, it does not result in any compromise between the
centre and the median approaches. For some networks, things may cven be worse. Let us
consider a simple tree with three vertices, as presented in Fig. 4. Assigning weights w, =1,

C M Cy
[ o ~+ —& + . J
Y1 3 Uy 1 L]

Fig. 4.
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w, =10 and w; =5 to the corresponding vertices, one finds the median m located at the
vertex vo. The centre ¢ is located on the edge [vq,v2]. While looking for a compromise
between the average and the maximum distance, we are interested in the subedge [c,m].
However, the weighted centre ¢, is located on the edge [v,,v;] and it is not an efficient
solution for the bicriteria centre/median problem.

In order to identify some compromise cent-dians on a general network, we need a solution
concept different from Halpern’s A-cent-dian. According to the theory of multiple objective
optimization (Steuer, 1986), in the case of a nonconvex problem, the Pareto-optimal set PO,
can be completely parameterised with minimization of the weighted Chebyschev norm.
Moreover, this optimization should be supported by some regularization (refinement) in the
case of nonunique optimal solution. Let us define

H (x)=max {AG(x), (1 — )F(x)} (7

We call point x € N the Chebyschev i-cent-dian if it is an optimal solution of the following
lexicographic (two-level) problem

lex min {|H,(x), H(x)]: xe N} (8)

The lexicographic minimization in (8) means that first we minimise H;(x) on x € N, and
then we minimise H;(x) on the optimal set of H,(x). Thus, function H;(x), defined as the
convex linear combination (1), is used in (8) only for regularization purposes, in the case of
a nonunique minimum for the main function H,(x) defined with (7). However, this regular-
ization is necessary to guarantee that the Chebyschev /-cent-dian belongs to PO,.

Proposition 3. On any network, for each 0 <i<1 the corresponding Chebyschev i-cent-dian
belongs to PO

Proof Let x € N be a Chebyschev /-cent-dian for some 0 <A< 1. Suppose that x ¢ PO,. This
means that there exists y € N such that
G(») <G(x) and F(y)<F(x)

where at least one of the inequalities is satisfied as a strict inequality. Hence, due to 0 <A<,
we obtain

H,() <H(x) and H,(y) <H(x)
which contradicts optimality of x for problem (8). Thus, x belongs to PO,. O

Proposition 4. On any network, for each x € PO, there exists 0< i< such that x is the
corresponding Chebyschev i-cent-dian.

Proof Let x be any point of PO, Let us define i=Fx)/(G(x)+F(x)). Then 0<i<l,
1 —4=GE)/(CGx)+F(x)) and
H (x) = Gx)F()NG(x) + F(x) = 2G(x) = (1 = }F{(x) (9)

Suppose that x is not the corresponding Chebyschev i-cent-dian. Thus, there exists y e N
such that

AG(M < H ;(x) and (1 — HF(y) < H ;(x)

where at least one of the inequalities is satisfied as a strict inequality. Due to (9), it would
mean x ¢ PO;. Thus, x must be the corresponding Chebyschev Zi-cent-dian. ]
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The Chebyschev A-cent-dian, similar to the l-cent-dian, is a parametric solution concept
generating various solutions depending on the value of 0 <A< 1. Propositions 3 and 4 show
that the Chebyschev A-cent-dian, always belongs to set PO, and, vice versa, each point of PO,
can be found as a Chebyschev A-cent-dian. Thus, the solution concept of the Chebyschev
4-cent-dian allows us to model all rational compromises between the values of the average
and the maximal distance. Selection of 1 depends on the type of compromise one seeks. The
Chebyschev A-cent-dian is the centre for 1>1/2 (Since G(x)=F(x)), and the median for 4
close enough to 0. For 4 between 0 and 1/2 one may expect various compromise solutions.
One may proceed in the search for a satisfactory compromise in an interactive way.

Recall the network presented in Fig. 3 with weights: wy =w, =47 and w; =w,; =ws=
wo,=w;=wy=1. In Exampie 2, we have shown that point ¢ cannot be found as a
J-cent-dian, since for any 0<i<1, H;(m)<H;(a) or H)(c)<H,(a). Note that H,a)=
max {7.14,3.14(1—4)}, H,(c)=max {54,4.88(1 — 1)) and H,(m)= max {94,1.28(1 —4)}. Hence,
H(a)<H;(c) and H;(a)<H,(m) for any 3.14/12.14 <. <4.88/11.98. In fact, point a is the
Chebyschev A-cent-dian for all 3.14/11.14 < 1 < 4.054/11.154.

Minimization of H,(x) represents, by definition, minimization of the larger value of iG(x)
or (1—-A)F(x). Note that minimization of H,(x) on the optimal set of H,(x) is equivalent to
minimization of the smaller value of 2G(x) or (1 —A)F(x), provided that the larger value
remains as small as possible. Hence, the lexicographic problem (8) defining the Chebyschev
A-cent-dian may be interpreted as follows. First, by selection of 4, one defines the trade-off
for criteria G(x) and F(x). The original criteria are then replaced with the scaled criteria
AG(x) and (1—A)F(x), respectively. The scaled criteria are considered as comparable. One
seeks the solution which minimises the largest (i.e. worst) value among the criteria. If the
solution is not unique, then one selects that which additionally minimises the smaller value.
Thus, the Chebyschev A-cent-dian may be regarded as a result of the Rawlsian (Rawls, 1971)
theory of justice applied to the scaled criteria AG(x) and (1 — A)F(x).

Recall that in the criterion space (Fig. 2) the entire sct g(PO-) is included in the rectangle
P defined by g(c) and g(m). Thus, for a more intuitive understanding of the corresponding
trade-offs, one may use the Chebyschev /.-cent-dians for the normalised objective functions

- G{x)—G(c)+¢ - Fx)—F :
G = (x) —Gle) +¢ and Fx)= (x}—F(m)+:
Gm)—Go)+¢ Fley—F(m)y+¢

where & is an arbitrary positive number introduced to guarantee positive values of the
functions and ¢ can be skipped (replaced with 0) if G(in)> G(c) and F(c)> F(m) (the
rectangle P is not degenerated). Functions G(x) and F(x) represent the relative degradations
of the corresponding functions G(x) and F(x) to their optimal values G(c) and F(m), respec-
tively. One may easily prove analogs of Proposition 3 and 4 for the Chebyschev A-cent-dians
defined with the use of functions G(x) and F(x) instead of the original G(x) and F(x). Such
a Chebyschev 4-cent-dian solution concept may be considered a special case of the reference
point approach in multiple criteria optimization (Wierzbicki, 1982).

5. IDENTIFICATION OF CHEBYSCHEV CENT-DIANS

In this section, we present an algorithm to determine the Chebyschev i-cent-dian for any
0<Z<1. In fact, we show how the algorithm for finding the i-cent-dian (Hansen et al., 1991)
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can be modified to generate the Chebyschev i-cent-dian. First, we recall the properties of
function H;(x) and prove similar properties of function H ;(x).

Point x on edge [v;,v;] is called a bortleneck point if there exists a vertex v, with wy > 0 such
that

d(v.k’ x) = d(vks vl) + {[1'i~x] - d(vkv Vj) + l lvjs 'x]

Let B, denote that set of all bottleneck points on edge [v;,v;]. Along a subedge limited by
two successive bottleneck points or vertices (i.e. a subedge not containing any bottleneck
point in its interior), the distance from any vertex v, is either linearly increasing or linearly
decreasing. For x € [v,,v;] function F(x) is a piecewise linear concave function with a finite
number of breakpoints, all belonging to B; (Hansen et al., 1987 and references thercin).

Consider next the function G(x) on edge [v;,v]. It is a piecewise linear continuous function
because it is the upper envelope of a family of piecewise linear continuous functions.
Furthermore, its breakpoints are either bottleneck points or local minima (Hansen et al.,
1987 and refercnces therein). Following Hansen er al. (1991), we denote by LM, the set
containing the points of edge [v,v;], which are local minima of G(x) together with the
vertices v; and v;.

The following proposition by Halpern (1976) describes function H;(x) and thereby identi-
fies a finite set of points containing all A-cent-dians for a given 0 </ <1.

Proposition 5. For x € [v,,v;] and a given value 0 <A <1, H;(x) is a piecewise linear continuous
function with a finite number of breakpoints, all belonging to LM;; \J By, and a finite number of
locally minimal values, all attained at points belonging to LM

Consider now function H,(x) on edge [v,v;]. It is a piecewise linear continuous function
becausc it is the upper envelope of two piecewise linear continuous functions. H,(x) may
have breakpoints in the set LM, \UB; as well as in some additional points where
/G(x) = (1 =A)F(x). Let b, and b, +1 be two consecutive points of the set LM; U B;;. Both
functions G(x) and F(x) are linear on subedge [b,b, . 1]. Hence, if

[)»G(bk) — (I —)»)F(b/.-)IMG(bk + 1) —(1 —I{)F(bk +~01<0 (1())

then there exists a unique interior point x € [byg, by ] such that 1G(x) = (1—A)F(x). This
point, called hereafter a A-switch, is determined by the equation

LAG(b) — (1 = AF(b) Hx, by 1= 1 AG by, ) — (1 = DF (b 1)1 [By, x] (11)

For a given 4, we denote by S,;(2) the set of all A-switches belonging to edge [v;,v;]. The
following proposition characterises function ;(x) on edge [v;,v,].

Proposition 6. For x € [v;,v,] and a given value 0 <i<1, H ,(x) is a piecewise linear continu-
ous function with a finite number of breakpoints, all belonging to LM,; \UJ B;; \J S;(4).

Proof. H,(x) is a piecewise linear continuous function because it is the upper envelope of
two piecewise linear continuous functions: AG(x) and (1 —A)F(x). Each of these functions has
all the breakpoints belonging to LM; {J B, Let by and b, ; be two consecutive points in set
LM; \J By. Both functions AG(x) and (1 —4)F(x) are linear on subedge ([by, b 1 1]

In the case of (10) the corresponding A-switch defined by (11) is the unique solution to the
equation AG(x) = (1 —A)F(x), x € [bs, by, 1]. Thus, it is a unique breakpoint of H,(x) in the
interior of subedge [bg, by ,]- If (10) is not the case, the AG(x)=(1—A)F(x) for all
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x € [bibey] or AG)<(1—/2)Fx) for all x e {bg,bi,(]. Thus, H,(x)=iG(x) or
H,(0)=(1—)F(x) for allx € [be, by 1], which means that H (x) is linear on [y, by, ,|. Finally,
in both the cases all the breakpoints of function H,(x) belong to the finite set LM;\UB,.
U S;(4). 0

For a given 4, let us define the set SB;(4) = {x € B;: AG(x) = (1—A)F(x)} to distinguish
bottieneck points that satisfy (11). Next, we extend the set of A-switches §,(4) to the set
Si (A =8, U SB;{#). The following proposition identifies a finite set of points containing
all Chebyschev /i-cent-dians for a given 0 <i<1.

Proposition 7. For any given value 0 < i <1, every optimal solution of the problem
lex min {[H (x),H :(0)]): x € [v;v,]} (12)
belongs to LM, ; \J S, ().

Proof.  An optimal solution of (12) must minimise A,(x) on the edge [v,,v;] and in the case
of a nonunique minimum it must additionally minimise H(x) in the set of minimal points of
H,(x).

H(x) is a piecewise linear continuous function. Therefore, it takes its minimal value in
some breakpoint (including the ends of the edge) or on the entire subedge between two
consecutive breakpoints. Note that between two consecutive breakpoints b, and by, ;, H;(x)
is linear and equal to AG(x) or (1—/4)F(x). As AG(x) is always ecither increasing or decreasing,
H,(x) may be constant on [b., b, ] only if H,(x)=(1 — )F(x) and F(x) is constant. However,
in such a case, function H,(x) is not constant on [bs, b, ] and, due to the lexicographic
optimization, any interior point of [bi.b ] cannot be an optimal solution to problem (12).
Hence, according to Proposition 6, any optimal solution of (12) belongs to LM, \UB,; \J S,(%).

Furthermore, neither 2G(x) nor (1—/£)F(x) has local minima in breakpoints belonging to
BALM,;. Therefore, such points may minimise H,(x) only if they belong to the set SB;(4).
Thus, finally, all the optimal solutions of (12) belong to LM, \JS, (/). 0]

Example 3. Recall the network presented in Fig. 3 with weights: w, =w, =47 and
W3 =W, =Ws=w,=w;=wgz=1. In order to illustrate Propositions 6 and 7, let us analyze
edge [va,v4] which includes point a. The set LM, , consists of two vertices and point «
{(LM34={vs,a,vs}). There are two bottleneck points (B4 = {b,,b,}) symmetrically located
on cdge [vs,v4], with distances 0.1 and 2.1 to the vertices. Both F(x) and G(x) are piccewise
linear functions completely defined by their values at point of LM+, \UBs.,= {vy,b,a.bsv,},
where  F(v3) =F(vs) =3.042, F(b))=F(a)=F(b>) =3.14; G(v;)=G(va) =8, G(b)) =
G(b>) = 8.1, G(a) = 7.1. The corresponding graphs are presented in Fig. 5.

Figure 6 presents graphs of functions H,(x) and H,(x) for 4= 0.3 (similar graphs occur for all
3.14/11.14 < 4 < 3.14/10.24). Function H, ;(x) is a piccewise linear function completely defined
by values at points of LM;,\JB;, Function H,+(x) is also a piecewise lincar function.
However, it has two additional breakpoints within subedges {b;,a] and [a,b.]. They are
A-switches s; and s, (834(0.3) = {s,,s2}) which are symmetrically located on the cdge [vs.v4].
with the distance 34/135 to point a.

Note that 0.3G (b)) # 0.7F(b,) and 0.3G(b,) # 0.7F(b,). Hence, S4.4(0.3)=35,.4(0.3). Follow-
ing Proposition 7, the optimal solution of the corresponding problem (12) belongs to
LM \US34(0.3) = (va.51,a.52.04 b Since  Hgals)= Hys(a@)=H, a(s2) < Hos(va)=Hos(vs)  and
Hos(a) <Hys(s)) = Hi5(s>), point a is the optimal solution. While solving the corresponding
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1 g 1 I 1
F T T 1 1

U3 bl a bg Vy
Fig. 5. Graphs of F(x) and G (x) on edge [V, Va).

problem (12) directly, we first minimise function H,(x) on the edge [vs,va]. The optimal
solution is not unique. The optimal set consists of the entire subedge [s,,5.]. Next, we
minimise H, ;(x) on the subedge [s,,s2]. Hence, point a is the optimal solution.

Hansen et al. (1991) have proposed algorithm IMA to identify image g(LM;\JB,;) for
edge [v;,v;]. This algorithm can easily be modified for finding the Chebyschev 4-cent-dians.
Algorithm IMA, in at most O(|V |log|V'|) operations, generates a sorted list of points
LM, \ B, and the corresponding values of G(x) and F(x). Without increasing the complexity
of the algorithm, additional points of S;(1) can be identified and the corresponding values of
the functions computed. Further, we need to repeat this procedure for every edge and
explore all the corresponding sets LM,; \J S, (4) ([v;, v;] €£) to determine the points minimiz-
ing the lexicographic objective. Thus the overall complexity of finding the Chebyschev
A-cent-dians (for a given O0<i<1) is O(| E ||V | log|V |} operations. Note that in the case of
evolving value of parameter 4 (in some interactive process) the results of basic computations

/\/ﬂ\o_s(z)

1 4
I +

$ 1 ' Il I
T t T t 1

V3 b] $1 a S9 bg U4

Fig. 6. Graphs of Hy, 3(x) and H,z(x) on edge [v4,v4].
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made with IMA for one value of 4 (i.e., images g(LM;\JB,;)) remain valid for all other
values of 4.

6. CONCLUDING REMARKS

Since the median approach is based on averaging, it often provides solutions where remote
and low-population density areas are discriminated against in terms of accessibility to public
facilities, as compared with centrally situated and high-population density areas. On the other
hand, locating a facility at the centre may cause a large increase in total distance, thus
generating a substantial loss in spatial efficiency. This has led to a search for some compro-
mise solution concept. Halpern (1976, 1978) has introduced the /-cent-dian as a parametric
solution concept based on the bicriteria centre/median model. He has modeled the corre-
sponding trade-offs with a convex combination of two objectives. Hansen er al. (1991) have
introduced a solution concept of the generalised centre which minimises the difference
between the maximum distance and the average distance.

We have shown a paradoxical example, where there exists a location being simultaneously
a centre and a median, but the generalised centre is located in another centre with the worst
possible value of the median function. In order to avoid this flaw of the generalised centre
solution concept, one needs to restrict it to locations which are Pareto-optimal for the
bicriteria centre/median model. With this restriction the generalised centre turns out to be
always a centre, thus not providing us with any compromise location.

The solution concept of A-cent-dian, in the case of a tree, allows us to identify all the
compromise centre/median locations. In the case of a general network it may not, as shown
in Example 2. In order to overcome this flaw of A-cent-dians, we have introduced the solution
concept of the Chebyschev J-cent-dian. This parametric solution concept complies with the
theoretical rules as well as the practice of multiple criteria optimization, when applied to the
bicriteria centre/median model. The concept of the Chebyschev A-cent-dian allows us to
identity all the compromise (Pareto-optimal) locations on any network. Moreover, the algo-
rithm developed by Hansen et al. (1991) for finding A-cent-dians can casily be modified to
generate the Chebyschev 2-cent-dians.
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