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Abstract: This paper describes the results of research, development and implementation of the Dynamic 
Interactive Network Analysis System (DINAS) which enables the solution of various multi-objective 
transshipment problems with facility location. DINAS utilizes an extension of the classical reference-point 
approach to handling multiple objectives. In this approach, the decision-maker (DM) forms his require- 
ments in terms of aspiration and reservation levels, i.e., he specifies acceptable and required values for 
given objectives. For providing DINAS with solutions to single-objective problems, a special TRANSLOC 
solver was developed. It is based on the branch-and-bound scheme with a pioneering implementation of 
the simplex special ordered network (SON) algorithm with implicit representation of the VUB and SUB 
(variable and simple upper bound, respectively) constraints. 

A pilot version of the system is implemented on an IBM PC/XT microcomputer. DINAS is prepared as 
a menu-driven and easy-to-use system armed with a special network editor. 
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1. Introduction 

The distribution-location type problems belong 
to the class of most significant problems directly 
leading to real-life applications of mathematical 
programming methods. Steadily rising costs and 
inflation as well as legal and political considera- 
tions, competition, fuel scarcity and many other 
factors have led, in recent years, many organiza- 
tions to examine their present and planned distri- 
bution patterns or facility locations more closely. 
For instance, the impact of the energy crisis caused 
real impetus for re-evaluation of existing and often 
outmoded distribution patterns and methods. 

Suppose we have a number of facilities and a 
number of customers or customer zones. Finding 
the distribution pattern is a fairly straightforward 
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mathematical programming problem (e.g., the 
transshipment problem). When we add the possi- 
bility of removing or adding a number of facilities 
with their associated fixed costs, we have a more 
complex facility location problem which is, in 
general, an integer programming problem. Many 
real-life problems in industry, business, govern- 
ment and nonprofit organizations include a variety 
of conflicting goals and objectives as functions of 
their distribution patterns and facility locations. 
Adding these functions as criteria of optimization 
we get a multi-criteria transshipment problem with 
facility location. 

As an illustration, the problem of depots loca- 
tion in a sugar-beet distribution system may be 
considered. A similar single-objective problem was 
studied by Jasifiska and Wojtych (1984). They 
were dealing with a real-life problem concerning a 
sugar enterprise in Lower Silesia, Poland. 

Consider a agricultural region containing a 
number of farms that produce sugar-beet. Each 
farm is considered as a supply point and is char- 
acterized by its total supply during the sugar-beet 
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harvesting period. The sugar-beet is delivered to a 
number of sugar-mills. Each sugar-mill has some 
limited total production capacity during the pro- 
duction season. 

Climate conditions, poor storage facilities or an 
underdeveloped transportation network may cause 
losses of sugar-beet volume, losses of sugar con- 
tent in the sugar-beet, or extremely high transpor- 
tation costs. To avoid these difficulties, a part of 
the sugar-beet supply has to be delivered to spe- 
cial depots and stored there temporarily. The de- 
pots are considered as purchasing centers. Some 
of them are already in use and an amount of the 
sugar-beet is shipped through them. For further 
improvement of the sugar-beet transportation sys- 
tem, some additional depots have to be opened or 
some existing ones should be modernized. Each 
potential depot is characterized by the upper 
bound on its throughput as well as by the corre- 
sponding investment cost. The investment cost is 
treated as the fixed cost associated with locating 
(or modernizing) of the potential depot. Moreover, 
unit shipping costs are connected with all the 
delivery routes: from farms to sugar-mills. Each of 
the routes is also characterized by a capacity which 
bounds the maximal flow of the sugar-beet along 
the route. 

The problem is to determine the number, loca- 
tion and sizes of the depots in use. Moreover, the 
corresponding sugar-beet flow from farms to 
sugar-mills directly or through depots has to be 
found so as to minimize the total transportation 
cost o r / a n d  the depots investment cost (provided 
that the total amount of the sugar-beet is delivered 
from farms to sugar-mills). 

The problem represents a class of transship- 
ment problems with facility location. It is a 
single-objective optimization problem if only one 
of the objective functions, the total transportation 
cost or the total investment cost, is minimized. 
However, it should be treated as a double-objec- 
tive optimization problem if both the objectives 
are considered simultaneously. Single- or double- 
objective optimization can be insufficient in real- 
life circumstances and some additional objectives 
should then be taken into consideration. For in- 
stance, the total amount of the sugar-beet flow 
through depots is sometimes considered to be 
minimized as direct flow from farms to sugar-mills 
is technologically more efficient. As another ob- 
jective maximization of the total amount of 

sugar-beet delivered by railway or maximization 
of the sugar production volume can be considered. 
The objectives are, in general, not comparable and 
thereby our problem should be considered as a 
multi-objective optimization problem. 

The problem described above can be for- 
mulated in terms of network analysis. A complete 
generalized network model for the discussed class 
of distribution-location problems is presented in 
the next section. 

Due to the multiple-objective formulation and 
to the integrality of location variables, the multi- 
criteria transshipment problem with facility loca- 
tion is complicated and computationally complex. 
Hence, the method designed for solving the prob- 
lem should be stable and fast in order to produce 
correct results or an acceptable approximation of 
a correct result within reasonable time. 

This paper describes the theoretical and meth- 
odological backgrounds of the Dynamic Interac- 
tive Network Analysis System (DINAS) which is 
being developed with the purpose of solving vari- 
ous multi-objective transshipment problems with 
facility location. Some initial experience with a 
pilot version of the system implemented on an 
IBM-PC XT microcomputer are also presented. 

2. The generalized network model 

In the previous section we have introduced a 
class of transshipment problems with facility loca- 
tion. In this section we define the mathematical 
model of such problems. 

A network model of the problem consists of 
nodes that are connected by a set of direct flow 
arcs. The set of nodes is partitioned into two 
subsets: the set of fixed nodes and the set of 
potential nodes. The fixed nodes represent 'fixed 
points' of the transportation network, i .e ,  points 
which cannot be changed. Each fixed node is 
characterized by two quantities: supply and de- 
mand. The potential nodes are introduced to rep- 
resent possible locations of new points in the 
network. Some groups of potential nodes repre- 
sent different versions of the same facility to be 
located (e.g., different sizes of a warehouse). For 
this reason, potential nodes are organized in the 
so-called selections, i.e., sets of nodes with the 
multiple choice requirement. Each selection is de- 
fined by the list of included potential nodes as 
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well as by lower and upper numbers of nodes 
which have to be selected (located). Each potential 
node is characterized by a capacity which bounds 
maximal flow through the node. The capacities are 
also given for all arcs but not for the fixed nodes. 

Several linear objective functions are consid- 
ered in the problem. The objective functions are 
introduced into the model by given coefficients 
associated with several arcs and potential nodes. 
They will be called cost coefficients independently 
of their real character in the objective functions. 
The cost coefficients for potential nodes are, how- 
ever, understood in a different way than for arcs. 
The cost coefficient connected to an arc is treated 
as the unit cost of the flow along the arc whereas 
the cost coefficient connected to a potential node 
is considered as the fixed cost associated with the 
use (location) of the node rather than as the unit 
cost. 

For simplicity of the model and the solution 
procedure we transform the potential nodes into 
artificial arcs. The transformation is performed by 
duplication of all potential nodes. After the dupli- 
cation is done, all the nodes can be considered as 
fixed and each potential node is replaced by an 
artificial arc which leads from the node to its 
copy. Due to the transformation we get a network 
with fixed structure as all the nodes are fixed. 
Potentiality of artificial arcs does not imply any 
complication because each arc in the network 
represents a potential flow. Moreover, all the 
bounds on flows (i.e., capacities) are connected to 
arcs after this transformation. Additional non- 
standard discrete constraints on the flow are gen- 
erated only by the multiple choice requirements 
associated with the selections. Cost coefficients 
are connected only to arcs, but the coefficients 
connected to artificial arcs represent fixed costs. 

A mathematical  statement of this t ransformed 
problem takes the form of the following gener- 
alized network model: 

Minimize 

E LPxij + E fPYij, 
(i, j )~A\A~ (i, j)~A~ 

p = l , 2  . . . . .  n o , 

Subject to 

E Xij -- E Xj i  = b i ,  i E N, 
(i, j ) ~ A  (j, i )~A 

O<~xi/<~cij , (i,  j ) ~ A \ A a ,  

(1) 

(2) 

(3) 

O<~xi/<~cijYij , (i ,  j ) ~ A  a, 

gk <~ ~ Yi/ <~ hk, k = 1 , 2  . . . . .  n s, 
(i, j )~& 

Yij=O or 1, (i ,  j ) ~ A  a, 

where 

n o  

N 

n S 

A 
Aa 

number  of objective functions, 
set of nodes (including copies 
potential  nodes), 
number  of selections, 

b i 

ci, i 
gk, hk = 

S k 

x i j  

Yi! 

(4) 

(5) 

(6) 

of 

set of arcs (including artificial arcs), 
set of artificial arcs, 
cost coefficient of the p th  objective 
associated with arc (i, j ) ,  
supply-demand balance at node i, 
capacity of arc (i, j )  
lower, resp. upper number  of (artifi-  
cial) arcs to be selected in the k th 
selection, 
set of (artificial) arcs that belong to 
the k th selection, 
decision variable that represents flow 
along arc (i, j ) ,  
decision variable, = 1 for selected arc 
and = 0 otherwise. 

The generalized network model of this form in- 
cludes typical network constraints (2) with simple 
upper bounds (3) as well as a special discrete 
structure (5)-(6) connected to the network struc- 
ture by variable upper bounds (4). While analys- 
ing the model we have to take advantage of all 
these features. 

3. Interactive procedure for handling multiple ob- 
jectives 

There are many different concepts for handling 
multiple objectives in mathematical  programming. 
We decided to use the so-called reference point 
approach which was introduced by Wierzbicki 
(1982). This concept was further developed in 
many  papers and was used as a basis for construc- 
tion of the software package DIDAS (Dynamic 
Interactive Decision Analysis and Support  system). 
The DIDAS package proved to be useful in an- 
alysing conflicts and assisting in decision-making 
situations (Grauer  et al., 1984). 

The basic concepts of the reference point ap- 
proach is as follows: 
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(1) the decision-maker (DM) forms his require- 
ments in terms of aspiration levels, i.e., he sped- 
fies acceptable values for given objectives; 

(2) the DM works with the computer in an 
interactive way so that he can change his aspira- 
tion levels during sessions of the analysis. 

In our system we extend the DIDAS approach. 
The extension relies on additional use of reserva- 
tion levels which allow the DM to specify neces- 
sary values for given objectives (Wierzbicki, 1986). 

Consider the multi-objective program associ- 
ated with the generalized network model: 

Minimize q 

Subject to q =  F(x,  y) ,  
(x, y ) ~ Q ,  

where q represents the objective vector, F is the 
linear vector-function defined by (1), and Q de- 
notes the feasible set of the generalized network 
model, i.e., the set defined by conditions (2)-(6). 

The reference point technique works in two 
stages. In the first stage, the DM is provided with 
some initial information which gives him an over- 
view of the problem. The initial information is 
generated by separate minimization of all the ob- 
jectives. More precisely, the following single objec- 
tive programs are solved: 

/ " 1 rain fP(x ,  y ) +  i"o y ] f i ( x  ' y ) :  (x ,  y ) ~ Q  , 
no  i=1 

p = 1, 2 . . . . .  n o (7) 

where fP denotes the p th  objective function and 
r o is an arbitrarily small number. 

The so-called pay-off matrix 

D=(qpj) ,  p = l , 2 , . . . , n o ,  j = l , 2  . . . . .  no, 

which yields information on the range of numeri- 
cal values of each objective is then constructed. 
The p th  row of the matrix D corresponds to the 
vector (x p, yP) which solves the p th  program (7). 
Each quantity qpi represents the value of the j t h  
objective at this solution (i.e., qpj=fJ(x p, yP)). 
The vector with elements qpp, i.e., the diagonal of 
D, defines the utopia (ideal) point. This point, 
further denoted by qU, is usually not attainable but 
it is presented to the DM as a lower limit to the 
numerical values of the objectives. Taking into 
consideration the j th column of matrix D we 

notice that the minimal value in that column is 
qp? = q~,. Let q ;  be the maximal value, i.e., 

qjn= max qpj. 
l <~p<~n o 

Point q n is called the nadir point and may be 
presented to the DM as an upper guideline to the 
values of the objectives. Thus, for each objective 
fP, a reasonable but not necessarily tight upper 
bound qn and a lower bound qU are known after 
the first stage of the analysis. 

In the second stage, an interactive selection of 
efficient solutions is performed. The DM controls 
the selection by two vector parameters: his aspira- 
tion level qa and his reservation level qr, where 

qU <~ qa < qr <~ q~. 

The support system searches for the satisfying 
solution while using an achievement scalarizing 
function as a criterion in the single-objective opti- 
mization. Namely, the support system computes 
the optimal solution to the following problem: 

Minimize 
/10 

max Up(q, qa, qr) + r° ~ up(q, qa, q r) (8) 
l<~p<~no no p = l  

Subject to q = F( x, y ), 

(x ,  y ) ~ Q ,  

where r o is an arbitrarily small number and Up is a 
function which measures the deviation of results 
from the DM's expectations with respect to the 
p th  objective, depending on a given aspiration 
level qa and a reservation level qr. 

The computed solution is an efficient (Pareto- 
optimal) solution to the original multi-objective 
model. It is presented to the DM as a current 
solution. The DM is asked whether he finds this 
solution satisfactory or not. If the DM does not 
accept the current solution, he has to enter new 
aspiration a n d / o r  reservation levels for some ob- 
jectives. Depending on this new information sup- 
plied by the DM, a new efficient solution is com- 
puted and presented as a current solution. This 
process is repeated as many times as the DM 
needs. 

The function Up(q, qa, qr )  is a strictly mono- 
tone function of the objective vector q with value 
Up = 0 i fq  = qa and Up = 1 i fq  = qr. In our system 
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we use (similarly as in Wierzbicki, 1986) a piece- 
wise linear function Up defined as follows: 

' a p ( q p - q p ) / ( q r p - q p )  

if qp < qp, 

( q p - q p ) / ( q p - q p )  
Up(q, qa, qr) = 

ifq~<~qp<~qp, 

b p ( q p - q p ) / ( q p - q ; , ) +  1, 

if qp <qp, 

where ap and bp (p  = 1, 2 . . . . .  no) are given posi- 
tive parameters. If the parameters ap and bp satisfy 
the inequalities ap < 1 and bp > 1, then the 
achievement functions Up are convex. Minimiza- 
tion of the function Up is then equivalent to 
minimization of a variable Up defined as follows: 

up = Vp + bpvp - apV~, (9) 

v p - v ~  + v p = ( q p - q p ) / ( q p - q p ) ,  (10) 

0 ~ vp < 1, (11) 

v ;  >/O, Vp > O. (12) 

4. General concept of the T R A N S L O C  solver 

The TRANSLOC solver has been prepared to 
provide the multi-objective analysis procedure with 
solutions to single-objective problems. According 
to the interactive procedure described in Section 3, 
the TRANSLOC solver has to be able to solve two 
kinds of single-objective problems: the first one 
associated with calculation of the decision support 
matrix (problems (7)) and the second one associ- 
ated with minimization of the scalarizing achieve- 
ment function (problem (8)). Both kinds of prob- 
lems have, however, the same main constraints 
which represent the feasible set of the generalized 
network model. Moreover, the other constraints of 
both kinds of problems can be expressed in a very 
similar way. So, we can formulate a general 
single-objective problem for the TRANSLOC 
solver as follows: 

Maximize s (13) 

Subject to 

~_, x i , -  Y'~ x j i=b i ,  i ~ U ,  (14) 
(i, j ) ~ A  ( j ,  i )~A  

w~+ ~_. Y i j=hk ,  k = 1 , 2  . . . . .  n~, (15) 
(i ,  j ) E S  k 

- + - d p  = 0 ,  = 1 , 2  . . . . .  (16) Up Op + dp p n o, 

l d+ 1 
vp- + V d; ap p 

+ Op (i, j ) ~ A \ A  a (i, j ) ~ A  a 

p = 1, 2 . . . . .  n o, (17) 
/7 o 

Uo - -  E b/p = O, ( 1 8 )  
p = l  

s + z + (ro/no)U o = O, (19) 

O<~xij<~cij, (i, j ) ~ A \ A a ,  (20) 

O<~w k~<h k - g k ,  k = 1 , 2  . . . . .  ns, (21) 

x,/<~cijy, i , (i ,  j ) E A a ,  (22) 

Up<~Z, p = 1 , 2  . . . . .  n o , (23) 

y o = O  or 1, (i,  j ) ~ a a ,  (24) 

and, depending on the kind of optimizaUon, 
+ 

d p = O ,  d ; = O ,  p = l , 2  . . . . .  no, (25) 

for the utopia point calculation, or 

d~->O, d;>lO,  O<vp<~l,  

p = 1, 2 . . . . .  no, (26) 

for the achievement scalarizing function optimiza- 
tion, where 

op = l and 6p = O 

during utopia point calculation, and 

1 - q p  
r a and 8 p -  Op qp _ qp qp _ qp 

during minimization of the achievement scalariz- 
ing function, whereas all the other quantities are 
the same as in Sections 2 and 3. 

The above single-objective problem is a typical 
mixed integer linear program, i.e., it is a typical 
linear program with integrality conditions for some 
variables (namely Yij)- Mixed integer linear pro- 
grams are usually solved by branch-and-bound 
approach with utilization of the simplex method. 
The TRANSLOC solver also uses this approach. 
Fortunately, only a very small group of decision 
variables is required to be integer in our model. 
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Therefore, we can use a simple branch-and-bound 
scheme in the solver. 

Even for a small transshipment problem with 
facility location, the corresponding linear program 
(13)-(26) has rather large size. For this reason it 
cannot be solved directly with the standard sim- 
plex algorithm. Therefore, it is necessary to take 
advantages of its special structure. 

Note that the inequalities (20)-(21) and (25) or 
(26) are standard simple upper bounds (SUB) 
which are usually processed outside of the linear 
programming matrix (Orchard-Hays, 1968). Simi- 
larly, inequalities (22) and (23) can be considered 
as the so-called variable upper bounds (VUB) and 
processed outside of the matrix due to a special 
technique. Basic rules of the techniques for SUB 
and VUB processing are developed in Section 5. 

The main group of equality constraints (14) 
represents typical network relations. Similarly, 
equalities (15) and (16) include only variables with 
unit coefficients. All the rows (14)-(16) can be 
handled in the simplex method as the so-called 
special ordered network (SON) structure. Basic 
rules of the SON technique used in the TRANS-  
LOC solver are developed, in Section 6. 

Thus, only a small number  of inequalities 
(17)-(19) has to be considered as typical rows of 
linear program. While taking advantage of this 
fact, the T R A N S L O C  solver can process trans- 
shipment problems of quite large dimensions. 

5. Implicit representation of VUB and SUB con- 
straints 

The single-objective program (13)-(26) includes 
many  inequalities of special simple forms. They 
can be partit ioned into two groups. The first one 
consists of the so-called simple upper  bounds 
(SUB), i.e., inequalities of the form 0 ~< xj ~< cj for 
some variables xj and constants c j, such as condi- 
tions (20)-(21), (26) with respect to variables vp, 
and continuous form of (24). The second one 
includes the so-called variable upper  bounds 
(VUB), i.e., inequalities of the form xj  <~ cjx~ for 
some variables x j, x k and constants cj, such as 
conditions (22). 

SUB constraints are usually implicitly repre- 
sented in commercial simplex codes (see, e.g., 
Orchard-Hays,  1968). Schrage (1975) proposed a 
technique for implicit representation of VUB con- 

straints. The technique was further developed and 
led to effective implementations (see, e.g., Todd, 
1982). 

The techniques presented in the literature deal, 
however, only with a simple form of VUB con- 
straints. Namely, it is assumed that cj = 1 in all 
VUBs and there are no upper bounds on x k 
variables. The restriction of consideration to only 
unit variable bounds usually does not imply any 
loss of generality since it can be attained by a 
proper scaling of the problem. Unfortunately, in 
our model such scaling techniques cannot be used 
without destroying the special SON structure (see 
Section 6). Therefore, we were forced to extend 
the VUB techniques in such a way that nonunit 
variable upper  bounds as well as some simple 
upper bounds on x k variables were acceptable. 

With respect to the VUB and SUB structures, 
the linear program under consideration can be 
formulated as follows. The numerical data consist 
of an m × n  matrix A of rank m, a column 
m-vector b, a row n-vector f and a column n-vec- 
tor c. In addition, the index set N = {1, 2 . . . . .  n ) 
is parti t ioned into J k)K,  where J represents the 
so-called sons, i.e., variables which appear on the 
left-hand size of variable upper bounds, and K 
represents the so-called fathers, i.e., variables 
which appear  on the right-hand side of variable 
upper  bounds. Any variable that is not involved in 
any variable upper  bound is regarded as a child- 
less father. Set J is further partitioned into sets 
J ( k ) ,  k E K,  where J ( k )  is the set (possible empty) 
of sons of the father k ~ K. It  is assumed that a 
son has only one father and that no father has a 
father. The father connected to a son xj will be 
denoted by k ( j ) .  The problem is then 

Maximize fx  

Subject to 

A x = b ,  

x j  <~ cjx  k for all k ~ K and j ~ J (  k ), 

x k~<c k for a l l k ~ K ,  

x>~0. 

Let sj be a slack variable for the variable upper 
bound xj  <~ CjXk, SO that 

xj  + sj = c jx  k, xj>~0, sj>~0. 

Consider a basic solution to the problem. The 
basis consists of the m + v columns corresponding 
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to some sons x j, some fathers x k and some slacks 
sj (where v denotes the number of VUBs). From 
each VUB either one slack sj or one son X: 
belongs to the basis. Calculation of the basic 
slacks is beyond our interest so they can be simply 
dropped from the basis, i.e., the corresponding 
rows and columns can be dropped. Furthermore, 
the basic sons which arrive in the other VUBs can 
be eliminated by submission x a = cjx  k. So, the 
whole basic solution can be computed from an 
m x m basis consisting of some linear combina- 
tions of columns from matrix A. 

A basic solution to the problem is characterized 
as follows. The set of sons is partitioned into the 
three sets J = j L  g j u  U jB, where j L  denotes the 
set of nonbasic sons fixed at their lower limits 
(i.e., X: = 0), JU denotes the set of nonbasic sons 
fixed at their upper limits (i.e., xj  = cjx k), and J u 
denotes the set of basic sons. Similarly, the set of 
fathers is partitioned into three sets K = K L W K u 
U K ~, where K 1- denotes the set of nonbasic 
fathers fixed at their lower limits (i.e., x k = 0), K u 
denotes the set of nonbasic fathers fixed at their 
upper limits (i.e., x k = Ck), and K B denotes the 
set of basic fathers. The basis B consists of the 
columns corresponding to basic sons 13: = Aj  and 
of the columns corresponding to basic fathers 
given by the formula 

B k = A a + ~ ciAj. 
j ~ J ( k  )(~J t: 

Consider a basic solution given by a basis B 
and sets JL, j u ,  jB, KL, KU, KB. For the 

determination of a nonbasic variable to enter the 
basis in the simplex algorithm it is necessary to 
compute the so-called reduced costs. Let z, denote 
an ordinary reduced cost connected to the column 
A i, i.e., 

z , = f , - f B B - l A i ,  i ~ J U K ,  

where f B denotes the basic part of the cost vector 
f. Due to implicit representation of VUBs, the 
reduced costs associated with several nonbasic 
variables then take the form 

d: = : :  for j ~ J,  

d k = z k +  ~ CjZ: for k ~ K. 
. l~J( k )C~J U 

Thus, in comparison with pricing in a standard 
simplex algorithm, pricing with implicit represen- 

tation of VUBs needs calculation of linear combi- 
nations of ordinary reduced costs as the only one 
additional operation. 

Due to handling of the SUB structure together 
with the VUB constraints, a nonbasic variable x i 
or x k is considered as potential incoming variable 
if one of the following conditions is fulfilled: 

(A) dj < 0 and j ~ j L, 

(B) d / > O  and j E J  w, 

(C) d k < 0 and k ~ K t_ 

(D) d k > 0 and k ~ KU 

Implicit representation of VUBs makes some de- 
generated simplex iterations so simple that they 
can be performed on-line during pricing. Namely, 
if x / i s  an incoming variable and k ( j )  • K L, then 
the corresponding simplex iteration depends only 
on change sets JL and JU, i.e., x/ is moved from 
the set j L to the set j u or vice versa. Such an 
operation can be performed while pricing before 
the computation of reduced costs for fathers. 

Let x~ (s • J or s • K)  be a variable chosen to 
enter the basis. Considering changes in the basic 
solution while the value of x~ is either increased 
for s • J L g K L or decreased for s ~ J u u K u by 
a nonnegative parameter 0, we get six formulae 
for upper bounds on the parameter 0 and six 
corresponding formulae for the determination of 
the outgoing variable (for details, see Ogryczak et 
all., 1987). Crossing these formulae with four types 
of incoming variables we get 19 types (5 criss- 
crossings are not allowed) of the simplex transfor- 
mations performed in the algorithm with implicit 
representation of VUB and SUB structures. The 
simplest transformation depends only on moving 
some variable from one set to another without any 
change of the basis. Most of the transformations 
depend on performing one of the following oper- 
ations: 

(a) some basic column multiplied by a scalar is 
added to another basic column; 

(b) some basic column is replaced by a non- 
basic column or a linear combination of nonbasic 
columns. 
More complex transformations use both the above 
operations and the most complex one needs two 
operations of type (a) and one operation of type 
(b). 
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6. The simplex SON algorithm 

The simplex SON procedure was developed by 
Glover and Klingman (1981, 1985). It is a parti- 
tioning method for solving LP problems with em- 
bedded network structure. Every problem of this 
type is characterized by a full row rank matrix A 
partitioned as follows: 

A = (ANN ANL)  
\ ALN ALL ' 

where ANN (m × n) denotes the matrix corre- 
sponding to a pure network problem, and the 
other submatrices ANL ( r e × p ) ,  ALN ( q × n ) ,  
and ALL (q × p)  consist of any real elements. 

The matrix A of the auxiliary LP problem 
discussed in Section 3 has obviously this form. 
The matrix ANN is an incidence matrix corre- 
sponding to the transportation network studied in 
Section 2. Therefore, each constraint represented 
by a row of ANN corresponds to a node of the 
network and will be referred to as node constraint. 
Moreover, each variable represented by a column 
of ANN corresponds to an arc of the network and 
will be referred to as arc variable. There are two 
classes of ANN columns: columns containing ex- 
actly two nonzero entries in ANN (one + 1 and 
one - 1 ) ,  called ordinary arcs, and columns con- 
taining exactly one nonzero entry in ANN ( + 1 or 
- 1 ) ,  called slack arcs. The - 1  entry in a column 
indicates the node where the arc begins and the 
+ 1 entry in a column indicates the node where 
the arc ends. If a column has exactly one nonzero 
element pointing one of the arc endpoints, then an 
artificial node outside of the network can be meant 
as the second arc endpoint. 

The SUB and VUB simplex algorithms use a 
basis B which is composed of m + q linearly 
independent columns selected from matrix A. Any 
basis B may be partitioned as follows: 

a=(/~l~ B121 
B21 B22 ] '  

where Baa is a nonsingular submatrix of ANN. It 
appears to be better for the effectiveness of the 
algorithm if the rank of BI~ is as large as possible. 

Let x8 = (xB1, xa2) denote the basic part of 
the decision variable vector x, where xal and x82 
correspond to the B~I and Ba2 submatrices, re- 
spectively. Thus, the basic variables xal are exclu- 

sively arc variable. The basic variables XB2 may 
also contain arc variables. Similarly, the rows of 
Baa are exclusively node rows but the matrix 
(B21 , 922) may also contain node rows. 

The basis inverse B -1 may be written as fol- 
lows: 

B_l = ( BH1+ BfilB12V-1B21BH1 - B~IB12 V - l )  
-- V-1B21Bll I V -1 ' 

where V = B22 - B 2 1 B l l l B 1 2  . 

Define the so-called master basis tree (MBT) 
associated with a given basis. The set of nodes of 
the tree contains all nodes of our LP embedded 
network problem plus an external node called the 
master root. Thus, MBT always contains m + 1 
nodes N =  (0, 1 . . . . .  m}, where 0 is the master 
root, and m the number of arcs. The nodes of 
MBT that correspond to rows of B21 a r e  called 
externalized roots (ERs). Each ER is connected to 
the master root by an externalized arc (EA). 

All of the ordinary arcs in B11 belong to MBT. 
There may be two types of slack arcs associated 
with B H. If a slack arc in Bll is a slack arc of 
ANN, then the arc is replaced by an arc between 
the master root and its unique node. If a slack arc 
in Ba~ is an ordinary arc in ANN, then it is 
replaced by an arc between its nodes in A N N  (one 
of these endpoints is an ER node). 

The arcs in the master basis tree have a natural 
orientation defined as follows: if an edge (u, v) 
belongs to MBT and node u is nearer the master 
root than v, then u is called the predecessor of v, 
and v is called the immediate successor of u. 

The master basis tree is represented by the 
following node functions. 

(1) PRED: the values of the function are de- 
fined as follows: 

PRED[i] = the predecessor of node i in MBT. 

(2) THREAD: the function defines as connecting 
link (thread) which passes through each node ex- 
actly once. If i is a node on the thread, then 
THREAD [ i ]  is the next one. The alternation of the 
nodes on the thread is defined by using the pre- 
order method of tree passage. 

P1 Let P = (p2) denote the column vector selected 
to enter the basis matrix (P1 specifies the part of 
P associated with Bll and P2 the part associated 
with B21 ). Similarly, ct = ( ~ ' )  denotes the rep- 
resentation of P in terms of B. 
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We have a = B-~p and hence using the parti- 
tioning formula for B-1 we obtain the following 
system of equations 

O~B2 = V - l ( - B 2 1 B H 1 p 1  + P2), 

a m = B ~ l l ( P a  - B120:B2). 

Suppose that the matrix D = V-1 (i.e., the right 
down corner part of the matrix B-1)  is attained in 
the explicit form. Thus, the multiplication by the 
matrix in the former formula may be simply per- 
formed. Both the formulae include a multiplica- 
tion x = B 1G with some vector G. This multipli- 
cation is equivalent to solving an upper triangular 
system/~H2 = 6~, where the matrix B n consists of 
the rows and columns of B n ordered according to 
the corresponding nodes and arcs on the THREAD 
line of MBT. 

Each column of /~n has at most two nonzero 
elements, One of them is located at the diagonal 
and corresponds to a node v while the second one 
(if it exists) is located above the diagonal and 
corresponds to the predecessor of v. Hence, if the 
THREAD line is passed backward and node v has 
come across, then the value of the variable rep- 
resented by v is computed and simultaneously the 
value of the variable represented by the predeces- 
sor of v is modified. Thus, a single pass through 
the master basis tree along the reverse of the 
THREAD line is sufficient for computing the x 
solution. The cost of such a procedure is propor- 
tional to the number of nodes in MBT. 

Let c B = ( C B 1  , Cb2 ) denote the vector of basis 
cost coefficients. The dual vector w = (wl, w2) -- 
c B B  ~ is needed at the pricing step of the simplex 
method and may be computed as follows: 

w 2 = (CB2 -- c B 1 B ~ l l B 1 2 ) V  - 1 ,  

W 1 = (CBI -- w 2 B 2 1 ) B I I  1. 

Multiplication by matrix V -1 may be directly 
computed since the matrix is assumed to be kept 
in explicit form. Further, both the last formulae 
include multiplications of the form w = H B n  

which can be effectively using the master basis 
tree structure for B H, similarly as while comput- 
ing the primal solution x. 

Consider a single step of the simplex method. 
When the incoming and outgoing variables are 
chosen then the whole basis representation has to 
be changed and adjusted to the new situation. 

Thus, the problem arises how to change in a single 
simplex iteration the matrix D and the functions 
describing the master basis tree. 

Let x s and x r denote the incoming and outgo- 
ing variables, respectively, and let x, be the so- 
called transfer variable that belongs to x . 2  and 
replaces Xr in x . l ,  if it is possible. 

At each iteration, the variables can alter by the 
transitions: 

- Incoming variables x,: x N -----> XBI or XBZ. 

-- Outgoing variable Xr: X m or Xe~ ---, x u .  

- Transfer variable x,: x~2 --+ xm, or no 
change. 

- T r a n s f e r  ER nodes: x m - + X B z  (one ER 
more), or XB2 ~ X  m (one ER less), or no 
change. 

If an arc is added to the master basis tree, then 
a loop is closed. In order to have a tree in the next 
iteration also, the loop must be cut and exactly 
one arc from the loop must be deleted. It is the 
fundamental exchange rule for the master basis 
tree. 

At each iteration the matrix D is transformed 
by elimination using a given pivot row. The fol- 
lowing cases appear when the elimination is per- 
formed: 

- the pivot row is within the rows of D; 
- the pivot row is outside of D; 
- a row and a column of D are dropped; 
- a new row and a new column are added to D; 
- a column (row) of D is replaced by another 

column (row) from outside of D. 
Combining the elimination cases with the tran- 

sition rules for the incoming, outgoing and trans- 
fer variables we get seven types of basis exchange 
steps. When XB1 is maximal relative to XB2, ex- 
actly one of the seven types of basis exchange 
steps will occur and their updating prescriptions 
will maintain x m maximal. 

The main features of the discussed approach 
are cheap multiplication algorithms with basis in- 
verse, accelerated labelling algorithms for modify- 
ing the master basis tree in an efficient manner 
and a compact form of the basis inverse occupying 
a small memory space only. 

7. PC implementat ion and numerical example  

A pilot version of the DINAS system is imple- 
mented on an IBM-PC X T / A T  or an IBM-com- 
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patibles. The system consists of three programs 
prepared in the C programming language: 

- the interactive procedure for efficient solu- 
tions generation, 

- the T R A N S L O C  solver for single-objective 
problems, 

- the network editor for input data and results 
examination. 

The basic concept of the interactive scheme for 
efficient solutions generation is as follows: 

- the D M  works with the system in an interac- 
tive way so that he can change his aspiration 
and reservation levels in any direction; 

- after editing the aspiration and reservation 
levels, the system computes a new efficient 
solution by solving a corresponding single- 
objective problem; 

- each computed efficient solution is put into a 
special solution base and presented to the 
DM as the current solution in the form of 
tables and bars which allow him to analyse 
performances of the current solution in com- 
parison with the previous solutions. 

Operations available in the DINAS interactive 
procedure are partitioned into three groups and 
corresponding three branches of the main menu: 
PROCESS, SOLUTION and ANALYSIS. The PROCESS 
branch contains basic operations connected with 
processing the multi-objective problem and gener- 
ation of several efficient solutions. Included are 
operations such as editing and converting the 
problem, computat ion of the pay-off  matrix and, 
finally, generating a sequence of efficient solutions 
depending on the edited aspiration and reserva- 
tion levels. 

The SOLUTION branch contains additional op- 
erations connected with the current solution. The 
D M  can examine in details the current solution 
using the network editor or analyse only short 
characteristics such as objective values and selected 
locations. Values o f  the objective functions are 
presented in three ways: as a standard table, as 
bars in the aspirat ion/reservat ion scale and as 
bars in the u top ia /nad i r  scale. The bars show 
percentage level of each objective value with re- 
spect to the corresponding scale. The DM may 
also print the current solution or save it, for using 
in next runs of the system with the same problem. 
There is also available a special command to 
delete the current solution from the solution base 
if the DM finds it as quite useless. 

The ANALYSIS branch collects commands con- 
nected with operations on the solution base. The 
main command  C O M P A R E  allows the DM to 
perform comparison of all the efficient solutions 
from the solution base or of some subset of them. 
In the comparison, only the short characteristics 
of the solutions are used, i.e., objective values in 
the form of tables and bars as well as tables of 
selected locations. Moreover, some commands 
which allow the D M  to select various efficient 
solutions f rom solution base as the current solu- 
tion are included in this branch. There also exists 
the opportunity to restore some (saved earlier) 
efficient solution to the solution base. 

DINAS is armed with the built-in network 
editor EDINET. EDINET is a full-screen editor 
specifically designed for input and edit data of the 
generalized network model defined in Section 2. 
The essence of the EDINET concept is a dynamic 
movement  f rom some current node to its 
neighbouring nodes and vice versa, according to 
the network structure. The input data are inserted 
by a special mechanism of windows while visiting 
several nodes. Independently, a list of the nodes in 
alphabetic order and a graphic scheme of the 
network is available at any time. Some special 
windows are also used for defining objective func- 
tions. 

DINAS can process problems consisted of: 
- up to seven objective functions, 
- a  t ransportation network with up to one 

hundred of nodes and a few hundreds of 
arcs, 

- up to fifteen potential locations. 
However, rather smaller test problems have been 
solved up to now. They were usually prepared as 
parts or simplifications of real-life problems. 

As an example we consider a small artificial 
part  of the real-life sugar-beet transshipment sys- 
tem mentioned in Section 1. Eight fixed nodes 
(seven farms: Udry, Dubiel, Smrock, Gondek, 
Pogaj, Runo, Cuple; one sugar-mill Klew) and 
three potential depots (Tyn4, Tyn7, Jurga) are 
considered. A network scheme of this example is 
presented in Figure 1. The numbers inside the 
node circles denote supply amounts in case of 
farms, a (negative) demand on the sugar-beet for 
the sugar-mill, and capacities of the corresponding 
potential depots. Note  that the sum of the farms 
supplies is equal to the demand of the sugar-mill. 
In fact, the potential  depots Tyn4 and Tyn7 repre- 
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Figure 1 

sent two versions of the same depot which has to 
be located. These versions differ only in their 
capacities and hence they are considered as one 
selection Tyn with its lower and upper bounds 
equal to 0 and 1, respectively. The arcs in the 
network represent possible flows of the sugar-beet 
and are directed from farms to the sugar-mill or to 
depots, and from the depots to the sugar-mill. All 
the arcs have unlimited capacities. 

Three objectives are considered in the problem: 
minimization of the INVEST function, minimiza- 
tion of the SHIP function and maximization of the 
RAIL  f u n c t i o n .  INVEST represents an investment 
cost associated with location of the potential de- 
pots. SHIP expresses a total transportation cost in 
the network. The RAIL function is used by the 

railway administration to evaluate shipping of the 
sugar-beet from the depots to the sugar-mill (these 
routes are serviced by the railway). The numbers 
in Figure 1 completed by the letters i, s or r, 
connected to arcs and potential nodes denote the 
corresponding objective coefficients (a coefficient 
is assumed to be equal to 0 if there is no number 
with the corresponding sign). 

While performing the multi-objective analysis 
with the DINAS system, six efficient solutions 
have been identified. The objective values for all 
these efficient solutions are given in Table 1. 
Additionally, the corresponding locations of the 
potential depots are presented in Table 2. What is 
important, the whole multi-objective analysis in- 
cluding calculation of the pay-off matrix and six 
efficient solutions took only several minutes of 
interactive work with the IBM-PC XT microcom- 
puter. 

The PC version of the DINAS system was also 
used for solving an artificial part of the real-life 
four-objective problem connected with the health 
service districts reorganization (Ogryczak et al., 
1988). Moreover, a real-life two-products trans- 
portation problem was modelled as a single-prod- 
uct network problem (about 50 nodes and 150 
arcs) and successfully solved with DINAS. 

8. Concluding remarks 

Initial experiences with the DINAS system on 
small testing examples confirm appropriateness of 
the used methodology for solving multi-objective 
transshipment problems with facility location. The 

Table 1 
Objective values for the efficient solutions 

Objective Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6 

INVEST 0 200 220 300 420 520 
SHIP 1357.9 1337.9 1317.9 1294.5 1297.9 1258.5 
RAIL 0 89.2 93.2 92.4 182.4 172.4 

Table 2 
Potential depots activity for the efficient solutions 

Depot Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6 

Tyn4 No Yes No No Yes No 
Tyn7 No No No Yes No Yes 
Jurga No No Yes No Yes Yes 
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interactive scheme is very easy to understand and 
it provides the DM with the most important char- 
acteristics of generated efficient solutions. More- 
over, the DM controls the system with un- 
sophisticated parameters: aspiration and reserva- 
tion levels. In effect, one easily reaches a satisfac- 
tory solution in a few interactive steps. Due to 
sufficiently good effectiveness of the TRANSLOC 
solver, one interactive step is performed within a 
reasonable time even if an IBM-PC XT is used. 

On the other hand, we have noticed that intro- 
ducing multiple objectives into the transshipment 
problem with facility location transformed this 
easy discrete problem into a complex one. Namely, 
it has been proved that the single-objective prob- 
lem connected with minimization of the achieve- 
ment function is far more complex than the origi- 
nal single-objective problems connected with 
minimization of several objective functions. The 
original single-objective problem is solved with the 
branch-and-bound method after examination of 
only a few subproblems while minimization of the 
achievement function usually requires to analyse 
many branches of the tree. Thus, for solving large 
real-life problems, rather a more advanced hard- 
ware than the standard IBM-PC XT should be 
used. 
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