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Abstract. The reference point method for solving multi-criteria optimiza­
tion problems is an interactive technique where the decision maker speci­
fies requirements, similar to goal programming, in terms of aspiration levels. 
Ogryczak [5] showed how the reference point method could be modeled within 
goal programming methodology provided that the nonnegativity restrictions 
on weights were dropped. It allows us to consider the reference point ap­
proach as an extension of goal programming. However, in most of real-life 
applications of goal programming the goals are grouped according to the 
predefined priorities (the so-called preemptive goal programming) whereas 
in the reference point method all the deviations are considered to be equally 
important. In this paper we show how the priorities can be incorporated into 
the reference point method. 

1 Introduction 
Consider a decision problem defined as an optimization problem with k ob­
jective functions. For simplification of the formal presentation we assume, 
without loss of generality, that all the objective functions are to be minimized. 
The problem can be formulated then as follows 

where 
F = (Flo . .. , F k ) 

Q 
x 

min {F(x) : x E Q } 

represents a vector of k objective functions, 
denotes the feasible set of the problem, 
is a vector of decision variables. 

(1) 

Consider further an achievement vector q = F(x) which measures achieve­
ment of decision x with respect to the specified set of k objectives F 1 , ... , Fk . 

It is clear that an achievement vector is better than another if all of its in­
dividual achievements are better or at least one individual achievement is 
better whereas no other one is worse. Such a relation is called domination of 
achievement vectors. Unfortunately, there usually does not exist an achieve­
ment vector that dominates all others with respect to all the criteria. Thus in 
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terms of strict mathematical relations we cannot distinguish the best achieve­
ment vector. The non dominated vectors are incomparable on the basis of the 
specified set of objective functions. The feasible solutions (decisions) that 
generate non dominated achievement vectors are called efficient or Pareto­
optimal solutions to the multi-criteria problem. 

It seems clear that the solution of multi-criteria optimization problems 
should simply depend on identification of the efficient solutions. However, 
even finite characteristic of the efficient set for a real-life problem is usually 
so large that it cannot be considered a solution to the decision problem. So, 
there arises a need for further analysis, or rather decision support, to help the 
decision maker (DM) to select one efficient solution for implementation. Of 
course, the original objective functions do not allow one to select any efficient 
solution as better than any other one. Therefore this analysis depends usu­
ally on additional information about the DM's preferences. The DM, working 
interactively with a decision support system (DSS), specifies the preferences 
in terms of some control parameters, and the DSS at each interactive step 
provides one efficient solution that meets the current preferences. Such a DSS 
can be used for analysis of decision problems with finite as well as infinite 
efficient sets. There is important, however, that the control parameters pro­
vide the completeness of the control, i.e., that varying the control parameters 
the DM can identify every non dominated achievement vector. 

Goal programming (GP), originally proposed by Charnes & Cooper [2], 
seems to be a convenient generating technique for a DSS. It is, in fact, com­
monly used in real-life applications (see [8]). Goal programming requires one 
to transform objectives into goals by specification of an aspiration level for 
each objective. An optimal solution is then the one that minimizes deviations 
from the aspiration levels. Various measures of multidimensional deviations 
have been proposed. They are expressed as achievement functions. Depend­
ing on the type of the achievement function we distinguish (compare [4]): 
weighted (minsum) GP, fuzzy (minmax) GP, preemptive (lexicographic) GP. 
If a G P model is used as the basis of a DSS the aspiration levels can be 
changed during the decision analysis as the DM preferences evolve. One of 
the most important advantages of the interactive GP approach is that it does 
not require the DM to be consistent and coherent in the preferences. 

Goal programming, unfortunately, does not satisfy the efficiency (Pareto­
optimality) principle. Simply, the GP approach does not suggest decisions 
that optimize the objective functions. It only yields decisions that have 
outcomes closest to the specified aspiration levels. This weakness of goal 
programming has led to the development of the so-called quasisatisficing 
approach which always generates efficient solutions. The quasisatisficing ap­
proach also deals with the aspiration levels but they are understood in a dif­
ferent way than in G P approaches. In goal programming the vector of aspi­
ration levels is (weakly) preferred to any other achievement vector whereas in 
the quasisatisficing approach the aspiration vector is preferred to any other 



158 

achievement vector which does not dominate the aspiration vector. 
The best formalization of the quasisatisficing approach to multi-criteria 

optimization was proposed and developed mainly by Wierzbicki [9] as the 
reference point method. The reference point method is an interactive tech­
nique where the DM specifies requirements, as in GP, in terms of aspiration 
levels. Depending on the specified aspiration levels a scalarizing achievement 
function is built which, when minimized, generates an efficient solution to the 
problem. The computed efficient solution is presented to the DM as the cur­
rent solution allowing comparison with previous solutions and modifications 
of the aspiration levels if necessary. The scalarizing achievement function 
not only guarantees efficiency of the solution but also reflects the DM's pref­
erences as specified via the aspiration levels. In building the function it is 
assumed that the DM prefers outcomes that satisfy all the aspiration levels 
to any outcome that does not reach one or more of the aspiration levels. 

One of the simplest scalarizing functions takes the following form (see [7]) 

k 

s(q, a, A) = max {Ai(qi - ai)} + C" A;(qi - a;) 
1<i<k ~ . 

(2) 
- - i=1 

\'\There 
a denotes the vector of aspiration levels, 
A is a scaling vector, Ai > 0, 
c is an arbitrarily small positive number. 

Minimization of the scalarizing achievement function (2) over the attainable 
set Y = { q = F(x) : x E Q } generates an efficient solution. The selection 
of the solution within the efficient set depends on two vector parameters: an 
aspiration vector a and a scaling vector A. In practical implementations the 
former is usually designated as a control tool for use by the DM whereas the 
latter is automatically calculated on the basis of some predecision analysis. 
The small scalar c is introduced only to guarantee efficiency in the case of 
a nonunique optimal solution. 

The reference point method although using the same main control param­
eters (aspiration levels) always generates an efficient solution to the multi­
criteria problem whereas goal programming does not. Ogryczak [5] has shown 
that the implementation techniques of goal programming can be used to 
model the reference point approach. The proposed reference GP problem 
takes the following form 

RGP: lexmin g(d-,d+) = [g1(d-,d+),g2(d-,d+)] 

subject to 

Fi(X) + di - dt = ai for i = 1,2, ... , k 

di 2: 0, dt 2: ° for i= 1,2, ... ,k 

di dt = ° for i = 1,2, ... , k 
xEQ 

(3) 

(4) 

(5) 

(6) 

(7) 
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where 

. max (-widi + wtdt) 
.=l, ... ,k 

(8) 

k 

:L) -wi di + wt dt) (9) 
i=l 

di and dt are negative and positive goal deviations, respectively, i.e., 
nonnegative state variables which measure deviations of the 
current value of the i-th objective function from the corre­
sponding aspiration level; 

wi and wt are positive weights corresponding to several goal deviations, 
e.g., wi = wt = Ai for the exact model of (2). 

The main specificity which differentiates the RGP model from the standard 
GP approaches depends on the use of negative weight coefficients -wi asso­
ciated with the negative deviations di. Further, the RGP problem uses both 
t.he minmax and the minsum achievement functions. The minmax achieve­
ment functions are not very common in lexicographic GP applications but 
they are the standard GP tool (so-called fuzzy GP, [4]). Moreover, in the 
case of linear problems, the minmax achievement function does not destroy 
the linear structure and it can be implemented implicitly in the simplex al­
gorithms [6]. Thus, the achievement function (8) can easily be implemented 
in the lexicographic GP solution techniques. 

As shown by Ogryczak [5], the RGP problem always generates an efficient 
solution to t.he original multi-crit.eria problem (even in the case of nonconvex, 
e.g. discrete decision problem) satisfying simultaneously t.he rules of the ref­
erence point approach. Namely, whenever a solution with all objectives not 
worse than the corresponding aspiration levels is attainable, such an efficient 
solution is provided by optimization of the RGP problem. Moreover, the re­
quirements (6) can be simply omitted in the constraints of the RGP problem 
provided that the weights satisfy natural for the reference point approach 
relations 

wt > wi > 0 for i = 1,2, ... , k (10) 
Thus the reference point approach may be considered as an extension of goal 
programming. However, in most real-life applications of goal programming 
the goals or deviations are grouped according to the predefined priorities 
(preemptive GP) whereas in the reference point method all the deviations 
are considered to be equally important. In the next section we show how pri­
oritization of deviations can be incorporated into RGP model of the reference 
point. method. The proposed preemptive reference point method preserves 
the most important properties of t.he standard reference point approach. 
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2 Preemptive Reference Point Method 
While incorporating priorities into the reference point method, like in pre­
emptive goal programming, we are interested rather in priorities on the de­
viation variables than on the original objective functions. That means, we 
consider the same original multi-criteria optimization problem (1) without 
any hierarchy of the objective functions. The priorities are considered only 
as an additional tool for better expression of the DM's preferences during 
interactive search for an efficient solution. 

During the interactive analysis the DM specifies the preferences with vector 
a of aspiration levels and two groups of priority sets p/ for j = 1,2, ... , p+ 
and Pj- for j = 1,2, ... ,p_. The priority sets p/ (j = 1,2, ... ,p+) repre­
sent the aspiration levels hierarchy in the sense of importance of achieving 
outcomes not worse than the corresponding aspiration levels. Similarly, Pj -

U = 1, 2, ... , p_) represent hierarchy of importance to achieve outcomes bet­
ter than the corresponding aspiration levels. Both groups of priority sets 
define partitions of the entire set of objectives. The two partitions may be, 
in particular, identical. However, for better modeling of real-life preferences 
it seems to be necessary to allow them to be different, as importance of 
achieving aspiration levels does not, necessarily, match interests in exceeding 
the aspiration levels. 

Let us summarize the DM's preference model expressed with the aspiration 
levels and hierarchy sets: 

PI. For any individual outcome Fj(x) (i = 1,2, ... , k) less is preferred to 
more (minimization); 

P2. A solution with all individual outcomes Fj(x) equal to the correspond­
ing aspiration levels is preferred to any solution with at least one 
individual outcome greater than the corresponding aspiration level; 

P3. Minimization of any positive deviation dj is preferred to maximization 

of each negative deviation di for i = 1,2, ... , k; 
P4. If j < t then minimization of positive deviations dt for i E p/ IS 

preferred to minimization of positive deviations dt for i E p/; 
P5. If j < t then maximization of negative deviations di for i E Pj- IS 

preferred to maximization of negative deviations di for i E Pt-; 

Property Pl means that efficient solutions are preferred to nonefficient 
ones, i.e., the DM's preferences are consistent with the efficiency principle. 
Property P2 expresses that the DM prefers outcomes that satisfy all the 
aspiration levels to any outcome that does not reach one or more of the 
aspiration levels. In terms of goal deviations (compare (4)-(6)) it means 
that a solution with positive deviations dt equal to 0 for all i = 1,2, ... , k 
is preferred to any solution with positive value of at least one deviation dt. 
These two properties are crucial for the preference model considered in the 
reference point approach. Properties P3, P4 and P5 express the hierarchy 
of deviations defined with the priority sets. 
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In order to introduce the hierarchy of deviations into the RGP model we 
replace the lexicographic achievement function with the following: 

PRGP: lexmin g(d-, d+) = [g+(d+), g-(d-)] (11) 

subject to (4), (5) and (7) 

where 

g+(d+) [gt1 (d+), gt2( d+), ... , g;+l (d+), g;+2( d+)] (12) 

g-(d-) [g11 (d-), g12( d-), ... , g;_l (d-), g;_2( d-)] (13) 

gt1(d+) max(widt) 
iEPt 

for j = 1, 2, ... , p+ (14) 

gt2(d+) L w7d+ • • for j = 1, 2, ... , p+ (15) 
iEPt 

gj1(d-) max(-widi) for j = 1,2, ... , p_ (16) 
iEPj-

gj2(d-) L -widi for j = 1,2, .. . ,p_ (17) 
iEPj-

Note that constraints of the above PRG P problem do not include the re­
quirements (6) to guarantee proper calculation of goal deviations. The re­
quirements (6) could be simply omitted in the constraints of PRGP problem 
since all negative deviations di have assigned lower priorities than any posi­
tive deviation di. This is made precise in Proposition 1. 

Proposition I For any aspiration levels ai and any positive weights wi 
and wi, any (x, (i-, (i+) optimal solution to the problem PRGP satisfies 
requirements (6), i.e., di di = 0 for i = 1,2, ... , k. 

Proof. Let (x, (i-, (i+)be an optimal solution for the problem PRGP. 
Suppose that dir, dt > 0 for some index 1 5 io 5 k. Then we can decrease 
both dir, and dt by the same small positive quantity. That means, for small 
enough positive b the vector (x, (i- - beo, (i+ - oeo), where eo denotes the 
unit vector corresponding to index io, is feasible to the problem PRGP. Due 
to positive weights wi and wi, the following inequalities are satisfied 

+-+ + -+ + -+ + -+ gj1{d -beo) 5 gj1(d ) and gj2(d -beo) 5 gj2(d) for j = 1,2, .. . ,p+ 

Moreover, there exists jo such that io E Pj~ and thereby gt2«(i+ - beo) < 
gt2( (i+) which contradicts optimality of (x, (i-, (i+) for the problem PRGP. 
Thus (x, (i-, (i+) must satisfy conditions (6). 0 

By the definition of the achievement functions (12)-(17), it is lucid that 
the PRGP problem (11)-(17) complies with the properties P3, P4 and P5. 
However, fulfilling of properties PI and P2 (crucial for the reference point 
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approach) is not so clear. We will show (Proposition 2) that the lexicographic 
problem PRGP always generates an efficient solution to the original multi­
criteria optimization problem (property PI) complying simultaneously with 
property P2 (Proposition 3). 

Proposition 2 For any aspiration levels ai and any positive weights wi and 
wt, if (x, d- ,d+) is an optimal solution to the problem P RGP, then x is an 
efficient solution to the multi-criteria optimization problem (1). 

Proof. Let (x, d-, d+) be an optimal solution to the problem PRGP. Sup­
pose that x is not efficient to the problem (1). That means, there exists a vec­
tor x E Q such that Fi(X) ::; Fi(X) for i = 1,2, ... , k and Fio(X) < Fjo(x) 
for some index 1 ::; io ::; k. The deviations (ii and (it satisfy relations: 
(it = (Fi(X) - a;)+ and (ii = (aj - Fj(x))+, where (.)+ denotes the nonnega­
tive part of a quantity. Let us define similar deviations for the vector x, i.e., 
dt = (Fi(X) - a;)+ and di = (ai - Fi(X»+ for i = 1,2, ... , k. (x, d-, d+) 
is a feasible solution to the problem PRGP and dt ::; (it and di ~ (ii for 
i = 1,2, ... , k. Hence, for any positive weights wi and wt the following 
inequalities are satisfied 

gfl(d+)::;gfl(d+) and gf2(d+)::;gf2(d+) for j=1,2, ... ,p+ 

gjl(d-) ::; gjl(d-) and gj2(d-)::; gj2«(1-) for j = 1,2, ... ,p-

Moreover, there exist j+ such that io E Pj~ and j_ such that io E Pj __ . Hence, 

for any positive weights wi and wt, gt2(d+) < gt+2(d+) or gj_2(d-) < 
gj_2( (1-), which contradicts optimalityof(x, (1-, (1+) for the problem PRGP. 
Thus x must be an efficient solution to the original multi-criteria optimization 
problem (1). 0 

Proposition 3 For any aspiration levels aj and any positive weights wi 
and wt, if (x, d-, d+) is an optimal solution to the problem P RGP, then 
any de viation (it is positive only if there does not exist any vector x E Q 
such that Fi(X)::; ai fori= 1,2, ... ,k. 

Proof. Let (x, (1-, d+) be an optimal solution to the problem PRGP. Sup­
pose that (it > 0 (i.e., Fio(X) > aio) for some index 1 ::; io ::; k and there 
exists a vector x E Q such that Fj(x) ::; aj for i = 1,2, ... , k. Let us define de­
viations for the vector x: dt = (Fi(X) - a;)+ = 0 and di = (ai - Fi(X»+ ~ 0 
for i = 1,2, ... , k. (x, d-, d+) is a feasible solution for the problem PRGP 
and for any positive weights wi and wt the following inequalities are satisfied 

gfl(d+)=O::;gfl«(1+) and gt2(d+)=O::;gt2«(1+) for j=1,2, ... ,p+ 

Moreover, there exists jo such that io E Pj! and thereby ghl(d+) = 0 < 
wt(it ::; ghl(d+), which contradicts optimality of(x, d-, (1+) for the prob­
lem PRGP. Thus cannot exist any vector x E Q such that F;(x) ::; aj for 
i=I,2, ... ,k. 0 
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In order to show that the PRGP model provides us with a complete pa­
rameterization of the efficient set, we show in the following proposition that 
for each efficient solution x there exists an aspiration vector for which x with 
the corresponding values of the deviation variables is an optimal solution of 
the PRG P problem. 

Proposition 4 For any positive weights wi and wi, if x E Q is an efficient 
solution of the multi-criteria problem {1J, then (x, 0,0) is an optimal solution 
of the corresponding PRGP problem with aspiration vector a = F(x). 
Proof. Note that (x, 0, 0) is a feasible solution of the PRGP problem with 
a = F(x). Suppose that (x, 0, 0) is not optimal for PRGP. For any positive 
weights wi and wi, g+(d+) ~ 0 and g-(d-) ~ 0, whereas g+(O) = 0 and 
g-(O) = o. So, there exists a feasible solution x E Q such that 

g+«F(x) - F(x))+) = 0 and g-«F(x) - F(x))+) <lex 0 

Hence F(x) :::; F(x) which contradicts efficiency of x for the multi-criteria 
problem (1). 0 

Note that neither proposition assumes convexity of the feasible set Q. Thus 
the preemptive reference point method can be applied not only for linear 
problems but also for integer ones where goal programming may fail to gen­
erate efficient solutions (see [3]). 

The PRGP problem takes a simpler form when all the priority sets are 
single element sets. Note that in such a case 

gj1(d+) = gj2(d+) = wjdj 

gi1(d-) = gi2(d-) = -widi 

for j = 1, 2, ... , k 

for j = 1, 2, ... , k 

Thus vector functions g+(d+) and g-(d-) defined by (12)-(17) can be re­
placed then with the following simpler formulas 

g+(d+) 

g-(d-) 

gjCd+) 

g-:-(d-) 
J 

[gi(d+),gt(d+), .. ·,gtCd+)] 

[gl(d-),g2"(d-), ... ,g;;(d-)] 

for j = 1, 2, ... , k 

for j = 1, 2, ... , k 

As a special case of PRG P one may consider the problem with all deviations 
dt belonging to the same priority set pt = {I, 2, ... , k} and all deviations di 
belonging to the same priority set P1- = {I, 2, ... , k}. Achievement functions 
for such a problem takes the form 

, g-(d-) = [gl(d-),g2"(d-)] (18) 
k 

, gt(d+) = E widt (19) 
;=1 

k 

, g2"(d-) = E -widi (20) 
;=1 
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Problem PRGP with achievement functions (18)-(20) defines the reference 
GP model without priorities for the deviations. However, it differs from the 
RGP problem due to the form and properties. While in the RGP model 
weights wi and wt must satisfy (10), PRGP without priorities requires only 
positivity of the weights. It is due to property P3 built in the PRGP model. 
This property is equivalent to the requirement that minimization of any indi­
vidual outcome greater than its aspiration level is preferred to minimization 
of any individual outcome which is less or equal to the corresponding as­
piration level. It is a stronger requirement than property P2 and it is not 
always satisfied by the standard reference point method as well as by the RGP 
model (3)-(9). For instance, in the standard reference point method based 
on the scalarizing achievement function (2) with all Ai = 1 or in the RGP 
problem with wt = wt = wt and O.lwt < wi < wt, achievement vector 
(al + 1, a2 + 1, a3 - 10) is preferred to (al + 1, a2, a3). Preferring of vector 
(al + 1, a2, a3) seems to be better consistent with the basic quasisatisficing 
rule that the DM concentrates on improvement of these individual outcomes 
which do not reach their aspiration levels. In the PRGP model (without 
priorities) vector (al + 1, a2, a3) is preferred to (al + 1, a2 + 1, a3 - 10) for 
any positive weights wi and wi. Thus, with the PRGP model we not only 
allow the DM to introduce hierarchy of aspiration levels but even without 
such a hierarchy we refine the standard reference point method with better 
modeling of the quasisatisficing approach. 

3 Illustrative Example 
In this section we discuss the PRGP model for a sample decision problem. 
To keep the problem description short and clear, and the model itself easy 
solvable by graphical analysis we have decided to use rather a textbook ex­
ample than a real-life decision problem. Our example is based on the goal 
programming example from the OR/MS textbook [1]. 

Consider the media mix problem concerned with allocating the advertising 
budget among various media. For simplicity, we consider only two media: 
television and radio. Suppose rated exposures (people per month per ad­
vertising outlay) per $1000 of advertising expenditure are 10 000 and 7500, 
respectively, for television and radio. Assume the management has set the 
following goals it wish to achieve, arranged from highest to lowest priority: 

1. Avoid expenditures of more than $100000; 
2. Reach at least 750000 exposures; 
3. Avoid expenditures of more than $ 70 000 for TV advertisements; 
4. Maximize number of exposures; 
5. Minimize total expenditures; 
6. Minimize expenditures for TV advertisements. 

One may easily notice that the baseline problem is three-criteria optimiza­
tion problem where the objective functions are: number of exposures (max-
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imized), total expenditures (minimized) and expenditures for TV advertise­
ments (minimized). However, the management has specified its preferences 
with aspiration levels and priorities. 

Introducing two decision variables Xl and X2, expressing expenditures for 
several media in thousands of dollars, one gets the following goal constraints: 

Xl+ X2+ d1- dt = 100 
10 OOOx 1 + 7500X2+ d2 - dt = 750000 

Xl+ d;- dt = 70 
xl,x2,d1 ,dt,d2,dt,d3 ,dt > 0 

The management preferences can be expressed with the following PRGP 
achievement function: 

lexmin [dt, d2, dt, -dt, -d1, -d;] 

Note that d-:; has got there higher priority than -dt as the corresponding 
objective is maximized whereas for theoretical considerations in the previous 
section we assumed all the objective functions to be minimized. 

100 

50 

(70,30) 

50 100 
Figure 1: Graphical analysis for the illustrative example 

One can easily verify with the graphical analysis (compare Fig. 1) that 
the above PRGP problem has a unique optimal solution x = (70,30) with 
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outcomes: $ 100000 of total expenditures including $ 70 000 expended on TV 
advertisements, and 925000 exposures. The graphical analysis of the problem 
shows that this solution could not be reached for any achievement function 
using only positive weights. In fact, while solving the problem 

lexmin [widi, w2"d"2, wtdt, wtdt, wIdl , w3d3] 
for any positive weights wi and wi one gets a unique optimal solution x = 
(0,100) with outcomes: $ 100000 of total expenditures all expended on radio 
advertisements and 750000 exposures. This solution definitely seems not to 
be what the management preferred. Thus the usage of negative weights turns 
out to be important in this example. 

4 Concluding Remarks 
The most widely used technique for multi-criteria optimization and usually 
the only one taught in general OR/MS courses is goal programming. Goal 
programming. however, does not satisfy the efficiency (Pareto-optimality) 
principle. Simply, the GP approach does not suggest decisions that optimize 
the objective functions. It only yields decisions that have outcomes closest 
to the specified aspiration levels. This weakness of goal programming led to 
the development of the reference point method which though using the same 
main control parameters as GP always generates an efficient solution. 

Ogryczak [5] showed how the reference point method could be modeled 
within goal programming methodology provided that the nonnegativity re­
strictions on weights were dropped. It allows us to consider the reference 
point approach as an extension of goal programming. However, in most of 
real-life applications of goal programming the goals are grouped according to 
the predefined priorities whereas in the reference point method all the devi­
ations are considered to be equally important. In this paper we have shown 
how the priorities can be incorporated into the reference point method. The 
proposed preemptive reference point method not only preserves the most 
important properties of the standard reference point method (such as com­
pliance with the efficiency principle and controllability) but even without the 
use of priorities it refines the standard reference point method with better 
modeling of the quasisatisficing approach. Moreover, the preemptive refer­
ence point method has been developed using GP implementation techniques. 
So, it can be considered as an extension of preemptive goal programming. 
It allows us to extend applications of the powerful reference point approach 
and to build a unique decision support systems providing the DM with both 
preemptive GP and reference point approaches. 
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