
ON THE VALUE OF BINARY EXPANSIONS FOR GENERAL
MIXED-INTEGER LINEAR PROGRAMS

JONATHAN H. OWEN
General Motors Research and Development Center, 30500 Mound Road, MC #480-106-359,

Warren, Michigan 48090, jonathan.owen@gm.com

SANJAY MEHROTRA
Department of Industrial Engineering and Management Sciences, Robert R. McCormick School of Engineering,

Northwestern University, Evanston, Illinois 60208, mehrotra@iems.nwu.edu

(Received November 2000; revision received May 2001; accepted June 2001)

We study the use of binary variables in reformulating general mixed-integer linear programs. We show that binary reformulations result
in problems for which almost all the binary variables replacing a general integer variable need to be explored during branching. We also
give computational results on the performance of such reformulations in solving the mixed-integer programs, which support our theoret-
ical results.

1. INTRODUCTION

Practitioners frequently create models by replacing gen-
eral integer variables in a mixed-integer linear program by
introducing new binary variables (Rothberg 2000). In this
paper we provide theoretical and computational evidence
demonstrating that remodeling of mixed-integer programs
by binary variables should be avoided in practice unless
special techniques are used to handle these variables.
Given A ∈ �m×n, b ∈ �m, c ∈ �n, and p � n, the general

mixed-integer linear programming problem is

minimize cTx

subject to x ∈ K0

�MILP�

where

K0 = x ∈ K � xi ∈ � for i ∈ 1
 � � �
 p�� (1)

and

K = x ∈ �n � Ax � b�� (2)

The set K0 describes feasible mixed-integer solutions and
the set K gives the feasible region of the LP-relaxation for
MILP. We assume that K is bounded. Under this assump-
tion, without loss of generality, we assume that the bound
constraints xj � 0, for j = 1
 � � �
 n, and xj � Mj , for
j = 1
 � � �
 p, are included in the constraint set defining K.
By conv�K0� we denote the convex hull of points in K0.

In recent years methods using variable disjunctions to
generate cuts have emerged as a powerful tool for solving
mixed binary linear and nonlinear programs (Balas et al.
1993, 1996; Sherali and Adams 1990, 1994; Stubbs and
Mehrotra 1999). The disjunctive cuts generated at the root

node using variable disjunctions have proven useful in
reducing the size of the tree generated in a branch-and-
cut algorithm (Balas et al. 1993, 1996). From a theoretical
point of view, the use of variable disjunctions allows for a
complete description of the convex hull of the mixed binary
set in a finite number of sequential convexification steps
(Balas et al. 1993; Sherali and Adams 1990, 1994). Balas
et al. (1993) also give a finite cutting plane algorithm for
mixed binary linear programs, providing further theoretical
support for using disjunctive cuts.
The complete description of the convex hull of the gen-

eral mixed-integer set is not possible in a finite number of
sequential convexification steps using variable disjunctions
(Balas 1979, Owen and Mehrotra 2001) unless general
integer variables are modeled as binary variables. Sherali
and Adams (1999) provide one such technique, which uses
a full expansion of the general integer variables in terms of
binary variables. When convexification is done using vari-
able disjunctions on general integer variables, the sequen-
tial convexification procedure converges to the convex hull
only in the limit (Owen and Mehrotra 2001), in con-
trast with finite convergence for the binary case. Knowing
this theoretical advantage of mixed binary problems, it
is tempting for practitioners to reformulate a MILP as a
mixed binary linear problem using standard techniques.
Furthermore, one may think to use the binary reformula-
tion of MILP and use disjunctive cuts in a branch-and-
cut algorithm to solve this reformulation. On the contrary,
there is an understanding among experts that this remod-
eling of general integer variables results in binary prob-
lems which are considerably more time consuming to solve
(Rothberg 2000).

Subject classifications: Programming, integer: remodeling of general integer variables.
Area of review: Optimization.

Operations Research © 2002 INFORMS
Vol. 50, No. 5, September–October 2002, pp. 810–819 810

0030-364X/02/5005-0810 $05.00
1526-5463 electronic ISSN

Owen and Mehrotra / 811

In this paper we study the effectiveness of a compact
and a full binary reformulation of MILP. We show that to
generate conv(K0) in the compact reformulation of MILP
by choosing binary variables in the best possible order, the
sequential convexification procedure of Balas et al. (1993)
and the reformulation technique of Sherali and Adams
(1990, 1994) have to be carried out for all the binary vari-
ables (replacing a general integer variable) to eliminate
more than half of the possible ranges for extreme points
that are fractional in an integer variable. This negative result
indicates that we need to explore the entire depth of the
branch-and-bound tree while branching on binary variables
replacing a general integer variable. It also indicates that
disjunctive cuts that make good progress toward an optimal
solution in the mixed-integer space may not be available
early (e.g., at the root node). A result on the variable selec-
tion order is also given for the full reformulation of MILP.
This result suggests that in the full reformulation all binary
variables corresponding to integer values larger than the
optimal integer value need to be fixed during branching.
As a consequence, we conclude that the binary reformu-

lations are unlikely to be of practical (computational) value
and should be discouraged in practice unless special tech-
niques are used to handle these variables. This is further
supported by computational evidence obtained on MIPLIB
test problems (Bixby et al. 1998).
This paper is organized as follows. In the next section we

give the compact reformulation and describe a use of the
convexification procedures of Sherali and Adams (1990)
and Balas et al. (1993). Here we also show that if sets from
the binary reformulation are prematurely projected, then we
get the sets generated in the procedure described in Owen
and Mehrotra (2001), which only converges in the limit. In
§3 we consider an application of the binary variable con-
vexification procedure to a two-variable example problem.
In §4 we prove the main results of this paper. Here we show
that a particular variable selection order is best in terms of
generating early cuts in the original space. We also demon-
strate that in most cases we need to generate the hull for
all expansion variables in order to eliminate most fractional
extreme points in the original space. We state a result on
variable selection order for the full reformulation in §4.3.
In §5 we study computational results on the performance
of binary reformulations.

2. BINARY REFORMULATION
AND CONVEXIFICATION PROCEDURE

2.1. Binary Reformulation

The binary reformulation of MILP that we primarily focus
on in our theoretical discussion is obtained by defining each
integer variable by

xj = u
j
0+2uj1+4uj2+8uj3+· · ·+2kj ujkj

where variables u
j
i ∈ � for i = 0
1
2
 � � �
 kj , and kj =

�log2Mj�. We call this a compact reformulation since it
requires us to introduce the least number of new binary

variables. An alternative full reformulation introducing Mj

binary variables (one for each integer value) was used by
Sherali and Adams (1999); we will discuss implications of
our analysis to the full reformulation in §4.3.
The feasible set of the reformulated problem can be

written in n continuous and k∗ ≡∑p
j=1�1+kj� binary vari-

ables as follows:

K0
B = �x
u� ∈ KB � uji ∈ �

for j = 1
2
 � � �
 p
 and i = 0
1
 � � �
 kj�

where

KB =

x ∈ �n
 u ∈ �k∗

∣∣∣∣∣∣∣∣∣

Ax � b

xj =
∑kj

i=0 2
iu

j�
i for j = 1
2
 � � �
 p

0� u
j
i � 1 for j = 1
2
 � � �
 p

and i = 0
1
 � � �
 kj

�

In general, we will have a set S ⊆ KB in the �x
u�-space
whose projection onto the x-space is defined as

Projx�S�≡ x��x
u� ∈ S��
For example, K = Projx�KB�.

2.2. Convexification Procedure

For any j ∈ 1
2
 � � �
 p� and i ∈ 0
1
 � � �
 kj�, define
�j
i �S�≡ conv

(
�x
u� ∈ S�uji = 0�
 �x
u� ∈ S�uji = 1�

)
�

A convexification procedure to generate conv�K0� based on
the binary convexification procedure of Balas et al. (1993),
and the reformulation-linearization technique of Sherali and
Adams (1990), can be described as follows.
Given a general-integer problem, we first generate a

binary expansion in the manner described in §2.1; let
the convex set KB represent the linear relaxation of the
expansion feasible region. Let CB represent the current
polyhedral approximation of K0

B. We initialize CB to be
KB. At each iteration of the procedure, if there are any
expansion variables that are fractional at an extreme point
of CB, then we select such a fractional variable u

j
i . In

this case, we update CB �= conv��x
u� ∈ CB �uji = 0�,
�x
u� ∈ CB �uji = 1��. This update does not add any new
fractional extreme points and it removes all extreme points
of current CB with fractional uji (see Theorem 2.1 and
Theorem 2.2 of Balas et al. 1993). When all extreme points
of CB are integer valued in the expansion variables, the
region CB is equal to conv�K0

B�. At this point in the pro-
cedure, we project the final expansion region CB onto the
x-space, giving C∗

G = Projx�CB�. It is easy to see that
C∗
G = conv�K0�. A pseudocode description of the procedure

is described in Figure 1. In this description, Ct
B represents

the current expansion region during the tth iteration.
Theorem 1 and Corollary 2 below show that we do not

benefit by projecting the set at an intermediate stage of the
binary expansion convexification procedure. These results
show that if the set in the �x
u�-space is projected after
each iteration of the binary expansion convexification pro-
cedure, we get the infinite convergence procedure of Owen

812 / Owen and Mehrotra

Figure 1. Pseudocode of the binary expansion convex-
ification procedure.

and Mehrotra (2001). In particular, Theorem 1 states that
after using the binary convexification procedure for all the
binary variables corresponding to a general-integer variable
xj , if we project the set onto the x-space, we get the convex
hull of CG restricted to integer values of xj . This same set
is generated at an iteration of the convexification proce-
dure in Owen and Mehrotra (2001). Corollary 2 states the
equivalence of generated sets when the procedure is applied
repeatedly.

Theorem 1. For a polyhedral set CG in x-space, let
CB�CG� be the corresponding polyhedral set in �x
u�-space
of its binary reformulation. For each j ∈ 1
2
 � � �
 p� and
each ordering i0
 i1
 � � �
 ikj of the indices 0
1
 � � �
 kj�, let

Sj�CB�CG��≡�j
ikj
��j

ikj−1
�� � � ��j

i0
�CB�CG��� � � � ��� Then,

Projx�Sj�CB�CG���=�j�CG�

where �j�CG�≡ convx ∈ CG�xj ∈ ��.

Corollary 2. For l � p, let j1
 j2
 � � �
 jl� ⊆ 1
2

� � �
 p�. Then,

�jl
��jl−1

�� � � ��j1
�CG�� � � � ��

= Projx�Sjl �CB��jl−1
��jl−2

�� � � ��j1
�CG�� � � � ������

Corollary 2 suggests that it is necessary to generate
conv(K0

B� before projecting it onto the x-space in order
to generate the hull conv(K0) in a finite number of steps.
Therefore, we focus on studying the efficiency with which
the binary expansion convexification procedure generates
conv(K0

B).
We note that our interest is in solving MILP. In the

branch-and-cut algorithm conv(K0
B� is not generated while

solving MILP, and constraints describing conv(K0
B� are gen-

erated as we progress. However, we would like to know
when it is possible to generate constraints that would help
strengthen the set of solutions in the x-space. In this con-
text the study of how conv(K0

B� is generated in the �x
u�-
space becomes useful.
We illustrate our main results with the help of an

example in the next section.

3. GENERATING THE CONVEX HULL
FOR AN EXAMPLE MILP

We apply the convexification procedure in Figure 1 to a
two-variable example problem. The sets Ct

B in this proce-
dure are generated using version 1.3.1 of porta (Christof
and Löebel 1997). As the convexification procedure pro-
gresses, we want to know the cutting planes that are gen-
erated (if any) in the x-space. For this purpose we project
the mixed-binary set Ct

B at each iteration of the convexifi-
cation procedure to the x-space, however, we continue with
the original binary formulation (with added inequalities) in
the next iteration. This determines the progress being made
in the x-space when applying the expansion convexification
procedure. Consider the following example problem:

K0 =

x ∈ �2

∣∣∣∣∣∣∣

3x1 + 5x2 � 20
5x1 + 3x2 � 20
x1 � 0

x2 � 0

�

The relaxation K of this region, pictured in Figure 2, has
a single fractional extreme point, x̄ = �2�5
2�5�. The linear
relaxation of the binary expansion of this region is given by

KB =

x ∈ �2
 u ∈ �6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3x1 + 5x2 � 20
5x1 + 3x2 � 20
x1 � 0

x2 � 0

u10 + 2u11 + 4u12 − x1 = 0
u20 + 2u21 + 4u22 − x2 = 0

0 � u � 1

�

Since K ⊆ �2 we can visually observe the region Ct
G at

each iteration of the modified binary convexification pro-
cedure. The illustrations in Figure 3 show the set Ct

G after
each iteration of the procedure, in the case where expan-
sion variables are selected in the order u22
 u

2
1
 u

2
0
 u

1
2
 u

1
1
 u

1
0.

Observe that cuts are not generated in the original space
until the third iteration of the procedure (Figure 3c), after
we have convexified with respect to all expansion variables
for x2. At this point we have the convex hull with respect to
x2, thus no extreme points have fractional x2 components.
No cut in the x-space is generated after we convexify for
variable u12, and we get the convex hull conv(K0) only after
all the binary variables are considered. This leads to the
interesting question: Is the property that (almost) all binary
variables need to be considered to generate the convex hull
true in general? Unfortunately, the answer to this question
is yes, as it is proved in the next section.

Owen and Mehrotra / 813

Figure 2. The LP-relaxation of the example feasible
region.

ce4

(1 / 7) first prev next last

3 x(1) +5 x(2) <= 20

5 x(1) +3 x(2) <= 20

1 x(1) >= 0

1 x(2) >= 0

Problem View Help

4. PROPERTIES OF THE BINARY EXPANSIONS

The previous example demonstrated the progress in
x-space of the binary expansion convexification proce-
dure, using a fixed selection order of the binary variables
(u22
 u

2
1
 u

2
0
 u

1
2
 u

1
1
 u

1
0). In §4.1 we show that this selec-

tion order of variables u22
 u
2
1
 u

2
0 and u12
 u

1
1
 u

1
0 is a “best”

ordering for the example, from the viewpoint of generating
cuts in the original space as early as possible.
The result presented in §4.2 shows that even with a

best variable selection order, we still need to consider all
expansion variables in order to eliminate more than half
of the possible choices of fractional values of general-
integer variables at an extreme point of K. This sug-
gests that all binary variables corresponding to a general-
integer variable must be explored in the standard branching
process; such a behavior is confirmed in the computa-
tional experiments reported in §5. It may also be inferred
from the result in §4.2 that mixing the order of binary
variables representing different general-integer variables
(for example, u22
 u

1
2
 u

2
1
 u

1
1
 u

2
0
 u

1
0) will not significantly

improve the situation.

4.1. Best Variable Selection

We state the main result of this section in the following
theorem.

Theorem 3. Assume that all binary variables corre-
sponding to a general-integer variable are selected together
for convexification and no prior efficient ordering of the x
variables is known in MILP. Then, cuts in the x-space are
generated earliest if the convexification order for binary
expansion variables of x is given as(
u
j1
kj1

 u

j1
kj1−1
 � � �
 u

j1
0
 u

j2
kj2

 u

j2
kj2−1
 � � �
 u

j2
0
 � � �
 u

jp
kjp

u
jp
kjp−1
 � � �
 u

jp
0

)

for some ordering �j1
 j2
 � � �
 jp� of the variable indices
1
2
 � � �
 p� of x in MILP.

The remainder of this section is dedicated to establishing
this result. Proposition 4 below is a consequence of the
facial disjunctive property of Balas (1979).

Proposition 4. For any index set i0
 i1
 � � �
 il� ⊆
0
1
 � � �
 kj�,

�j
il

(
�j
il−1
�� � � ��j

i0
�KB�� � � � �

)

= conv
{
�x
u� ∈ KB�uji0
 uji1
 � � �
 ujil ∈ 0
1�

}
�

Let ext(S) represent the extreme points of a set S.
Lemma 5 shows that an extreme point of Projx�S� is
obtained from the projection of an extreme point of S. As a
consequence of this lemma, the subsequent corollary shows
that the set Projx�S� can be generated by taking the convex
hull of the projection of extreme points of S on to the x-
space.

Lemma 5. For a polyhedron S ⊆ KB

x̄ ∈ ext�Projx�S��⇒ there exists ū such that �x̄
 ū� ∈ ext�S��

Proof. Consider an arbitrary x̄ ∈ ext�Projx�S��. Since x̄ is
an extreme point of Projx�S�, there must exist some c̄ ∈�n

such that x̄ is the unique optimal solution to the following
problem:

minimize c̄T x

subject to x ∈ Projx�S��

Furthermore, since x̄ ∈ Projx�S� there must exist some ū
such that �x̄
 ū� ∈ S. Now consider the following problem:

minimize c̄T x

subject to �x
u� ∈ S�
Since S is nonempty, we can solve this problem using the

simplex method to yield a solution �x̂
 û� ∈ ext�S� where
c̄T x̂ = c̄T x̄. Since �x̂
 û� ∈ S, we have that x̂ ∈ Projx�S�.
It follows from our selection of c̄ that x̂ = x̄. Thus, since
�x̂
 û� ∈ ext�S� we know that �x̄
 û� ∈ ext�S�. �

Corollary 6. For a polyhedron S ⊆ KB, Projx�S� =
conv�Projx�ext�S���.

Proof. By Lemma 5, we have that ext�Projx�S�� ⊆
Projx�ext�S��. Clearly Projx�ext�S�� ⊆ Projx�S�, thus
Projx�S� ≡ conv�ext�Projx�S��� ⊆ conv�Projx�ext�S��� ⊆
conv�Projx �S��. Since Projx�S� is a convex set, conv�Projx
�ext�S���= Projx�S�. The result follows immediately. �

814 / Owen and Mehrotra

Figure 3. Projections of convexified regions onto the original problem space �2. (a) After selecting u22. (b) After selecting
u21. (c) After selecting u

2
0. (d) After selecting u

1
2. (e) After selecting u

1
1. (f) After selecting u

1
0.

GI_P6_K

(2 / 7) first prev next last

3 x(1) +5 x(2) <= 20

5 x(1) +3 x(2) <= 20

1 x(1) >= 0

1 x(2) >= 0

Problem View Help

GI_P5_P6_K

(3 / 7) first prev next last

3 x(1) +5 x(2) <= 20

5 x(1) +3 x(2) <= 20

1 x(1) >= 0

1 x(2) >= 0

Problem View Help

GI_P4_P5_P6_K

(4 / 7) first prev next last

3 x(1) +5 x(2) <= 20

5 x(1) +3 x(2) <= 20

15 x(1) +17 x(2) <= 76

1 x(1) >= 0

1 x(2) >= 0

Problem View Help

GI_P3_P4_P5_P6_K

(5 / 7) first prev next last

3 x(1) +5 x(2) <= 20

5 x(1) +3 x(2) <= 20

15 x(1) +17 x(2) <= 76

1 x(1) >= 0

1 x(2) >= 0

Problem View Help

GI_P2_P3_P4_P5_P6_

(6 / 7) first prev next last

5 x(1) +3 x(2) <= 20

5 x(1) +7 x(2) <= 28

1 x(1) >= 0

1 x(2) >= 0

Problem View Help

GI_P1_P2_P3_P4_P5_

(7 / 7) first prev next last

1 x(1) +1 x(2) <= 4

1 x(1) >= 0

1 x(2) >= 0

Problem View Help

(a)

(d) (e) (f)

(b) (c)

The following is a technical lemma. It quantifies the
range of values xj can take as its highest-order expansion
variables are restricted to binary values.

Lemma 7. For any xj ∈ � such that xj =
∑kj

i=0 2
iu

j
i , where

u
j
i ∈ �0
1� for all i ∈ 0
1
 � � �
 kj� and u

j
i ∈ 0
1� for

i ∈ kj
 kj −1
 � � �
 kj −��,

xj �∈
2�+1−1⋃
�=1

(
�2kj−�−1
�2kj−�

)

where � ∈ 0
1
 � � �
 kj�.

Proof. We prove the result by induction on the value
of �. As the base case, consider � = 0. In this case,
u
j
kj
∈ 0
1�. Since xj =

∑kj
i=0 2

iu
j
i and u

j
i ∈ �0
1� for all

i∈ 0
1
 � � �
 kj�, we know that xj ∈ �0
2kj+1−1�. Thus, for
u
j
kj
∈ 0
1�, the value xj is either in the interval �0
2kj −1�

or in the interval �2kj
2kj+1−1�, when u
j
kj
= 0 or ujkj = 1,

respectively. It follows that xj is not in the interval �2kj −1

2kj � when ujkj ∈ 0
1�, thus the result holds for �= 0. For
the induction step, first assume that the claim is true for
some arbitrary � ∈ 0
1
 � � �
 kj−1�. We will show that the
result then holds for �+ 1. By our assumption, we have

Owen and Mehrotra / 815

that xj �∈
⋃2�+1−1

�=1 ��2kj−� − 1
�2kj−��, which is equivalent

to the statement that xj ∈
⋃2�+1−1

�=0 ��2kj−�
 ��+1�2kj−�−1�.
Observe that for each � ∈ 0
1
 � � �
2�+1 − 1�, any value
of xj in the interval ��2kj−�
 ��+1�2kj−�−1� is attainable
only for fixed values of ujkj
 u

j
kj−1
 � � �
 u

j
kj−�. In particular,

if xj ∈ ��2kj−�
 ��+ 1�2kj−�− 1�, then for i ∈ kj
 kj − 1

� � �
 kj−��, uji is equal to the (kj− i+1)th most significant
digit of the (�+1)-digit binary representation of the integer
�2kj−�. Now let ûjkj
 û

j
kj−1
 � � �
 û

j
kj−� be fixed at the appro-

priate values for some arbitrary �̂ ∈ 0
1
 � � �
2�+1 − 1�,
and consider ûjkj−��+1� ∈ 0
1�. Let �F0
F1� be the (unique)
partition of the indices kj
 kj − 1
 � � �
 kj − �� such that
i ∈ F0 ⇔ û

j
i = 0 and i ∈ F1 ⇔ û

j
i = 1. If xj ∈ ��̂2kj−�

��̂+1�2kj−�−1�, then it follows that

xj =
∑
i∈F0

2iûji

︸ ︷︷ ︸
=0

+∑
i∈F1

2iûji

︸ ︷︷ ︸
= �̂2kj−�

+2kj−��+1�û
j
kj−��+1�+

kj−��+2�∑
i=0

2iûji
︸ ︷︷ ︸
∈ �0
2kj−��+1�−1�

�

It thus follows that if ûjkj−��+1� = 0, then

xj ∈ ��̂2kj−�
 �̂2kj−�+2kj−��+1�−1�

∈ �2�̂�2kj−��+1��
 �2�̂+1��2kj−��+1��−1�

and if ûjkj−��+1� = 1, then

xj ∈ ��̂�2kj−��+2kj−��+1�
 �̂�2kj−��+2kj−��+1�

+2kj−��+1�−1�

∈ ��2�̂+1�2kj−��+1�
 �2�̂+2�2kj−��+1�−1�

for each �̂ ∈ 0
1
 � � �
2�+1−1�. It follows that

xj ∈
2�+1−1⋃
�=0

([
2��2kj−��+1��
�2�+1��2kj−��+1��−1

]

∪[
�2�+1��2kj−��+1��
�2�+2��2kj−��+1��−1

])

which implies that

xj ∈
2�+2−1⋃
�=0

��2kj−��+1�
 ��+1�2kj−��+1�−1��

This is equivalent to the statement that

xj �∈
2�+2−1⋃
�=1

(
�2kj−��+1�−1
�2kj−��+1�

)

thus the claim is true for �+1. The result follows. �

In Theorem 8 we show that it is necessary to generate
the hull in the �x
u�-space with respect to the highest-order
expansion variable, in order to see any tightening of the set
in x-space. In Theorem 9 we show that the most effective
approach for tightening the set in x-space is to generate
the convex hull in the �x
u�-space with the highest-order
variables first.

Theorem 8. For any index set i0
 i1
 � � �
 il� ⊂ 0
1

� � �
 kj� such that kj �∈ i0
 i1
 � � �
 il�, let

S =�j
il
��j

il−1
�� � � ��j

i0
�KB�� � � � ���

Then, Projx�S�= K.

Proof. Let x̄ be an arbitrary extreme point of K. First,
suppose that x̄j ∈ �0
2kj �. Since kj �∈ i0
 i1
 � � �
 il�, we
have that �x̄
 ū� ∈ S, where ūji = 0 for i = 0
1
 � � �
 kj − 1
and ū

j
kj

= x̄j/2
kj . It follows that x̄ ∈ Projx�S� for any

x̄ ∈ ext�K� such that x̄j ∈ �0
2kj �. Now suppose that x̄j ∈
�2kj
2kj+1 − 1�. Since kj �∈ i0
 i1
 � � �
 il�, we have that
�x̄
 ū� ∈ S, where ūji = 1 for i = 0
1
 � � �
 kj −1 and ūjkj =
�x̄j − �2kj −1��/2kj . It follows that x̄ ∈ Projx �S� for any x̄ ∈
ext�K� such that x̄j ∈ �2kj
2kj+1−1�. Thus, since Projx �S�
is a convex set containing all extreme points of K, we have
K ⊆ Projx �S�. Also since Projx�S� ⊆ Projx�KB� = K, we
have Projx �S� = K for all i0
 i1
 � � �
 il� ⊆ 0
1
 � � �
 kj�
such that kj �∈ i0
 i1
 � � �
 il�. �

Theorem 9. For any index set i0
i1
���
il�⊆0
1
���
kj�
such that kj ∈i0
i1
���
il�, let

S=�j
il
��j

il−1
������j

i0
�KB�������

and

S�=�j
kj−���

j
kj−�+1������

j
kj
�KB�������

where � is the largest integer such that kj
kj−1

���
kj−��⊆i0
i1
���
il�. Then, Projx�S��=Projx�S�.

Proof. By construction, since kj
 kj − 1
 � � �
 kj − �� ⊆
i0
 i1
 � � �
 il�, we have that S ⊆ S�. It follows that Projx
�S�⊆ Projx�S��. In the following, we show that Projx�S��⊆
Projx�S�, and thus Projx�S��= Projx�S�. Let x̂ be an arbi-
trary extreme point of Projx�S��. Since x̂ ∈ ext�Projx�S���,
by Lemma 5 there exists some û such that �x̂
 û� ∈ ext�S��.
By Lemma 7, we know that x̂j �∈

⋃2�+1−1
�=1 ��2kj−� − 1

�2kj−��, which implies that x̂j is in the interval
��2kj−�
 ��+1�2kj−�−1� for some �∈ 0
1
 � � �
2�+1−1�.
If we restrict uji ∈ 0
1�
 i ∈ kj
 kj − 1
 � � �
 kj −��, then
observe that any value of x̂j in this interval is attainable
only for fixed values of ûji for i ∈ kj
 kj − 1
 � � �
 kj −��.
In particular, if x̂j ∈ ��̂2kj−�
 ��̂+ 1�2kj−� − 1�, then for
i ∈ kj
 kj −1
 � � �
 kj −��, ûji is equal to the (kj − i+1)th
most significant digit of the (�+ 1)-digit binary represen-
tation of the number �̂2kj−�. Let �F0
F1� be the (unique)

816 / Owen and Mehrotra

partition of the indices kj
 kj − 1
 � � �
 kj − �� such that
i ∈ F0 ⇔ û

j
i = 0 and i ∈ F1 ⇔ û

j
i = 1. Then,

x̂j =
∑
i∈F0

2iûji

︸ ︷︷ ︸
=0

+∑
i∈F1

2iûji

︸ ︷︷ ︸
= �̂2kj−�

+2kj−��+1�û
j
kj−��+1�+

kj−��+2�∑
i=0

2iûji
︸ ︷︷ ︸
∈ �0
2kj−��+1�−1�

�

First suppose that x̂j − �̂2kj−� � 2kj−��+1�. In this case, let
"= x̂j − �̂2kj−� and take û such that

û
j
i = 0 ∀ i ∈ F0

û
j
i = 1 ∀ i ∈ F1

û
j
i = 0 ∀ i ∈ 0
1
 � � �
 kj − ��+2��
 and

û
j
kj−��+1� = "/2kj−��+1��

Since û
j
i ∈ 0
1� for all i ∈ i0
 i1
 � � �
 il�, it is clear

that �x̂
 û� ∈ S, thus x̂ ∈ Projx�S�. Now suppose that
x̂j − �̂2kj−� > 2kj−��+1�. In this case, let " = x̂j − �̂2kj−�−
2kj−��+1� and take û such that

û
j
i = 0 ∀ i ∈ F0

û
j
i = 1 ∀ i ∈ F1

û
j
i = 1 ∀ i ∈ 0
1
 � � �
 kj − ��+2��
 and

û
j
kj−��+1� = "/2kj−��+1��

Since û
j
i ∈ 0
1� for all i ∈ i0
 i1
 � � �
 il�, it is clear

that �x̂
 û� ∈ S, thus x̂ ∈ Projx�S�. Since x̂j ∈ ��̂2kj−�

��̂+1�2kj−�−1� for some �̂∈ 0
1
 � � �
2�+1−1�, we have
shown that there exists some corresponding û such that
�x̂
 û� ∈ S. Now the inclusion Projx�S��⊆ Projx�S� follows
from the convexity of sets S
S�
Projx�S�, and Projx�S��

and the use of the representation theorem (Bazaraa et al.
1993, Theorem 2.6.7) The result follows. �

Theorem 3 and Corollary 10 follow directly from
Theorem 9.

Corollary 10. Cuts in the x-space of MILP are gen-
erated earliest if the convexification order for binary
expansion variables of xj is given as i0
 i1
 � � �
 ikj � =
kj
 kj −1
 � � �
0�.

4.2. Convexification for All Integer Values

In the previous section we showed that the best convexi-
fication order for the binary expansion variables of xj is
given as �ujkj
 u

j
kj−1
 � � �
 u

j
0�. Intuitively, this order makes

sense because at each step we are generating the convex
hull with respect to the expansion variable with the largest
coefficient that we have not yet considered, and thus we are
restricting the value of xj as much as possible at each step.
As a result, it may seem that we would typically not need
to generate the convex hull with respect to all of the expan-
sion variables in order to eliminate the fractional extreme
points of K, and hence we may be able to generate the

convex hull earlier by considering (all) expansion variables
with the largest coefficients first. The following theorem
contradicts this expectation.

Theorem 11. It is necessary to generate the convex
hull with respect to all expansion variables u

j
i , i ∈

0
1
 � � �
 kj�, in order to eliminate more than half of the
possible ranges for extreme points in K that are fractional
in xj .

Proof. This theorem follows from Lemma 7. In particular,
suppose that we have generated the convex hull in the lifted
space with respect to u

j
i for all i ∈ 1
2
 � � �
 kj�. In the

corresponding projection, we have eliminated only the frac-
tional extreme points with xj ∈

⋃2kj−1
�=1 ��2kj−�−1
�2kj−��,

a range of size 2kj − 1 units. Thus, since the range of
xj =

∑kj
i=0 2

iu
j
i is a total of size 2kj+1−1 units, by consid-

ering all expansion variables except for uj0 we have elim-
inated less than half of the possible ranges for extreme
points in K that are fractional in xj . �

The above result, together with Theorem 3, has important
implications for practitioners. It suggests that remodeling
integer variables in MILP using additional binary variables
results in a problem for which almost all the binary vari-
ables need to be explored in the standard branching pro-
cess, or while generating cuts using variable disjunctions
in a branch-and-cut algorithm. Therefore, such reformula-
tions should be avoided, unless special techniques are used
to handle these variables. Note however, that the need to
explore all the binary variables corresponding to an integer
variable does not mean that the size of the branch-and-
bound tree will grow exponentially in these variables, since
large segments of this tree would be pruned easily.

4.3. Full-Expansion Reformulation

The binary reformulation of MILP used by Sherali and
Adams (1999) defines each integer variable xj by

xj =
Mj∑
i=0

iv
j
i

Mj∑
i=0

v
j
i = 1

where variables vji ∈ � for i= 0
1
2
 � � �
Mj . We call this
reformulation a full reformulation of MILP. A result similar
to Theorem 3 is also valid for the full reformulation.

Theorem 12. Assume that all binary variables corre-
sponding to a general-integer variable are selected together
for convexification and no prior efficient ordering of the x
variables is known in MILP. Then, cuts in the x-space are
generated earliest if the convexification order for binary
expansion variables of x is given as
(
v
j1
Mj1

 v

j1
Mj1

−1
 � � �
 v
j1
0
 v

j2
Mj2

 v

j2
Mj2

−1
 � � �

v
j2
0
 � � �
 v

jp
Mjp

 v
jp
Mjp

−1
 � � �
 v
jp
0

)

Owen and Mehrotra / 817

for some ordering �j1
 j2
 � � �
 jp� of the variable indices
1
2
 � � �
 p� of x in MILP.

Similar to the compact-reformulation case, this result is
based on the result (left for the reader) that binary expan-
sion variables corresponding to a general integer variable
xj need to be convexified in descending order to see tight-
ening in the set obtained upon projection in the x-space.
This result suggests that in the full reformulation all

binary variables corresponding to integer values larger than
the optimal integer value need to be fixed during branching
before we can prove optimality of a solution. Because of
this phenomenon, in the branching process we are likely
to consider many of the binary variables that replace an
integer variable. The computational results in the next sec-
tion confirm such behavior.
We also note that the reformulation-linearization tech-

nique of Sherali and Adams (1999) generates the convex
hull with respect to all the binary variables uji replacing a
general integer variable xj at once. The size of the linear
program resulting from applying this technique to only one
set of uji is very large, and it is not clear if this technique
can be used in practice.

5. COMPUTATIONAL EXPERIMENTS

The computational results presented in this section are
based on problem instances from the MIPLIB-3.0 library
(Bixby et al. 1998). For each problem instance consid-
ered, we generated both a compact- and full-expansion
reformulation based on the variable bounds stated in the
original problem file.1 Each problem from the library that
contains general-integer variables is considered except for
dsbmip and arki001. The problem dsbmip is not con-
sidered because the value of each of its 32 general-
integer variables is explicitly fixed. The problem arki001
is excluded due to errors encountered when trying to solve
its binary reformulations.2 All problems were solved using
version 6.6 of the general purpose solver CPLEX (ILOG
Inc. 1998) with the default settings.
Table 1 gives a summary of the problem instances and

computational results. The third column gives the total
number of variables, and columns 4 and 5, respectively,
give the number of general- and binary-integer variables for
each instance. The penultimate column shows the number
of branch-and-bound nodes required to solve the problem
as reported by the CPLEX library routine CPXgetnodecnt().
The last column shows the “user time” needed to solve the
problem as returned by the UNIX system call getrusage();
times are reported for solution on a Sun Ultra-60 worksta-
tion with 384Mb RAM (and 1Gb virtual memory) running
Solaris 5.7.
The first observation from the results in Table 1 is that

solution times for binary reformulations were always more
than the time required by the original formulation. This
suggests that solving either of the two reformulations is
not effective. In its worst relative performance (problem
gesa3_o), the compact expansion solved approximately 19

times slower than the original formulation. For problem
bell5 the full expansion solved 1,088 times slower than
the original formulation.
The compact expansion was solved faster than the full

expansion on 10 problems, while the full expansion was
solved faster on the remaining four. The compact expansion
of problem bell3a was solved 194 times faster than its full
expansion, while the full expansion of problem gesa3_o
was solved 3.7 times faster than its compact expansion.
Although compact expansion generally seems to perform
better, these results suggest that superiority of either of the
two reformulations is not predictable.
A further analysis of the computational results in Table 1

for the compact expansion show a near-linear growth in the
number of examined nodes in the branch-and-bound enu-
meration tree with growth in the binary variables due to
reformulation. For this expansion the growth in the number
of examined nodes is a good indicator for the increase in
required CPU time to solve the problem. The growth in
the number of nodes for the full expansion is less pre-
dictable. Also, for the full expansion the growth in CPU
time as a function of growth in the number of examined
nodes is less predictable. Although the problems in the
MIPLIB test set have very different characteristics, our
computational results on these problems support the perfor-
mance indicated from the theory developed in the previous
section.
As noted earlier, the binary reformulations for problems

in Table 1 were generated using the bounds provided in
the original MIPLIB problem files. It is also possible to
generate implied bounds by solving linear programs cor-
responding to all general-integer variables. We performed
a second set of experiments where we generated reformu-
lations using these implied bounds. Our qualitative con-
clusions from the runs using the implied bounds are the
same.

6. CONCLUSIONS

We have given theoretical explanations that suggest that
binary reformulations of mixed-integer linear programs are
not a practical alternative for solving these problems. With
the help of computational results we showed that the solu-
tion times for these reformulations generally grow linearly
with the increase in the number of binary variables intro-
duced during reformulation. The performance of the full
reformulation is less predictable; however, computational
results suggest that it frequently performs worse than the
compact reformulation.
We point out that our theoretical and computational

results are under the assumption that the structure of con-
straints on binary variables in the reformulation is not
exploited in the branching process. It may be possible to
exploit the structure of the binary variables introduced in
the problem reformulation. For example, in full expan-
sion the resulting problem introduces a special-ordered
(type 1) constraint. In order to exploit this in CPLEX one

818 / Owen and Mehrotra

Table 1. Computational results.

Problem Problem Total Number General-Integer Binary Branch-and-Bound Solution
Name Formulation of Variables Variables Variables Nodes Time

bell3a original 133 32 39 21
358 48�03
compact expansion 453 0 359 100
165 223�67
full expansion 32
165 0 32
071 2
460
931 43
563�30

bell5 original 104 28 30 7
999 4�99
compact expansion 398 0 324 24
155 28�19
full expansion 94
732 0 94
658 486
061 5
431�48

blend2 original 353 33 231 1
831 7�62
compact expansion 407 0 285 5
783 20�77
full expansion 444 0 322 1
821 8�53

flugpl original 18 11 0 318 0�08
compact expansion 73 0 55 395 0�24
full expansion 227 0 209 688 0�62

gen original 870 6 144 1 0�15
compact expansion 900 0 174 4 0�22
full expansion 1
020 0 294 29 0�76

gesa2_o original 1
224 336 384 75
819 505�82
compact expansion 1
944 0 1
104 132
169 1
341�41
full expansion 2
424 0 1
584 122
094 1
278�63

gesa2 original 1
224 168 240 19
997 151�31
compact expansion 1
584 0 600 49
102 376�72
full expansion 1
824 0 840 137
324 1
126�37

gesa3_o original 1
152 336 336 1
371 13�81
compact expansion 1
920 0 1
104 28
110 261�68
full expansion 2
496 0 1
680 5
365 71�47

gesa3 original 1
152 168 216 588 9�64
compact expansion 1
536 0 600 889 12�48
full expansion 1
824 0 888 7
161 72�97

gt2 original 188 164 24 2
277 1�92
compact expansion 720 0 556 1
208 3�36
full expansion 1
500 0 1
336 50
875 248�29

noswot original 128 25 75 8
090
079 8
671�98
compact expansion 553 0 500 5
864
631 11
649�50
full expansion�a� 240 0 192 8
242
054 13
248�90

qnet1_o original 1
541 129 1
288 440 8�16
compact expansion 1
913 0 1
660 973 15�91
full expansion 2
345 0 2
092 1
938 38�30

qnet1 original 1
541 129 1
288 233 10�61
compact expansion 1
913 0 1
660 319 13�55
full expansion 2
345 0 2
092 610 18�83

rout original 556 15 300 177
353 4
369�09
compact expansion 586 0 330 269
318 10
396�90
full expansion 601 0 345 114
282 4
578�15

(a)—full expansion using implied bounds; see endnote #1.

needs to give preassigned weights on variables in special-
ordered branching (ILOG Inc. 1998). In our context, the
natural choice for these weights are the integer values
corresponding to each binary variable introduced while
writing full expansions. This choice of weights results
in a branching that is equivalent (provided the branching
order of variables in x-space and �x
u�-space is same) to
branching on the value of fractional integer variables in
MILP directly. A branching scheme with similar properties
can also be constructed for the compact expansion.

The comparative performance of methods working
directly on MILP and compact- and full-expansion refor-
mulations under different schemes for exploiting the binary
structure remains a topic of future research.

ENDNOTES

1. The full-expansion reformulation for the problem
noswot could not be solved using variable upper bounds
from the original problem. For this instance, we generated

Owen and Mehrotra / 819

a full-expansion reformulation that was based on implied
variable bounds determined by solving linear programs cor-
responding to each general integer variable.
2. The solver terminated with a nonoptimal objective value
for the full expansion, and an attempt to solve the compact
expansion of arki001 was interrupted after several days
when the solver ran out of memory.

ACKNOWLEDGMENTS

The authors sincerely thank an anonymous referee and
the associate editor handling this paper for several con-
structive suggestions. In particular, the discussion on full
formulation, and the computational section, were added due
to their comments.
The work of the second author was supported in part

by ONR grant N00014-01-1-0048 and NSF grants DMI-
9500396 and DMI-9908038.

REFERENCES

Balas, E. 1979. Disjunctive programming. Ann. Discrete Math. 5
3–51.
, S. Ceria, G. Cornuéjols. 1993. A lift-and-project cutting
plane algorithm for mixed 0-1 programs. Math. Program-
ming 58 295–324.
, , . 1996. Mixed 0-1 programming by lift-and-
project in a branch-and-cut framework. Management Sci.
42(9) 1229–1246.

Bazaraa, M. S., H. D. Sherali, C. M. Shetty. 1993. Nonlinear
Programming Theory and Algorithms, 2nd ed. John Wiley
and Sons, New York.

Bixby, R. E., S. Ceria, C. M. McZeal, M. W. P. Savels-
bergh. 1998. An updated mixed integer programming library:
MIPLIB 3.0. Technical Report TR98-03, The Department of
Computational and Applied Mathematics, Rice University,
Houston, TX.

Christof, T., A. Löebel. 1997. PORTA: Polyhedron representation
transformation algorithm. Version 1.3.1 of the software and
documentation distributed via the Internet �http://www.iwr.
uni-heidelberg.de/iwr/comopt/soft/soft.html�.

ILOG Inc. 1998. Using the CPLEX Callable Library, Version 6.0.
ILOG Inc.

Owen, J. H., S. Mehrotra. 2001. A disjunctive cutting plane pro-
cedure for general mixed-integer linear programs. Math. Pro-
gramming 89(3) 437–448.

Rothberg, E. 2000. Using cuts to remove symmetry. Presentation
at 17th International Symposium on Mathematical Program-
ming, Atlanta, GA.

Sherali, H. D., W. P. Adams. 1990. A hierarchy of relaxations
between the continuous and convex hull representations for
zero-one programming problems. SIAM J. Discrete Math.
3(3) 411–430.
, . 1994. A hierarchy of relaxations and convex hull
characterizations for mixed-integer zero-one programming
problems. Discrete Appl. Math. 52 83–106.
, . 1999. A Reformulation-Linearization Technique
for Solving Discrete and Continuous Nonconvex Problems,
Ch, 4. Kluwer Academic Publishers, Norwell, MA.

Stubbs, R. A., S. Mehrotra. 1999. A branch-and-cut method for
0-1 mixed convex programming. Math. Programming 86(3)
515–532.

