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Foreword

The research described in this Working Paper was performed at the Institute of Informat-

ics, Warsaw University (IIUW) as a part of IIASA CSA project activities on \Methodology

and Techniques of Decision Analysis". While earlier work within this project resulted in

the elaboration of prototype decision support systems (DSS) for various models, like the

DINAS system for multiobjective transshipment problems with facility location developed

in IIUW, these systems were closed in their architecture. In order to spread the scope

of potential applications and to increase the ability to meet speci�c needs of users, in

particular in various IIASA projects, there is a need to modularize the architecture of

such DSS. A modular DSS consists of a collection of tools rather than one closed system,

thus allowing the user to carry out various and problem-speci�c analyses.

This Working Paper describes the MOMIP optimization solver for middle-size mixed

integer programming problems, based on the branch-and-bound algorithm. It is designed
as part of a wider linear programming library being developed within the project.
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Abstract

This Working Paper documents the Modular Optimizer for Mixed Integer Programming

MOMIP version 2.3. MOMIP is an optimization solver for middle-size mixed integer pro-

gramming problems, based on the branch-and-bound algorithm. It is designed as part

of a wider linear programming modular library being developed within the IIASA CSA

project on \Methodology and Techniques of Decision Analysis". The library is a collec-

tion of independent modules, implemented as C++ classes, providing all the necessary

functions of data input, data transfer, problem solution, and results output.

The paper provides the complete description of the MOMIP module. Methodolog-

ical background allows the user to understand the implemented algorithm and e�cient

use of its control parameters for various analyses. The module description provides the

information necessary to make MOMIP operational within a user application program.

MOMIP is also available as a standalone executable program with built in all the
necessary auxiliary modules. User's manual for the MOMIP program is included in this
paper. It is additionally illustrated with a tutorial example.
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Modular Optimizer for

Mixed Integer Programming

MOMIP Version 2.3

W lodzimierz Ogryczak�, Krystian Zorychta��

1 Introduction

MOMIP is an optimization solver in C++ (Stroustrup, 1991) for middle-size mixed in-

teger linear programming problems, based on the branch-and-bound algorithm. It is

designed as part of a wider linear programming modular library being developed within
the MDA project. The library is a collection of independent modules, implemented as
C++ classes, providing all the necessary functions of data input, data transfer, problem
solution, and results output. The PROBLEM class (Swietanowski, 1994) is a communica-

tion kernel of the library. It provides data structures to store a problem and its solution
in a standardized form as well as standard input and output functions. All the solver
classes take the problem data from the PROBLEM class and return solutions to this class.
Thus for straightforward use one can con�gure a simple optimization system using only
the PROBLEM class with its standard input/output functions and an appropriate solver

class. More complex analysis may require use of more than one solver class. Moreover,
for complex analysis of real-life problems, a more convenient way may be to incorporate
the library modules in the user program. This will allow the user to proceed with direct
feeding of the PROBLEM class with problem data generated in the program and direct
results withdrawal for further analysis.

MOMIP is implemented as the MIP class. It is a typical solver class taking problem
data from the PROBLEM class and returning the solution to this class. It is presumed,
however, that the problem has been solved earlier (not necessarily in the same run) by
the linear programming solver and that the linear programming solution is available as
a starting one in the search of integer solution. With the speci�cation of various control

parameters, the user can select various strategies of the branch-and-bound search. All
these parameters have prede�ned default values, thus the user does not need to de�ne

them for a straightforward use of the MOMIP solver. The MIP class constructs implicitly
all the auxiliary computational classes used in the branch-and-bound search. One of these

classes, the DUAL class that provides the dual simplex algorithm, may be useful in some
other analyses. Therefore, despite its implicit use in MOMIP, the DUAL class is made

explicitly available for other applications and its description is included in this manual.
Comparing to MOMIP version 1.1 (Ogryczak and Zorychta, 1993) several extensions

and re�nements have been implemented. The following capabilities are the most impor-

tant extensions of MOMIP version 2.3:

� Special Ordered Sets processing and scanning,

�Institute of Informatics, Warsaw University, 02-097 Warsaw, Poland.
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� strengthened penalties on the branching variable,

� two types of cuts generation,

� priorities for branching variable selection,

� built in primal simplex algorithm,

� standardized data transfer (DIT-LP communication).

The manual is organized as follows. Chapter 2 deals with methodological backgrounds

of the MOMIP solver. It speci�es the algorithm implemented in MOMIP and meanings

of the control parameters that can be used in advanced applications. Chapter 3 describes

in details the MIP class. Similarly, Chapter 4 contains detailed description of the DUAL

class. It is addressed to the users interested in using this class outside the MOMIP solver

and it can be skipped by users of the MIP class. MOMIP is also available as a standalone

executable program with built in all the auxiliary modules. Chapter 5 describes the

MOMIP program, thus it can be considered as a basic user's manual. It is accompanied

by Chapter 6 describing details of the input data �le. Chapter 7 presents an illustrative

example of the mixed integer model analysis with the MOMIP solver, thus it can be

considered as a tutorial. Results of some computational tests are discussed in Chapter 8.

The MOMIP solver was designed and mainly developed by the authors of this man-

ual. However, it could not have been completed without the help of Janusz Borkowski,
Krzysztof Studzi�nski, Tomasz Szadkowski and Jaros law �Swi�ecicki. Moreover, MOMIP has
built in the INVERSE class developed by Artur �Swi�etanowski for his SIMPLEX module
(Swietanowski, 1994). We want to express our sincere gratitude to them.

2 Methodological background

2.1 Mixed integer linear programming problems

A mixed integer linear programming problem (referred to thereafter as MIP problem) is
a linear problem with two kinds of variables: integer variables and continuous variables.
Integer variables can take only integer values, whereas continuous variables can take any
real number as a value. Classical linear programming problems only have continuous
variables. In the absence of continuous variables, we get the so-called pure integer linear

programming problem. It can be considered as a marginal case of the MIP problem and
solved with the same software although specialized algorithms are, usually, more e�cient
for these types of problems.

The possibility of introducing integer variables into linear programming models allows
for the analysis of many very important problems which are not covered by the classical

linear programming. In many models, some of the given variables represent entities which
cannot be partitioned. Much more important, many logical relations can be formulated as

linear relations with integer (binary) variables. Moreover, many nonlinear and nonconvex
models can be reformulated as linear programming problems with integer variables (see

Williams, 1991; Nemhauser and Wolsey, 1988; and references therein). These problems

cannot be solved or approximated with the classical linear programming.

The e�ciency of the solution procedure for MIP problems strongly depends on tight-

ness of linear constraints on integer variables. For instance, the set of constraints

x1 + x2 � 1; 0 � x1 � 1; 0 � x2 � 1; x1; x2 are integers

de�nes the same integer solutions as the set of constraints

0:8x1 + 0:6x2 � 1:3; 0 � x1 � 1; 0 � x2 � 1; x1; x2 are integers
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The former provides, however, tighter linear constraints on integer variables than the

latter. If we drop the integrality requirements, the former set of constraints de�nes the

convex hull of integer solutions, whereas the latter de�nes a larger set. For more reading

about e�cient MIP problems formulation we recommend the book by Williams (1991)

and references therein.

The order in which integer variables are processed during the search for integer solution

is important for the e�ciency. In some situations, this order depends on the original

order of integer variables in the problem. Therefore, it is recommended to introduce

integer variables in decreasing order of importance in the model or to de�ne appropriate

priorities for integer variables.

2.2 Branch-and-bound basics

Branch-and-bound is, in practice, the only technique allowing to solve general MIP prob-

lems. Land and Powell (1979) found that all the commercial MIP codes used the branch-

and-bound technique. This observation still remains valid with broad selection of MIP

software packages available now on the market (Saltzman, 1994). However, a wide vari-

ety of additional techniques has been applied to minimize the total e�ort involved in the
branch-and-bound process.

The branch-and-bound technique solves the MIP problem by successive optimizations
of linear programming problems. It is assumed that the continuous problem, i.e. the
MIP problem without integrality requirements, has been �rst solved. If all the integer
variables have integer values in the optimal solution to the continuous problem, there is
nothing more to do. Suppose that an integer variable, say xr, has a fractional (noninteger)

continuous optimum value x�r. The range

[x�r] < xr < [x�r] + 1

cannot include any integer solution. Hence, an integer value of xr must satisfy one of two
inequalities

xr � [x�r] or xr � [x�r] + 1

These two inequalities, when applied to the continuous problem, result in two mutually
exclusive linear problems created by imposing the constraints xr � [x�r] and xr � [x�r] + 1,

respectively, on the original feasible region. This process is called branching and integer

variable xr is called branching variable. As a result of branching the original problem is
partitioned into two subproblems. Now each subproblem may be solved as a continuous
problem. It can be done in an e�cient way with the dual simplex algorithm. If in opti-

mal solution of a subproblem some integer variable fails the integrality requirement, the

branching process may be applied on the subproblem thus creating a tree of subproblems.

Due to this structure the subproblems are referred to as nodes (nodes of the subproblems

tree). The original continuous problem is assumed to be node 0 (root of the tree) and the
other nodes get subsequent numbers when created.

A node does not need to be further branched if its optimal (continuous) solution
satis�es all the integrality requirements. Such a node, called integer node, is dropped

from the further search while its solution is stored as the best integer solution so far

available and its objective value becomes the cuto� value. A node may also be dropped
from further analysis if it is fathomed, i.e., there is evidence that it cannot yield a better

integer solution than that available so far. A node is, certainly, fathomed if it is infeasible

and thereby it cannot yield any solution. Since a node optimal value is a bound on the
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best integer solution value that can be obtained from the node, nodes with noninteger

optimal solutions may be fathomed by comparison of its optimal (continuous) value versus

the current cuto� value. The importance of acquiring good bounds to fathom nodes at

the early stages of the search process cannot be overemphasized. Therefore, in advanced

implementations of the branch-and-bound techniques, additional penalties are used in

fathoming tests. The general idea of the penalties is to estimate the deterioration in the

objective value caused by enforcing additional inequalities in branching.

While making the branch-and-bound technique operational, it is necessary to introduce

some order in the branching and solving of nodes. For this purpose, the so-called waiting

list containing all the nodes in need of further analysis, is usually introduced. It can be

arranged in two ways. If constructed but unsolved nodes are stored on the waiting list we

get the so-called single branching, where a node selected from the list is �rst solved and

next branched if not fathomed. If solved nodes are stored on the list, we have the so-called

double branching, where a node selected from the list is �rst branched and the next both

new subproblems are solved and stored on the list if not fathomed. For larger problems,

double branching is recommended and therefore it is implemented in the MOMIP solver.

The process of branching continues, where applicable, until each node terminates

either by generating an integer solution, or by being fathomed. Thus the branch-and-
bound search is completed when the waiting list becomes empty. During the course

of the branch-and-bound search one may distinguish three phases: search for the �rst
integer solution, search for the best integer solution and optimality proof. Computational
experiments show (see, Benichou et al., 1971) that for typical MIP problems, the �rst
two phases are usually completed in a relatively short time (only few times longer than
the time of continuous problem solution), whereas the last phase may require extremely

long time. Therefore MOMIP is armed with control parameters allowing to abandon the
search if it seems to be in a long optimality proof phase. Unfortunately, whereas the end
of the �rst phase is clearly de�ned (the �rst integer solution has been found), the end of
the second phase and the beginning of the optimality proof is never known for sure until
the entire search is completed.

Having de�ned the waiting list there are still many ways to put into operation the
branch-and-bound search. The most important for algorithm speci�cation are two opera-
tions: branching variable selection and node selection (for branching). Both the operations
may be arranged in many di�erent ways resulting in di�erent tree sizes and search e�-
ciency. Speci�cation of these two selection operations, called branch-and-bound strategy,
is crucial for the algorithm e�ciency on a speci�c MIP problem. Unfortunately, there

is no de�nitely best strategy for all the problems. Therefore, like most advanced MIP

solvers (compare, Land and Powell, 1979; Tomlin and Welch, 1993), MOMIP, despite
providing some default branch-and-bound strategy, allows the user to adjust the strategy
to the speci�city of the MIP problem.

2.3 The algorithm

The branch-and-bound algorithm implemented in the MOMIP solver can be roughly

summarized in the following steps:

Step 1. De�ne node 0 by the continuous problem and the available optimal continuous

solution.

If all integer variables in the solution satisfy the integrality requirements, the search
is completed.
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If not, set the number of examined nodes n = 0, set the starting cuto� value, choose

node 0 as branched node k (k = 0) and select a branching variable.

Step 2. De�ne nodes n+1 and n+2 as subproblems of node k according to the preselected

branching variable (n = n + 2).

Step 3. Optimize node n + 1.

If the node is fathomed drop it.

If the optimal solution satis�es the integrality requirements, store it as the best

integer solution so far, modify the cuto� value and use it to eliminate fathomed

nodes from the waiting list.

If the optimal solution fails the integrality requirements, select a potential branching

variable and add the node to the waiting list.

Step 4. Optimize node n + 2.

If the node is fathomed drop it.

If the optimal solution satis�es the integrality requirements, store it as the best
integer solution so far, modify the cuto� value and use it to eliminate fathomed
nodes from the waiting list.

If the optimal solution fails the integrality requirements, select a potential branching
variable and add the node to the waiting list.

Step 5. If the waiting list is empty, the search is completed. The best integer solution is
the optimal one.

If there is no integer solution, the entire problem has no integer solution.

Otherwise, select the next branched node k from the waiting list and remove it from

the list. Return to Step 2.

The initial cuto� value is de�ned in MOMIP by default as INFINITY in the case of
minimization and �INFINITY for maximization. The user can de�ne another starting
cuto� value with parameter CUTOFF. The search is then restricted to integer solutions
with objective value better than CUTOFF. When an integer solution is found the cuto�
value is reset according to the formula:

CUTOFF = V �MINMAX � OPTEPS� jV j

where:

V denotes the objective value of the integer solution,

OPTEPS is the relative optimality tolerance (by default OPTEPS= 0:0005),

MINMAX is 1 for minimization and �1 for maximization.

Thus, if the default value OPTEPS is used, whenever an integer solution is found, MOMIP

will continue search for the next integer solution with functional value better by 0.05%

at least.
In the current version of MOMIP, branching variable is selected depending on the

prede�ned order of priorities for variables and the integer infeasibility of variable values

in the optimal solution. A variable value is considered to be integer infeasible (fractional)
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if it di�ers from the closest integer by INTEPS at least. Thus an integer variable xr with

value x�r = [x�r] + fr is integer infeasible if

min(fr; 1 � fr) > INTEPS

The value min(fr; 1� fr) is called integer infeasibility of variable xr. The default value of

INTEPS is set to 0:0001. Branching variable is selected among integer infeasible variables

with the highest priority. By default all the integer variables have assigned the same

priority equal to 0. The user may specify higher priorities for some variables in the

problem data �le.

By default, the variable with minimal integer infeasibility (i.e., the variable closest

to an integer but not closer than INTEPS) is selected as branching variable until the

�rst integer solution is found and later the variable with maximal integer infeasibility

(i.e., the variable with maximal distance to an integer) is selected. The user can force

MOMIP to use always maximal or minimal integer infeasibility selection rule, respectively,

by speci�cation of the parameter BRSW. The minimum integer infeasibility selection rule

may lead more quickly to a good �rst integer solution (as it works like a rounding heuristic)

but may slower completing of the entire branch-and-bound process. The maximum integer

infeasibility rule forces larger changes earlier in the tree, which tends usually to produce
faster overall times to �nd and prove the optimal integer solution.

Nodes are optimized in MOMIP with the dual simplex algorithm. Optimization can
be abandoned if during the course of the algorithm it becomes clear that the node cannot
have better optimal value than the current cuto� value (and thereby it will be fathomed).
When a noninteger optimal solution is found, a potential branching variable is selected
and the corresponding penalties calculated. Exactly, the strengthened SUB and Gomory's

penalties based on the Lagrangean relaxation (see, Zorychta and Ogryczak, 1981) are
computed. If the penalties allow to fathom both potential subproblems, the optimized
node is fathomed. If the penalties allow to fathom one of the potential subproblems,
the constraints of the optimized node are tightened to the second subproblem and the
optimization process is continued without explicit branching. Thus a noninteger node is

added to the waiting list only if both its potential subproblems cannot be fathomed by
the penalties.

In the current version of MOMIP, there are two basic node selection rules: Lifo and
Best. In addition, a mixed selection rule is available, where Lifo rule is applied until
the �rst integer solution is found and later Best rule is used. By default Lifo rule is

used in all the search phases. The user can force MOMIP to use Best rule in one or in
all the search phases, by speci�cation of the parameter SELSW.

Best rule depends on a selection of the best node (node with the best value bound).

Lifo rule, after Last In First Out, depends on the selection of the latest generated node.
This means that, if the branched node has at least one subproblem to be optimized, then

one of these subproblems (the one with the better value bound, if there are two) will be
selected. If both the subproblems are fathomed or integer, the latest node added to the

waiting list is selected. Thus with Lifo rule the waiting list works like a stack. Lifo

rule implies narrow in-deep tree analysis with the small waiting list. It is a very e�cient

node selection strategy while looking for the �rst integer solution. In MOMIP default
strategy, it then works together with minimal integer infeasibility branching rule, thus

creating a heuristic search for an integer solution close to the continuous one.

Both basic node selection rules are implemented in MOMIP as parameterized strategies
to prevent from uncontrolled growth of the waiting list. For this purpose all the waiting

nodes are classi�ed in two groups: candidate nodes and postponed nodes that can be
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selected only if the group of candidate nodes is empty. If the most recently branched

node has at least one subproblem to be optimized and the corresponding node is not

postponed, then it will be selected (the one with better value bound if there are two). If

both the subproblems are integer, fathomed or postponed, then the appropriate selection

rule is applied, i.e., the best node on the waiting list is selected in the case of Best, and

the latest generated not postponed node is selected in the case of Lifo.

Let BEST denote the best value bound (optimal value modi�ed by penalty) among the

waiting nodes and CUTOFF be the current cuto� value. All the waiting nodes have value

bounds within the range de�ned by BEST and CUTOFF. Within this range we distinguish

a subrange of postponed nodes as de�ned by CUTOFF and the parameter POSTPONE

given by the following formula:

POSTPONE = CUTOFF�MINMAX � POSTEPS � jBEST � CUTOFFj

where:

POSTEPS is the relative postpone tolerance (by default POSTEPS= 0:2),

MINMAX is 1 for minimization and �1 for maximization.

Thus Best rule provides very elastic node selection strategy controlled with the pa-
rameter POSTEPS. If using POSTEPS= 1 all the waiting nodes are postponed and thereby
one gets the classical best node selection rule. On the other hand, for POSTEPS= 0 one

gets similar to Lifo in-deep search strategy where subproblems of the most recently
branched node are selected as long as they exist. The only di�erence to Lifo rule is in
backtracking. Namely, if there is no recent subproblem to optimize, the best node on the
waiting list is selected whereas the latest one would be selected with Lifo. For POSTEPS
taking various values between 0 and 1 one gets strategies that implement various com-

promises between the strict in-deep search and the open search based on the best node
selection. It provides balance between the openness of the search and the low waiting list
growth. Similarly, Lifo rule controlled with the parameter POSTEPS allows to suspend
the search on not promising branches. In order to get the pure Lifo rule one needs to
specify POSTEPS= 0.

When the selected node is branched, two of its subproblems have to be optimized.

The order of these optimizations can a�ect the e�ciency of the algorithm in two ways.

First, if the subproblem optimized as the second is later selected for branching, then the
optimization process can be continued without any restore and refactorization operations.
Therefore, we are interested to optimize the subproblem which seems to be more likely

selected for future branching, as the second one. Moreover, if while optimizing the �rst

subproblem an integer solution is found, then it can ease fathoming of the second one
making its optimization short or unnecessary. In MOMIP, the subproblem associated

with larger integer infeasibility on the branching variable is usually optimized as the �rst,
presuming that the second will have better value bound and therefore will be selected for

future branching. There is, however, an exception to this rule when the branched node

is a so-called quasi-integer node. A node is considered to be quasi-integer if all integer
variables have values relatively close to integer. Exactly, if all the integer infeasibilities

are less than speci�ed parameter QINTEPS (equal to 0.05 by default). In the case of
quasi-integer branched node the subproblem associated with smaller (in fact less than

QINTEPS) integer infeasibility on the branching variable is optimized as the �rst one,

hopefully to get an integer solution quickly.
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2.4 Cuts

The e�ciency of the branch-and-bound algorithm strongly depends on tightness of linear

constraints on integer variables. Current version of MOMIP allows to tighten linear

constraints by generation additional inequalities (cuts) that are satis�ed by all integer

solutions but are not satis�ed by the optimal solution to the continuous problem. Exactly,

two types of cuts may be generated as additional constraints for node 0 and thereby for

all subsequent nodes. Cuts generation is controlled in MOMIP with two parameters:

CUTSTYPE and DOCUTS. ParameterCUTSTYPE speci�es the selected type of cuts. With

parameter DOCUTS the user may specify the required number of cuts to be generated

and added to the problem. MOMIP reoptimizes the continuous problem (with the dual

simplex algorithm) after having generated each cut prior to generation of the next one.

Let x� be an optimal basic solution to the current relaxation. The inequality is called

the cut at x� if it is satis�ed by all feasible integer solutions but is not satis�ed by x�.

If a cut is introduced during the search for integer solution, the augmented continuous

problem becomes tighter on integer variables and yields the tighter bound on the objective

value. More cuts usually reduces the so called integrality gap which may e�ect in a shorter

optimality proof. Current version of MOMIP uses cuts of two types: the Gomory's mixed
integer cuts (compare Nemhauser and Wolsey, 1988) and the Balas' cuts for mixed 0-1

programs (Balas et al., 1993).
By default CUTSTYPE= 0 which means the Gomory's cuts are generated. To de�ne

the Gomory's cut the row of the simplex tableau corresponding to a non-integer xj has to
be at hand. Then the coe�cients of the cut are computed as simple functions of fractional
parts of the row coe�cients.

By setting CUTSTYPE= 1 the user may force MOMIP to generate the Balas' cuts.
The Balas' cuts can be used for mixed 0-1 programs only. The way of strengthening
the linear programming relaxation of such a program is to lift the problem into a higher
dimensional space, where a more convenient formulation may give a tighter relaxation.
In the Balas' procedure the original constraint set is multiplied by a single 0-1 variable
and its complement before projecting back onto the original space. To illustrate this idea

consider the linear relaxation of the 0-1 program: x � 0, �x + 1 � 0, 3x� 2 � 0. Every
2=3 � x � 1 is feasible to the relaxation but only x = 1 is integer. Multiplying these
constraints by x and 1 � x and substituting x for x2 (as x2 = x for x = 0 or 1), the
strengthened system is obtained: x � 0, �x + 1 � 0, 2x � 2 � 0. x = 1 is the unique
solution to the strengthened system. The dimension of the space does not increase in that

example as the original space is simply one-dimensional. In general, the corresponding
LP program has at most twice the size of the current LP relaxation. One then has a

choice between working with this tighter relaxation in the higher dimensional space, or

projecting it back onto the original space. In the latter case, the whole procedure can be
viewed as a method for generating cutting planes in the original space. While projecting

the additional constraints onto the original space we search for one inequality which is the
deepest cut. It causes the need to solve an auxiliary LP problem. Therefore generation

of the Balas' cuts is much more time consuming than generation of the Gomory's cuts.
Single Gomory's or Balas' cut corresponds to some noninteger variable xj. Selecting

various variables one gets di�erent cuts. In MOMIP the noninteger variable with the

largest integer infeasibility is always selected to generate the cut. Certainly, for the Balas'

cut this selection is restricted to 0-1 nonintegers. The cuts generation process is abandoned

if the largest integer infeasibility is less than the quasi-integrality tolerance QINTEPS.
Note that the cuts tighten the linear constraints, but on the other side, they increase
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the density of the coe�cients matrix. Therefore while generating many cuts the increasing

of the e�ciency caused by constraints tightening may be less important than the decreas-

ing of e�ciency caused by solving denser subproblems at all nodes of the tree. We do not

recommend to generate more than a few cuts.

2.5 Special Ordered Sets

In the great majority of real-life mixed integer programming models, most of integer

variables represent some multiple choice requirements (Healy, 1964). A multiple choice

requirement is usually modeled with a generalized upper bound on a set of zero-one

variables, (Nemhauser and Wolsey, 1988; Williams, 1991) thus creating the so-called

Special Ordered Set (SOS). For instance, the multiple choice requirement

z 2 fa1; a2; : : : ; arg

where aj represent several options (like facility capacities), may be modeled as follows:

z = a1x1 + a2x2 + � � � + arxr

x1 + x2 + � � �+ xr = 1

xj � 0; xj integer for j = 1; 2; : : : ; r

where the xj are zero-one variables corresponding to several options aj. The xj variables

create the SOS being an algebraic representation of the logical multiple choice require-
ment.

Problems with the SOS structure may, of course, be solved by using the standard
branch-and-bound algorithm for mixed integer programming. However, the standard
branching rule

xk = 0 or xk = 1

applied on a SOS variable leads to the dichotomy

x1 + x2 + � � �+ xk�1 + xk+1 + � � �+ xr = 1 or xk = 1

thus creating an extremely unbalanced branching on the set of the original alternatives
(any option di�erent from ak is selected or option ak is selected). It causes a low e�ective-
ness of the branch-and-bound algorithm. Therefore Beale and Tomlin (1970) (see also,
Tomlin, 1970) proposed a special version of the branch-and-bound algorithm to handle

SOS'es. A SOS was there treated as a single entity and branched into two smaller SOS'es.

After developing additional techniques for large-scale problems, like pseudocosts (Forrest
et al., 1974), the SOS branching rule has become a standard technique implemented in

large mainframe mixed integer programming systems (compare, Beale, 1979; Land and
Powell, 1979; Powell, 1985; Tomlin and Welch, 1993).

MOMIP, like other portable mixed integer programming codes, is not equipped with

the special SOS branching rule. However, MOMIP can emulate the SOS branching rule
due to a special technique of automatic model reformulation (Ogryczak, 1996). While

using the reformulation technique, the standard branching rule applied on integer variables
representing the multiple choice is equivalent to the special SOS branching developed by

Beale and Tomlin (1970) thus increasing e�ciency of the branch-and-bound search.
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To explain the reformulation technique let us consider a multiple choice requirement

modeled with the SOS. One may introduce new integer zero-one variables de�ned as the

corresponding partial sums of xj, i.e.,

y1 = x1

yj = yj�1 + xj for j = 2; 3; : : : ; r

Note that the standard branching on a yk variable

yk = 0 or yk = 1

implies the dichotomy

xk+1 + xk+2 + � � � + xr = 1 or x1 + x2 + � � �+ xk = 1

thus emulating the special SOS branching rule and generate a complete analogy with

binary branching on the set of original options

z 2 fa1; a2; : : : ; akg or z 2 fak+1; ak+2; : : : ; arg

Variables xj no longer need to be speci�ed as integer ones and, in fact, they should
not be speci�ed as integer to avoid ine�cient branching on them. Moreover, they can be
simply eliminated replacing the SOS model of the multiple choice with the following:

z = (a1 � a2)y1 + (a2 � a3)y2 + � � �+ (ar�1 � ar)yr�1 + ar

y1 � y2 � : : : � yr�1 � 1

yj � 0; yj integer for j = 1; 2; : : : ; r � 1

where the original values of xj are de�ned as the corresponding slacks in the inequalities.
The variables yj will be referred to as Special Ordered Inequalities (SOI).

Note that use of SOI instead of SOS does not increase the number of variables (neither
integer nor continuous). SOI modeling increases the number of constraints, but these are

very simple, and this does not cause a remarkable increase of data entries. Reformulation
of SOS'es into SOI'es is controlled in MOMIP with the parameter DOSOS.

2.6 Control parameters

The following is the complete list of MOMIP control parameters e�ecting the branch-

and-bound search. All these parameters have prede�ned default values. The user may

de�ne other values within the MIP PAR structure (Section 3.2) while using the MIP class
or within the speci�cation �le while using the standalone MOMIP program (Chapter 5).

Note that CUTOFF is not included in the list, as it is considered rather as a piece of

problem data than an algorithmic control parameter. Value of CUTOFF may be speci�ed
while calling MOMIP.

NODELIMIT | maximal number of nodes to be solved during the search. If the number
of solved nodes exceeds NODELIMIT, further search is abandoned and the entire

solution process is treated as completed (the best integer solution found so far is

available in the PROBLEM structure, etc.). By default NODELIMIT= 100000. The

parameter may be used to prevent unexpectedly long computations in experimental

runs while looking for the most e�cient branch-and-bound strategy. Legal NODE-
LIMIT value cannot be less than 1.
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NOSUCCLIMIT | maximal number of nodes to be solved (without success) after the last

integer solution has been found. It is ignored during the search for the �rst integer

solution. If the number of nodes solved after the last integer solution has been

found, exceeds NOSUCCLIMIT, further search is abandoned and the entire solution

process is treated as completed (the best integer solution found so far is available in

the PROBLEM structure, etc.). By default NOSUCCLIMIT= 100000. The parameter

may be used to control unexpectedly long last phase of the branch-and-bound search

(optimality proof). Legal NOSUCCLIMIT value cannot be less than 0.

SUCCLIMIT | maximal number of integer solutions searched. If the number of integer so-

lution found exceeds SUCCLIMIT further search is abandoned and the entire solution

process is treated as completed (the best integer solution found so far is available in

the PROBLEM structure, etc.). By default SUCCLIMIT= 100. The parameter may

be used to control the branch-and-bound search if the user is interested in a speci�ed

number of integer solutions better than some threshold (speci�ed with CUTOFF) or

simply feasible solutions rather than the optimal solution. Legal SUCCLIMIT value

cannot be less than 1.

TREELIMIT | maximal size of the waiting list. Despite the available memory size the
waiting list should not exceed TREELIMIT nodes. When it happens the search is con-
tinued but the node selection strategy is automatically switched to pure LIFO (i.e.,

SELSW= 2 and POSTEPS= 0:0). By default TREELIMIT= 1000. The parameter
may be used to control unexpected growth of the waiting list in experimental runs
while looking for the most e�cient branch-and-bound strategy. Legal TREELIMIT
value cannot be less than 1.

INTMAGN | maximal integer magnitude. Each integer variable must be bounded and
its magnitude cannot exceed INTMAGN. By default INTMAGN= 65535. Any value
ranging from 1 to 65535 is a legal INTMAGN value.

DOCUTS | number of cuts to be added to the linear problem formulation. By default
DOCUTS= 0 which means no cuts are generated. Any nonnegative integer value
may be speci�ed thus forcing MOMIP to generated the speci�ed number of cuts.

More cuts usually reduces the so-called integrality gap which may e�ect in a shorter
optimality proof. On the other side, the cuts make the LP subproblems denser thus
increasing the solution time for several nodes.

CUTSTYPE | type of cuts to be added to the linear problem formulation (if DOCUTS>

0). By default CUTSTYPE= 0 which means the Gomory's cuts will be generated.
CUTSTYPE= 1 causes that the Balas' cuts are generated. Only values 0 or 1 are

accepted as legal CUTSTYPE values.

DOSOS | level of SOS processing. By default DOSOS= 1, which means that only

marked SOS constraints are reformulated. One may set DOSOS= 0 to avoid any
SOS constraints reformulation or DOSOS= 2 to reformulate all the SOS constraints
found with the automatic SOS scanning.

DOPEN | penalties switch. By default DOPEN= 1 thus causing that the penalties on
branching variables are calculated in all branched nodes. One may abandon these

calculations by setting DOPEN= 0. However, it usually signi�cantly increases the

number of solved nodes.
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OPTEPS | relative optimality tolerance used in the dynamic formula for cuto� value

after �rst integer solution has been found (see Section 2.3). If an integer solution

with objective value VAL has been found, MOMIP is looking for the next solution

which is better by OPTEPS�jVALj at least, while all smaller improvements are

ignored. Therefore, when the entire branch-and-bound search is completed the best

integer solution found is proven to be optimal with the relative tolerance OPTEPS.

By default OPTEPS= 0:0005. This parameter may be used to implement a rough

search for a good integer solution. Any value between 0 and 1 is a legal OPTEPS

value.

INTEPS | integrality tolerance. A variable value is considered to be noninteger (integer

infeasible, fractional) if it di�ers from the closest integer by INTEPS at least. By

default INTEPS= 0:0001. Any value between 0 and 1 is a legal INTEPS value.

BRSW | branching strategy switch for de�nition of the branching variable selection rule

(compare Section 2.3). By default BRSW= 0 which means Automatic rule. The

minimal integer infeasibility (i.e., the variable closest to an integer but not closer

than INTEPS) is then selected until the �rst integer solution is found and later the

maximal integer infeasibility (i.e., the variable with maximal distance to an integer)
is selected. The user by putting BRSW= 1 can force MOMIP to use always maximal
integer infeasibility selection rule. Similarly, BRSW= 2 causes the minimal integer

infeasibility rule to be used in all phases of the branch-and-bound search. Only
values 0, 1 or 2 are accepted as legal BRSW values.

SELSW | node selection rule switch for de�nition of the branched node selection rule
(compare Section 2.3). SELSW= 0 means Automatic rule. The Lifo (Last In
First Out) rule is then used until the �rst integer solution is found and later the
Best (selection of the best waiting node) rule is applied. The user, by putting
SELSW= 1, can force MOMIP to use always the Best selection rule. By default,
SELSW= 2 which causes the Lifo rule to be used in all phases of the branch-and-

bound search. Only values 0, 1 or 2 are accepted as legal SELSW values. Note that
the node selection strategy is de�ne by the selection rule and the relative postpone
parameter POSTEPS.

POSTEPS | relative postpone parameter. The control parameter for the branched node
selection strategy. POSTEPS dynamically de�nes the subrange of postponed nodes
within the waiting list (compare Section 2.3). Using this parameter the user may

de�ne the most appropriate for the problem compromise between the wide open

search and the narrow in-deep search strategy. By default POSTEPS= 0:2. Any
value between 0 and 1 is a legal POSTEPS value.

QINTEPS | quasi-integrality tolerance. A node is considered to be quasi-integer if all

integer variables have values relatively close to integer. Exactly, if all the integer

infeasibilities are less than QINTEPS. Quasi-integrality of the branched node a�ects
the order in which two subproblems are optimized (compare Section 2.3). By default

QINTEPS= 0:05. Any value between 0 and 1 is a legal QINTEPS value.

NODREPFRQ | node report frequency. Every NODREPFRQ node solved MOMIP issues

the node report (see Section 3.3 for details). By default NODREPFRQ= 100. Any
value no less than 1 is a legal NODREPFRQ value.
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TOLFEAS | primal feasibility tolerance. While node solving with the dual simplex algo-

rithm, any computed variable value is treated as if it were feasible, if the magnitude

of the amount by which it violates the limit is no greater than TOLFEAS. By default

TOLFEAS= 1:0e�7. Any nonnegative value is a legal TOLFEAS value.

TOLDJ | dual feasibility tolerance. While node solving with the dual simplex algorithm,

any computed reduced cost is treated as if it were 0, if its magnitude is no greater

than TOLDJ. By default TOLDJ= 1:0e�7. Any nonnegative value is a legal TOLDJ

value.

TOLPIV | pivot tolerance. While node solving with the dual simplex algorithm, any

potential pivot element is treated as if it were 0, if its magnitude is no greater than

TOLPIV. By default TOLPIV= 1:0e�7. Any nonnegative value is a legal TOLPIV

value.

INVFREQ | refactorization frequency. While node solving with the dual simplex al-

gorithm, the refactorization function is called every INVFREQ simplex steps. By

default INVFREQ= 50. Any value no less than 1 is a legal INVFREQ value.

ITERLIMIT | maximal number of simplex steps per node. While solving a node, with the
dual simplex algorithm, the solution process is abandoned and the node classi�ed
as unsolved, if the number of simplex steps has exceeded ITERLIMIT. By default
ITERLIMIT= 500. Any value no less than 1 is a legal ITERLIMIT value.

PPRICE | partial pricing size for the primal simplex algorithm. PPRICE= 0 means full
pricing is carried out. In the case of some positive value of PPRICE, during the

course of the primal simplex algorithm pricing is abandoned after identi�cation of
PPRICE candidate columns to enter the basis. By default PPRICE= 4.

EPSPERT | primal anticycling perturbation. If cycling is detected during the course of

the primal simplex algorithm, bounds on basic variables are shifted by the value of
EPSPERT. By default EPSPERT= 1:0e�8.

3 MIP class

3.1 Straightforward use

MOMIP is implemented as the MIP class. It is a typical solver class taking problem data
from the PROBLEM class and returning the solution there. The MIP class constructs

implicitly all the auxiliary computational classes used in the branch-and-bound search.

Thus for straightforward use of the MOMIP solver one only needs to declare the MIP class
and call its solvemip function.

The MIP class constructor must be called with one parameter: a pointer to a PROB-
LEM class. The constructor, when called, builds the MIP class and assigns its functions

to the speci�ed PROBLEM class where data will be taken from and solution written to.
For instance the statement:

MIP(&MYPROBLEM) MYMIP;

causes construction of a MIP class called MYMIP and assigns its computational functions
to the class MYPROBLEM of type PROBLEM. The MIP class constructor may be used
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anywhere within the scope of the PROBLEM class used as the parameter. The PROBLEM

class does not need to contain any problem data while the MIP class constructor is called.

It may be �lled out with a problem data and used for other solvers either prior to the MIP

constructor call or having already MIP class constructed. Certainly, the corresponding

PROBLEM class must be �lled out with the problem data prior to any use of the solvemip

function.

The user does not need to �ll out any MIP class data structure to solve the problem. In

fact, all its data structures and most computational functions are not directly accessible to

the user (declared as private). The solvemip function constructs implicitly all the necessary

auxiliary classes like C LIST class for the waiting list handling, DUAL class for nodes

solving, and INVERSE class for LP basis factorization handling. The solvemip function

manages the entire branch-and-bound algorithm calling all the necessary computational

functions. It provides also all the necessary data transfer between the MIP class and the

corresponding PROBLEM class.

Essentially, for larger problems it is presumed that the problem has been earlier solved

(not necessarily in the same run) by the linear programming solver and the linear program-

ming solution is available as a starting one in the search for integer solution. However,

MOMIP has its own primal simplex algorithm which is activated in the case of numer-
ical di�culties in the dual algorithm or invalid primal solution provided as the starting

one. Therefore, for simple use there is a possibility to call solvemip function without pa-
rameters, and the MOMIP primal algorithm is then used to �nd the initial (continuous)
solution. Thus the following is the simplest solvemip call:

solvemip();

The solvemip function can be simply called the user application program like in the fol-
lowing example:

#include \momip.h"
...
PROBLEM MYPROBLEM;
MIP MYMIP(&MYPROBLEM);

...
MYMIP.solvemip();
...

However, the MOMIP primal algorithm is designed as an auxiliary tool and it can

solve e�ectively only relatively small problems. Therefore, we do not recommend such a
simple call for larger problems.

3.2 Advanced use

For advanced use of the MOMIP solver, the solvemip function can be called with one

to three optional parameters: A2B, CUTOFF and PAR. Thus, all the following are legal
solvemip calls:

solvemip(A2B);

solvemip(A2B,CUTOFF);
solvemip(A2B,PAR);

solvemip(A2B,CUTOFF,PAR);

solvemip();
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solvemip(CUTOFF);

solvemip(PAR);

solvemip(CUTOFF,PAR);

However, the last four calls are not recommended for use with larger MIP problems. Note

that if two or three optional parameters are used, CUTOFF must precede PAR, and A2B

(whenever used) must be the �rst parameter.

A2B is a pointer to an integer vector describing the basic continuous solution found

with a linear programming solver. A2B vector should contain n+m (where n is the number

of structural variables and m denotes the number of constraints) coe�cients representing

the basic solution structure. The continuous solution is assumed to be coded within A2B

according to the following rules:

for k = 0; 1; : : : ; n� 1 (structural variables)

A2B[k] = �1 if variable k is nonbasic at its lower limit,

A2B[k] = �2 if variable k is nonbasic at its upper limit,

A2B[k] = i � 0 if variable k is in basis at position i;

for r = 0; 1; : : : ;m� 1 (constraints)

A2B[n + r] = �1 if constraint r is nonbasic at its RHS limit,

A2B[n + r] = �2 if constraint r is nonbasic at its range limit,

A2B[n + r] = i � 0 if constraint r is in basis at position i;

where the basis positions are numbered from 0 through m� 1.

The above structure of A2B vector is consistent with that used in modular linear pro-
gramming solver by Swietanowski (1994). There is no need for any operations on A2B
vector while using this solver. Thus, the user only needs to pass the vector pointer as the
parameter, like in the following example:

#include \momip.h"
...
PROBLEM MYPROBLEM;

MIP MYMIP(&MYPROBLEM);

...
[ linear programming processing with A2B generation ]
...

MYMIP.solvemip(A2B);

...

If the continuous solution has been generated during earlier independent computation

(or with di�erent linear programming solver) the user is obliged to take responsibility
for a proper �lling of the corresponding PROBLEM structure and A2B vector. Instead of

using the parameter A2B the LP optimal basis may be loaded from a �le by calling the
function

setinvin(char* FILENAME);

prior to the call of solvemip. MOMIP may save the optimal LP basis (for node 0), if before
the call of solvemip the function

setinvout(char* FILENAME);

is called.
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CUTOFF is a oat type parameter de�ning the initial cuto� value for the branch-and-

bound algorithm. If this parameter is used the search is restricted to integer solutions with

functional values better than CUTOFF. When some integer solution is already known, use

of this parameter allows to make the search shorter. In the absence of the CUTOFF pa-

rameter, the initial cuto� value is de�ned, by default, as INFINITY in case of minimization

and �INFINITY for maximization.

PAR is a pointer to a MIP PAR structure with MOMIP control parameters. It allows

the input of nonstandard values for MOMIP control parameters. MIP PAR is a prede�ned

structure type containing all the control parameters as members. It is provided with the

constructor assigning default values to all the members (parameters). Thus the user

having declared his/her own MIP PAR structure only needs de�ne the values for these

parameters he/she wish to change.

The MIP PAR structure has the following (public) members:

Real T INTMAGN; // maximal integer magnitude

Int T TREELIMIT; // max number of nodes in CList

Long T NODELIMIT; // max number of nodes to be generated

Long T NOSUCCLIMIT; // max number of nodes without success
Int T SUCCLIMIT; // max number of integer solutions
Int T DOCUTS; // number of cuts to be generated

Int T CUTSTYPE; // type of cuts to be generated
Int T DOSOS; // level of SOS remodeling
Short T DOPEN; // level of penalties calculated
Real T QINTEPS; // quasi-integer tolerance
Real T POSTEPS; // relative postpone parameter

Real T OPTEPS; // relative optimality tolerance
Real T INTEPS; // integer tolerance
Short T BRSW; // branching strategy
Short T SELSW; // node selection strategy
Long T NODREPFRQ; // node report frequency

Real T TOLFEAS; // primal feasibility tolerance
Real T TOLDJ; // dual feasibility tolerance
Real T TOLPIV; // pivot tolerance
Int T INVFREQ; // invert frequency
Int T PPRICE; // primal partial pricing

Real T EPSPERT; // anticycling perturbation

Unsigned T ITERLIMIT; // iteration limit

So, values of all the MOMIP control parameters may be de�ned within the structure

MIP PAR. For instance, if one wants to use the Best node selection rule during the entire
search and abandon the search after identi�cation of ten integer solution, it can be done

with the following sequence of statements:

#include \momip.h"
...
MIP PAR mypar; // MIP PAR construction

mypar.SUCCLIMIT=10; // only 10 integer solutions
mypar.SELSW=1; // Best node selection strategy

...

solvemip(mypar);
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The MIP PAR structure provides also two convenient utility functions:

void checkpar();

int read(char* FNAME);

Function checkpar veri�es if all the control parameters satisfy their formal requirements.

If some parameter value is illegal, the corresponding warning message is issued and the

default is assumed. Function read allows to read values for the control parameters from

a speci�ed �le (FNAME) instead of dealing with direct assignments. It returns the value 0 if

the speci�ed �le has been successfully read and 1 if otherwise.

For instance the branch-and-bound strategy de�ned above directly in the program

may be de�ned with a speci�cation �le built of two lines:

SUCCLIMIT 10 // only 10 integer solutions

SELSW 1 // Best node selection strategy

The corresponding program should then include the following statements:

#include \momip.h"

...
MIP PAR mypar;
mypar.read(\MYFILE");
mypar.checkpar();
...

solvemip(mypar);

where MYFILE is the name of the speci�cation �le.
The solvemip function returns the number of integer solutions found during the course

of the branch-and-bound algorithm. Thus it returns 0 if no integer solution has been
found. This value may be used to control further processing in the user application
program.

3.3 Messages

The MOMIP module generates momip.log �le where all the messages issued by the MIP
functions are available. There are two kinds of messages:

info messages providing the user with information about the current status of the MIP
analysis and changes in that status;

warning messages providing the user with information about any errors or irregularities
in the process.

At the beginning of the analysis, MOMIP issues the message containing values of the

control parameters and the problem characteristics. It has the following form:

MOMIP { Modular Optimizer for Mixed Integer Programming

version 2.3 (1996)

Institute of Informatics, Warsaw University
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MIP SETTINGS

Max no. of nodes to be examined . . . . . . . . . . . NODELIMIT = 10000

Max no. of nodes after last integer . . . . . . . . . NOSUCCLIMIT = 5000

Max no. of integer nodes . . . . . . . . . . . . . . . . . . . . SUCCLIMIT = 100

Max no. of simplex steps per node . . . . . . . . . . . . . ITERLIMIT = 500

Max no. of waiting nodes . . . . . . . . . . . . . . . . . . . .TREELIMIT = 10000

Node report frequency . . . . . . . . . . . . . . . . . . . . . NODREPFRQ = 10

Relative optimality tolerance . . . . . . . . . . . . . . . . . . . . OPTEPS = 0.005

Maximal integer magnitude . . . . . . . . . . . . . . . . . . . . INTMAGN = 65535

Integrality tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . INTEPS = 0.0001

Quasi-integrality tolerance . . . . . . . . . . . . . . . . . . . . QINTEPS = 0.05

Relative postpone tolerance . . . . . . . . . . . . . . . . . . . POSTEPS = 0.2

Branching variable selection strategy . . . . . . . . . . . . . . . BRSW = AUTOMATIC

Node selection strategy . . . . . . . . . . . . . . . . . . . . . . . . . SELSW = AUTOMATIC

Number of cuts to be generated . . . . . . . . . . . . . . . . . DOCUTS = 0

SOS preprocessing level . . . . . . . . . . . . . . . . . . . . . . . . . DOSOS = 0

Penalties on branching variable . . . . . . . . . . . . . . . . . . . DOPEN = YES

Primal feasibility tolerance . . . . . . . . . . . . . . . . . . . . TOLFEAS = 1e�07

Dual feasibility tolerance . . . . . . . . . . . . . . . . . . . . . . . . TOLDJ = 1e�07

Nonzero pivot tolerance . . . . . . . . . . . . . . . . . . . . . . . . TOLPIV = 1e�07

Refactorization frequency . . . . . . . . . . . . . . . . . . . . . INVFREQ = 100

Primal partial pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . PPRICE = 4
Primal anticycling perturbation . . . . . . . . . . . . . . . . . EPSPERT = 1e�08

PROBLEM: `small.1 '
Objective: `r0 ' (MAX) Rhs: `supp '
Bounds: `�rst ' Ranges: `rg '
4 (4) constraints with 5 (5) structurals including 5 (5) integer
Cuto� value: -100

The message gives current values of all the control parameters (compare Section 2.5)

that can be changed by the user. The problem characteristic contains the names of
the problem and of its data groups (i.e., objective, RHS, bounds and ranges). There
is also reported the current CUTOFF value and dimensions of the problem: number of
constraints, number of all structural variables, and number of integer variables; original
and after MIP preprocessing (shown in parentheses).

During the analysis MOMIP automatically issues info messages when any important
event occurs. Namely, when an integer solution is found, or the cuto� value is changed,

or the best still possible value of the integer solution is changed. These event messages
have the following forms:

�INTEGER SOLUTION with functional 7 at node 8 and iter. 16

Nodes dropped if functional beyond 7.035
�AFTER node 10 and iter. 18

Any further solution cannot be better than 7.5

where iter. denotes the total of the simplex iterations from the MOMIP start till the event

has occurred.

Additional node report messages are controlled by the user with the parameter NOD-

REPFRQ. Such a message is issued whenever the number of examined nodes becomes
a multiple of NODREPFRQ (note, that the �rst node has a number 0 thus causing issue
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of the message). The node report message takes one of the following form depending on

the node type:

� NODE 5 noninteger (2) Functional 7.75 (7.5) Iter. 11 (1)

� NODE 7 INTEGER Functional 6 (6) Iter. 13 (1)

� NODE 9 infeasible Iter. 17 (1)

� NODE 19 UNSOLVED Iter. 15237 (5001)

The message begins with the node number and its type (noninteger, integer, infeasible,

or unsolved), where unsolved node means that the simplex solver could not overcome

some numerical di�culties, or simply the limit of simplex iterations for the node has been

reached (parameter ITERLIMIT). In the case of a noninteger node, the number of variables

failing the integrality requirements is shown in parentheses. Value of the functional at

the node is followed by the value bound on integer solution calculated with the penalties.

The total of the simplex iterations, from the MOMIP start till the node has been solved,

is followed by the number of simplex iterations at the node (shown in parentheses).

After any event message or node report MOMIP issues an additional status message

with information about current number of waiting nodes. It takes the following form:

� AFTER node 8 and iter. 16 { 3 waiting nodes

At the end of MIP analysis the resume message is issued. Its �rst line specify why
the analysis terminates. When all the waiting nodes have been examined the following

appears:

� MIP analysis completed

In other cases it takes one of the following form:

� SUCCLIMIT encountered | MIP terminated prematurely!
� NOSUCCLIMIT encountered | MIP terminated prematurely!
� NODELIMIT encountered | MIP terminated prematurely!

The next line speci�es the number of integer solution found during the analysis. It has
the following form:

2 integer solutions found

If at least one integer solution has been found the following message appears:

� BEST SOLUTION with functional 7 at node 8 and iter. 16

It provides the user with functional value of the best integer solution found during the
analysis and information when it was found.

Further lines of the resume report provides the user with information about the best

possible solution (cuto� value at end of analysis), number of examined nodes, total of the

simplex iterations, and maximal size of the waiting list during the analysis. They have

the following form:

Best possible value: 7.035

14 nodes examined
25 simplex iterations

Max list size: 3
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Warning messages provide the user with information about any errors or irregularities

in the process. All the warning messages are related to the events when MOMIP �nds

some error and automatically corrects it. However, to inform the user about the error

processing and the way of error correction, an appropriate warning message is then issued.

All the messages are listed below.

� WARNING: Invalid PARAMETER | default assumed

The pointed parameter (within the MIP PAR structure) has an invalid value. It is

ignored and the default value is taken.

� WARNING: NO primal solution | MOMIP called from scratch

MOMIP is called without speci�cation of optimal basis for the continuous problem.

MOMIP uses its internal primal simplex algorithm to solve the problem from scratch.

� WARNING: Invalid primal solution | MOMIP primal called

The �rst parameter (A2B) of the function solvemip speci�es invalid optimal solution to

the continuous problem and MOMIP is forced to use its internal primal simplex algorithm.

� WARNING: Not bounded integer variable 'x11 10 '

The pointed integer variable is speci�ed as not bounded. It is assumed to be bounded.

� WARNING: Variable 'x11 10 ' has too large integer magnitude!

The pointed integer variable has too large di�erence between its upper and lower limit.
It is reduced to the maximal integer magnitude.

� WARNING: Lower bound on variable 'col5 ' forced up to integer

The pointed integer variable has noninteger lower bound. It is tightened (up) to the
closest integer value.

� WARNING: Upper bound on variable 'col5 ' forced down to integer

The pointed integer variable has noninteger or too large upper bound. It is tightened
(down) to the closest acceptable integer value.

� WARNING: Explicit infeasibility on variable 'col5 '

The problem is infeasible as for the speci�ed variable its upper bound is less than the

lower one.

� WARNING: Explicit unboundness on variable 'col5 '

The problem is unbounded as the speci�ed variable has no coe�cients in the con-

straints.

� WARNING: Waiting list is full | node 596 lost

There is not enough memory to extend the waiting list. The speci�ed node is dropped
although it could generate a better integer solution.

� WARNING: 5 unsolved nodes

The speci�ed number of nodes has been left unsolved due to numerical di�culties

encountered by the simplex solver or too small ITERLIMIT value.
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3.4 Compilation

MOMIP is programmed in the standard C++ language (Stroustrup, 1991). It can be made

operational in both UNIX and MS-DOS environments, thus allowing use of many various

hardware platforms. It was tested with Borland C++ and Watcom C++ compilers in

the MS-DOS environment, and with GNU CC and SunPro C++ compilers in the UNIX

environment.

To make it possible to build in the MOMIP solver into some application programs, it

is provided as a set of ANSI source �les. There are seven main source �les: mip.cc, tree.cc,

dl.cc, stdmip.cc, iomip.cc, cuts.cc and time cnt.cc They include functions of the MIP class,

C LIST class, DUAL class and MOMIP extensions to PROBLEM class, respectively. They

are accompanied by the following header �les: mip.h, dl.h, tree.h, probmip.h, trealloc.h,

mipalloc.h, bal cut.h, time cnt.h and mip type.h. The last among them contains data types

de�nition which can be adjusted to the speci�c computer architecture (Int T, Real T, etc.).

The header �les are implicitly included into appropriate source �les during compilation.

A special header �le momip.h is also provided, which, if included in an application program,

causes the implicit inclusion of all the header �les necessary for the MIP class declaration

and use.
During compilation of the MOMIP �les, the following header �les from the linear pro-

gramming module (Swietanowski, 1994) should be available: hashpp.h, array.h, myalloc.h,
inverse.h, invaux.h, error.h and std tmpl.h. In MOMIP �les it is assumed that char type is
signed. If signed char is not the default for the compiler (like in Watcom C++), then this
option must be directly speci�ed for the compilation.

While linking the program using the MOMIP solver, the following source �les from

the linear programming module (Swietanowski, 1994) have to be compiled and linked:
hash.cc, inverse.cc, invaux.cc, invfact.cc, invsolve.cc, invupd.cc and error.cc, even if the linear
programming solver is not directly used within the program.

If the LP DIT data transfer capability is intended to use, additional �le dit mip.cc has
to be compiled with the header �le dit mip.h and the LP DIT header �les (Makowski,
1994, 1996).

4 DUAL class

The MIP class constructs implicitly all the auxiliary computational classes used in the

branch-and-bound search. However, the DUAL class that provides the simplex algorithms,

may be used for some other analyses. Therefore, despite its implicit use in MOMIP, the
DUAL class is made explicitly available for other applications and its description is given
in this chapter.

The DUAL class constructor must be called with three parameters: a pointer to an

PROBLEM class, a pointer to an INVERSE class and pointer to a DUAL PAR structure.
The constructor, when called, builds the DUAL class, assigns its functions to the speci�ed

PROBLEM and INVERSE classes, and transfers the control parameters from the speci�ed
DUAL PAR structure. For instance the statement:

DUAL(&MYPROBLEM,&MYLU,&MYPAR) MYDUAL;

causes the construction of a DUAL class called MYDUAL, assigns its computational func-

tions to the class MYPROBLEM of type PROBLEM and to the class MYLU of type INVER-
SE, and transfers the control parameters from the structure MYPAR of type DUAL PAR.
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The DUAL class constructor may be used anywhere within the scope of the classes

used as the parameters but the speci�ed PROBLEM class must be �lled out with the

main problem data prior to the DUAL constructor call. Moreover, the problem should

be transformed into the standard form, i.e. it should be the minimization problem with

shifted bounds and added slacks.

DUAL PAR is a prede�ned structure type containing as members all the control pa-

rameters. It is provided with the constructor assigning default values to all the members

(parameters). Thus the user having declared his/her own DUAL PAR structure needs to

de�ne values for only those parameters he/she wishes to change.

The DUAL PAR structure has the following (public) members:

TOLFEAS | primal feasibility tolerance. During the course of the dual simplex algorithm

any computed variable value is treated as if it were feasible, if the magnitude of the

amount by which it violates the limit is no greater than TOLFEAS. By default

TOLFEAS= 1:0e�7. Any nonnegative value is a legal TOLFEAS value.

TOLDJ | dual feasibility tolerance. During the course of the dual simplex algorithm

any computed reduced cost is treated as if it were 0 , if its magnitude is no greater

than TOLDJ. By default TOLDJ= 1:0e�7. Any nonnegative value is a legal TOLDJ
value.

TOLPIV | pivot tolerance. During the course of the dual simplex algorithm, any po-
tential pivot element is treated as if it were 0 , if its magnitude is no greater than
TOLPIV. By default TOLPIV= 1:0e�7. Any nonnegative value is a legal TOLPIV

value.

INVFREQ | refactorization frequency. During the course of the dual simplex algorithm,
the refactorization function is called every INVFREQ simplex steps. By default
INVFREQ= 100. Any value no less than 1 is a legal INVFREQ value.

ITERLIMIT | maximal number of simplex steps. During the course of the dual simplex
algorithm, the solution process is abandoned and the problem classi�ed as unsolved,
if number of simplex steps has exceeded ITERLIMIT. By default ITERLIMIT= 500.

Any value no less than 1 is a legal ITERLIMIT value.

PPRICE | partial pricing size for the primal simplex algorithm. By default PPRICE=

0, which means full pricing is carried out. In the case of some positive value of
PPRICE during the course of the primal simplex algorithm pricing is abandoned

after identi�cation of PPRICE candidate columns to enter the basis.

EPSPERT | primal anticycling perturbation. If cycling is detected during the course of
the primal simplex algorithm, bounds on basic variables are shifted by the value of

EPSPERT. By default EPSPERT= 1:0e�8.

Most of the DUAL class data members are implicitly assigned by the constructor to the
corresponding data structures of the speci�ed PROBLEM structure. Five following data
members must be assigned directly by the user:

char � typevar; //pointer to vector of variable types
Int T � status; //pointer to basic solution description
Int T � hreg; //pointer to basic variables

Real T � xb; //pointer to basic solution vector

Real T � value; //pointer to return objective value
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Member typevar must have assigned a pointer to the vector of variable types. It must

be a vector of n+m chars �lled out according to the following codes:

0 | free structural variable or unconstrainted row,

1 | nonnegative structural variable or inequality,

2 | bounded structural variable or ranged row,

3 | �xed structural variable or equation.

Member status must have assigned a pointer to the starting basic solution description.

It must be a vector of n + m variables (of the prede�ned integer type Int T) �lled out

according to the following rules:

for k = 0; 1; : : : ; n� 1 (structural variables)

status[k] = �1 if variable k is nonbasic at its lower limit,

status[k] = �2 if variable k is nonbasic at its upper limit,

status[k] = �3 if �xed variable k is nonbasic,

status[k] = i � 0 if variable k is in basis at position i;

for r = 0; 1; : : : ;m� 1 (constraints)

status[n + r] = �1 if constraint r is nonbasic at its RHS limit,

status[n + r] = �2 if constraint r is nonbasic at its range limit,

status[n + r] = �3 if equation r is nonbasic,

status[n + r] = i � 0 if constraint r is in basis at position i;

where the basis positions are numbered from 0 through m� 1.
Member hreg must have assigned a pointer to the starting basic variables description.

It must be a vector of m variables (of the prede�ned integer type Int T) �lled out according
to the following rules:

for i = 0; 1; : : : ;m� 1

hreg[i] = k if variable k is in basis at position i,

hreg[i] = n + k if constraint k is in basis at position i.

Member xb must have assigned a pointer to a vector for values of basic variables. It

must be a vector of m variables (of prede�ned oat type Real T) and it does not need to
be �lled out.

Member value must have assigned a pointer to a variable of the prede�ned oat type
Real T for objective value.

To solve a linear programming problem with the dual simplex algorithm, one needs

to declare the DUAL class, assign necessary class members (typevar, status, hreg, xb and
value), and call its Solve function. The Solve function is declared within the DUAL class

with the header of the form:

char Solve(Real T CUT, char CONT);
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Thus it must be called with two parameters. Parameter CUT speci�es the cutting o�

value for optimization. If, during the course of the dual algorithm, a current objective

value exceeds the CUT value, the optimization is abandoned and the problem classi�ed as

semi-infeasible. If CONT=0, full refactorization is made prior to the dual algorithm start.

If CONT=1, the dual algorithm starts using the current factorization data available in

the INVERSE class. If CONT=�1, the primal simplex algorithm is used instead of dual.

Solve function returns the solution status coded as follows:

1 | optimal solution found,

�1 | problem unsolved (numerical di�culties or ITERLIMIT encountered),

�2 | problem infeasible,

�3 | problem semi-infeasible (CUT bound encountered),

�4 | problem unbounded (returned only by primal algorithm).

If Solve has returned code 1 the optimal solution can be read from the data structures

assigned to the DUAL class. The optimal value is given with the variable value. The
optimal values of the basic variables are given in vector xb, and the entire solution vector
can be restored using information from vectors status and hreg.

5 Program MOMIP

MIP class has been used to build the standalone MOMIP program. The complete text of
the corresponding main �le is provided in Appendix A. MOMIP program is called with
the command:
momip [options] probname

where all the used options must start with the minus sign and probname is the name of an
input data �le. As all the options have prede�ned default values, for simple use MOMIP
can be called without options. However, in such a case the name of the input �le must
include one of the standard extensions (mps, txt or dit), i.e.
momip probname.id

In the case of extension id=mps, MOMIP reads the input �le as an MPS �le (compare
Chapter 6) and generates the solution in the standard text output �le named probname.sol.

As reading of MPS �les for large problems may be time consuming, MOMIP may save

the processed problem data in the simpli�ed TXT �le. Such a �le can be quickly read
by MOMIP in the case of need to repeat computations with modi�ed control parameters.
The TXT �le is recognized by MOMIP due to extension id=txt. In this case, similarly as

with MPS �le input, the standard text output �le named probname.sol is generated.

In the case of extension id=dit, MOMIP reads the input �le as a binary �le in the
LP DIT format (Makowski, 1994, 1996) and generates the solution in the LP DIT format.

With default options MOMIP searches for possible basis �le (describing the LP optimal
solution) named probname.inv. If there is no such a �le, MOMIP starts to solve the

problem from scratch using its internal primal simplex algorithm.

MOMIP can read values of the control parameters (Section 2.5) from the special spec-
i�cation �le. By default MOMIP searches for the speci�cation �le named momip.spc. In

the speci�cation �le each line starts with name of the parameter and contains the speci�ed

value. For instance, if one wants to use the Best node selection rule during the entire

DRAFT November 30, 1996



search and abandon the search after identi�cation of ten integer solution, it can be done

with a speci�cation �le built of two following lines:

SUCCLIMIT 10 // only 10 integer solutions

SELSW 1 // Best node selection strategy

MOMIP program generates the log �le (by default named momip.log) where all the

messages are available. In addition to the MOMIP solver messages (Section 3.3) the

following warnings connected with data readings may occur there

� WARNING: Expected ROWS after NAME instead of ...

Unrecognized line after NAME line. The line is ignored.

� WARNING: Expected L, E, G, N, or COLUMNS instead of ...

Unrecognized line in the ROWS sections. The line is ignored.

� WARNING: Unrecognized bound type ...

Unrecognized line in the BOUNDS sections. The line is ignored.

� WARNING: Row label ... from COLUMNS section missing in ROWS section

Row name used in the COLUMNS section does not match any name listed in the
ROWS section. The corresponding coe�cient is ignored.

� WARNING: Row label ... from RHS section missing in ROWS section

Row name used in the RHS section does not match any name listed in the ROWS
section. The corresponding coe�cient is ignored.

� WARNING: Row label ... from RANGES section missing in ROWS section

Row name used in the RANGES section does not match any name listed in the ROWS
section. The corresponding coe�cient is ignored.

� WARNING: Column label ... from BOUNDS section missing in COLUMNS section

Column name used in the BOUNDS section does not match any name listed in the
COLUMNS section. The corresponding coe�cient is ignored.

� WARNING: Objective function not found

Name of the speci�ed objective function not found in the ROWS section or there is no

N type row. All the objective coe�cients are equal to 0.

� WARNING: ENDATA not found

The ENDATA line not found in the MPS �le. MPS �le is assumed to be complete.

� WARNING: Cannot open basis �le ...
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The speci�ed basis �le is not available. MOMIP will use its internal primal simplex

algorithm to solve the problem from scratch.

� WARNING: Invalid basis �le ...

The speci�ed �le does not contain a correct basis description. MOMIP will use its

internal primal simplex algorithm to solve the problem from scratch.

� WARNING: NOT OPTIMAL basis �le ...

The speci�ed �le contains a correct basis description but the basis is not optimal.

MOMIP will use its internal primal simplex algorithm to reoptimize the problem.

MOMIP program may be called with the following options:

Option -h causes that a short options help is issued and no problem is processed. The

same e�ect is caused by calling MOMIP with no parameters.

Option -iext causes that the format of input �le is recognized according to its extension.
This option is set by default.

Option -imps causes that the input �le is treated as an MPS �le even if its name has no
extension or di�erent extension. When this option is used, any extension is treated
as a part of probname. Thus under MS-DOS operating system this option can be
used only when the name of input �le has no extension.

Option -itxt causes that the input �le is treated as an TXT �le even if its name has no
extension or di�erent extension. When this option is used, any extension is treated
as a part of probname. Thus under MS-DOS operating system this option can be

used only when the name of input �le has no extension.

Option -idit causes that the input �le is treated as an LP DIT �le even if its name has no
extension or di�erent extension. When this option is used, any extension is treated

as a part of probname. Thus under MS-DOS operating system this option can be
used only when the name of input �le has no extension.

Option -onul suppresses default output of the solution. Its use is necessary if one wants

to redirect solution output.

Option -osol causes that the solution is placed in the standard text �le named prob-

name.sol. This option is default in the case of input options -imps and -itxt as well

as option -iext and the input �le with extension mps or txt. Use of this option does
not suppress the default output. Thus for a redirection of the default output it
should be used together with option -onul.

Option -odit causes that the solution is placed in the LP DIT �le. This option is default
in the case of input option -idit or option -iext and the input �le with extension dit.

Use of this option does not suppress the default output. Thus for a redirection of
the default output it should be used together with option -onul.

Option -cval allows to de�ne nonstandard value of CUTOFF parameter (compare Section
2.3). When this option is used CUTOFF=val.
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Option -s�lename forces MOMIP to read the speci�cation �le �lename instead of the �le

momip.spc.

Option -l�lename allows to redirect the log �le from momip.log to the �le �lename.

Option -b�lename forces MOMIP to read the basis �le (with the LP optimal solution)

�lename instead of the �le probname.inv.

Option -t forces MOMIP to generate TXT �le for the current problem. By default the

�le is named probname.txt. Another name may be speci�ed with option -t�lename.

Option -n forces MOMIP to generate basis �le for the current problem. By default the

�le is named probname.inv. Another name may be speci�ed with option -n�lename.

Note that MOMIP generates the basis �le depending on the node 0 solution, i.e., for

the preprocessed LP problem. Such a basis may not be accepted in future runs for

the same problem, if the level of preprocessing (especially DOSOS) will be decreased.

6 MPS �le

As the standard data input MOMIP uses MPS �le. MPS (after Mathematical Program-
ming System) input format was originally introduced by IBM to de�ne LP data and be-
come, in fact, the standard recognized by all the commercial LP packages (see Nazareth,

1987; for more about the MPS format modeling philosophy). Unfortunately, there is no so
clearly de�ned standard for speci�cation of integer variables in MIP problems. Therefore
our MPS �le is an extension of the MPS format that allows to indicate integer variables in
various ways to cover the most common formats used in MIP solvers. Moreover, the stan-
dard MPS format is, essentially, a description of an LP model (not a problem instance)

allowing to de�ne several right-hand side vectors, objective functions, etc. Therefore our
extension of the MPS format includes additional problem speci�cation to indicate the op-
timized objective function and the optimization sense (minimization or maximization) as
well as to indicate speci�c for the problem data vectors. MPS �le used by MOMIP consists
of two parts: the problem speci�cation and the MPS data �le. The problem speci�cation

may be skipped in the case if the default problem setting is accepted. If the problem needs
to be speci�ed in a nonstandard way, the problem speci�cation must precede the MPS
data �le. However, for better understanding, we describe the problem speci�cation format

after the MPS data �le format. In the MPS data format a problem (or rather a model)
is depicted as a tableau of numbers, in which the objective functions and constraints
correspond to rows, and the variables and the right-hand sides correspond to columns.

Each row and column is given a unique name and each nonzero element of the matrix

is de�ned by a triple: column name, row name and value of the element. The problem
data are speci�ed by �ve groups of information, called sections: ROWS section provides

the list of all row names and their corresponding type of constraints; COLUMNS section
provides values of all nonzero matrix elements grouped by columns; RHS section provides

values of all nonzero right-hand sides elements grouped by RHS columns; RANGES sec-

tion provides existing ranges on constraints grouped by range vectors; BOUNDS section
provides bounds on variables grouped by bound vectors.

MPS data �le is built of lines containing �elds in �xed columnar positions. So, care
has to be taken that all the information is placed in the correct columns. There are two

principal types of lines in MPS �le: indicator lines and data lines.
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Indicator lines announce the sections of the MPS �le. They contain only a single word

that begins in column 1. It speci�es the type of data that follows. The indicator lines

are:

NAME Begins the MPS data �le and speci�es the problem name.

This line, unlike the other indicator lines, contains data (the problem

name) in columns 15{22.

ROWS Begins the ROWS section.

COLUMNS Begins the COLUMNS section.

RHS Begins the RHS section.

RANGES Begins the RANGES section.

BOUNDS Begins the BOUNDS section.

ENDATA Signals the end of the data �le.

All sections and the corresponding indicator lines are obligatory in the MPS data �le

except BOUNDS and RANGES. The BOUNDS section is, in fact, also obligatory for
MOMIP as it requires all integer variables to be bounded. In the area between the NAME
and ENDATA lines any line beginning with * in the �rst column is treated as a comment
and ignored.

Data lines contain the actual data values. All data lines have the same general format.
They are divided into six �elds:

Field 1 2 3 4 5 6

Columns 2{3 5{12 15{22 25{36 40{47 50{61

Contents Indicator Name Name Value Name Value

Not all six �elds are used within each section of the MPS �le. Data outside of the
designated �elds are ignored. Names in the �elds 2, 3, 5 should be left adjusted.

ROWS section data lines specify the name and type of constraint for each row. They
contain:

Field 1: a single letter designating the type of the constraint:

N { free row

G { \greater than or equal to" row

L { \less than or equal to" row

E { equality row

Field 2: row name

Field 3: optional 'SOSROW' marker to indicate the SOS row

Fields 4{6: not used in this section

Format of the ROWS section data lines is:
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Field 1 2 3 4 5 6

Columns 2{3 5{12 15{22
Not used

Contents Row Type Row Name 'SOSROW'

Optional

COLUMNS section data lines specify the names to be assigned to the columns in the

matrix, and de�ne, in terms of column vectors, the actual values of the matrix elements.

They contain:

Field 1: not used in this section

Field 2: column name

Field 3: row name

Field 4: value of the matrix element from row speci�ed in the Field 3 and column

speci�ed in the Field 2

Field 5: optional and used as Field 3 is used

Field 6: optional and used as Field 4 is used

The matrix elements must be speci�ed by columns, that is, when one element is given,
all other nonzero elements in that column must also be entered before another column is

mentioned.
Format of the COLUMNS section data lines is:

Field 1 2 3 4 5 6

Columns 2{3 5{12 15{22 25{36 40{47 50{61

Contents Not used Column Name Row Name Value Row Name Value

Optional

In the COLUMNS section marker lines may be placed to indicate the start and the end of
a group of integer variables. Several separate groups of integer variables may be indicated
in this way. Each marker line is given a unique name, which must di�er from the preceding

and succeeding column names.

The marker line preceding a group of integer variables contains:

Field 1: not used

Field 2: marker name

Field 3: 'MARKER'

Field 4: optional priority level for the indicated integer variables

Field 5: 'INTORG'

Field 6: not used

The marker line succeeding a group of integer variables contains:

Field 1: not used
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Field 2: marker name

Field 3: 'MARKER'

Field 4: not used

Field 5: 'INTEND'

Field 6: not used

Format of the marker lines is:

Field 1 2 3 4 5 6

Columns 2{3 5{12 15{22 25{36 40{47 50{61

Contents Not used Marker Name 'MARKER' Priority 'INTORG' Not used

Optional

Field 1 2 3 4 5 6

Columns 2{3 5{12 15{22 25{36 40{47 50{61

Contents Not used Marker Name 'MARKER' Not used 'INTEND' Not used

RHS section data lines specify the names of the right-hand side constraint vectors.
They also de�ne, in terms of column vectors, the actual values of these elements. RHS
section data lines have precisely the same format as COLUMNS section data lines. Several
RHS columns can exist. However, only one of them is selected when problem is read.

RANGES section data lines specify the names and values of ranges. The set of ranges

is de�ned as a column vector. When no range is de�ned in the problem, the RANGE
section is omitted. The data lines contain:

Field 1: not used in this section

Field 2: name of ranges vector

Field 3: row name to which the range is to be applied

Field 4: value of range in ranges column speci�ed in the Field 2 to be applied to row
speci�ed in the Field 3

Field 5: optional and used as Field 3 is used

Field 6: optional and used as Field 4 is used

Several range vectors can exist but, as with RHS vectors, only one of them is selected

when problem is read.
Format of the RANGES section data lines is:

Field 1 2 3 4 5 6

Columns 2{3 5{12 15{22 25{36 40{47 50{61

Contents Not used
Ranges Row Range Row Range

Column Name Name Value Name Value

Optional
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BOUNDS section data lines specify bounds on the values of structural variables.

When no structural variable is to be bounded, the BOUNDS section is omitted. Bounds

are de�ned in terms of row vector. BOUNDS section data lines contain:

Field 1: type of the bound:

LO { lower bound

UP { upper bound

FX { �xed value

FR { free variable (�1;+1)

MI { lower bound = �1

PL { upper bound = +1

BV { binary variable, upper bound = 1 and integer variable indicator

LI { lower bound and integer variable indicator

UI { upper bound and integer variable indicator

Field 2: name of bounds vector

Field 3: column to be bounded name

Field 4: value of the bound, if type of the bound speci�ed in the Field 1 is LO, UP, LI,

UI or FX, otherwise this �eld is not used

Field 5{6: not used in this section

Several vectors of bounds can exist. However, entries must be speci�ed by rows, that is,
when one value is speci�ed in a given bound row vector, all other values for that row
should be entered before another row is mentioned. Only one bound vector is selected

when problem is read. Lower bounds equal to 0 and in�nite upper bounds are defaults in
MOMIP. Therefore, one does not need to specify explicitly such bounds in the BOUNDS
section.
Format of the BOUNDS section data lines is:

Field 1 2 3 4 5 6

Columns 2{3 5{12 15{22 25{36 40{47 50{61

Contents
Type Bound Column Bound

Not Used
of Bound Vector Name Name Value

MOMIP requires all integer variables to be bounded. That means, each integer variable

should appear in the BOUNDS section with a bound of type UP, UI or BV. Indication
of integer variables in the BOUNDS section (with BV, UI or LI) is an alternative to the
use of marker lines in the COLUMNS section. Thus the user is free to choose whether to

indicate integer variables in the COLUMNS sections or in the BOUNDS section. Double

indications of integer variables as well as mixed techniques of indication are accepted by

MOMIP. Note, however, that only marker lines in the COLUMNS section allows us to

de�ne priorities for integer variables.
MPS data �le may be preceded with the optional problem speci�cation lines. Note

that, as the problem speci�cation lines are located before the NAME line, they are simply

ignored by other solvers while reading the MPS �le. Speci�cation lines can appear in any
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order but they must comply with the following format:

OBJ name

MIN

MAX

RHS name

RANGES name

BOUNDS name

ZEROTOL value

INFTOL value

NINT value

OBJ speci�es the name of a row to be identi�ed as the problem objective function. By

default the �rst row of type N is taken as the objective function.

MIN speci�es optimization sense as minimization. It is the default speci�cation.

MAX speci�es optimization sense as maximization.

RHS speci�es the name of a column to be identi�ed as the problem right-hand side. By
default the �rst column found in the RHS section is taken as the right-hand side.

RANGES speci�es the name of a vector to be identi�ed as the problem ranges. By default
the �rst vector found in the RANGES section is taken as the problem ranges.

BOUNDS speci�es the name of a vector to be identi�ed as the problem bounds. By default
the �rst vector found in the BOUNDS section is taken as the problem bounds.

ZEROTOL speci�es the zero tolerance for the MPS data. Any coe�cient with absolute
value less than ZEROTOL will be replaced with 0. By default ZEROTOL= 1:0e�20.

INFTOL speci�es the infeasibility tolerance for the MPS data. Any variable with the
di�erence between its upper and lower bound less than INFTOL will be treated
as �xed at its lower bound. Any range coe�cient with absolute value less than
INFTOL will be treated as 0 and the corresponding row will be treated as equation.
By default INFTOL= 1:0e�7.

NINT speci�es the number of integer variables. By default NINT= 0 which causes that
the integer variables are identi�ed according to the markers lines in the COLUMNS

section and integer bounds (UI, LI or BV) in the BOUNDS section. When NINT has
a positive value, the �rst NINT variables (columns) are considered to be identi�ed

as integer and all the other integer indicators are ignored.

7 Tutorial example

To illustrate the use of MOMIP for a MIP problem analysis, let us consider a simpli�ed
distribution problem with warehouses sizing. The AC Auto Company wants to expand

its distribution network on a new market. AC produces two di�erent models of cars,
which we refer to, for simplicity, as M1 and M2. The cars are assembled in two plants

A1 and A2. In the A1 plant 80 M1 and 40 M2 cars are assembled monthly, whereas the

monthly production capacities of the plant A2 are 30 and 60 cars of the models M1 and
M2, respectively. The cars are transported by rail to the distribution centers then by

DRAFT November 30, 1996



trucks to individual dealers. For simplicity we consider only four dealers denoted as D1,

D2, D3 and D4. Monthly demands of the dealers on the speci�c models are given in the

following table.

D1 D2 D3 D4

M1 60 30 15 0

M2 0 30 25 40

AC operates one distribution center W1 in the area. To meet increasing demands

they consider creating one or two additional centers W2 and W3. Current capacity of

the center W1 is 50 cars but it can be increased to 80 cars. The distribution center W2

can be created in two possible versions with the capacity for 50 or 100 cars, respectively.

Similarly, W3, if created, can have the capacity for 60 or 130 cars. Operating costs of

the distribution centers depends on their capacities rather than their current throughput.

These costs in hundreds of dollars are as follows:

200 for capacity 50 or 60,

250 for capacity 80,

300 for capacity 100 or 130.

The company wants to minimize the total of operating and transportation costs. The
unit transportation costs are the same for both car models. They depend only on the

distance and their values in hundreds of dollars are summarized in the following tables:

W1 W2 W3

A1 2 5 3

A2 9 4 7

D1 D2 D3 D4

W1 7 1 6 4

W2 14 3 5 8

W3 2 7 9 1

To build an algebraic model of the problem, we introduce the following decision vari-
ables:

mr : ak wi | the number of Mr cars transported from Ak to Wi,

mr : wi dj | the number of Mr cars transported from Wi to Dj,

wi | the size (capacity) of distribution center Wi,

where r = 1; 2; k = 1; 2; i = 1; 2; 3; j = 1; 2; 3; 4.

All such de�ned decision variables must be nonnegative and integer. Moreover, the
variables wi can only take speci�c values. To model this requirement we introduce auxil-

iary binary variables wi vt and equations:

w1 = 50w1 v1 + 80w1 v2

w2 = 0w2 v1 + 50w2 v2 + 100w2 v3

w3 = 0w3 v1 + 60w3 v2 + 130w3 v3

To guarantee the proper modeling of the capacity selection, they must be accompanied
by the SOS constraints:

w1 v1 + w1 v2 = 1

w2 v1 + w2 v2 + w2 v3 = 1

w3 v1 + w3 v2 + w3 v3 = 1
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Furthermore, we introduce the transportation balance constraints. The quantities to

be sent from each assembly plant and from each distribution center cannot exceed the

quantities being available. Similarly, the quantities received by the dealers have to meet

their demands and the quantities received by the distribution centers cannot exceed their

capacities.

Finally, we de�ne the objective function which is the sum of transportation and oper-

ating costs. The transportation cost is de�ned as the total of variables mr : ak wi and

mr : wi dj multiplied by the corresponding unit costs. The operating cost is de�ned as

the total of variables wi vt multiplied by the operating cost of the corresponding version

of the center.

Essentially, all the decision variables must be integer. One can easily notice, however,

that integer values of variables wi vt imply integer values of variables wi. Thus, we need

not impose explicit integrality requirements variables wi.

The entire MPS-�le for the problem is included in Appendix B. In the MPS-�le, with

the problem speci�cations before the NAME line we have pointed out that the objective

function row is cost and it has to be minimized. We have also speci�ed I/1993 as the active

right-hand side column. All these speci�cation could be, in fact, omitted, as they comply

with the defaults. In the ROWS section all the constraints and objective function have
speci�ed their names and types. For the last three equation we have attached markers

'SOSROW' to indicate them as the SOS constraints. Next in the COLUMNS section, all
the variables with their coe�cients are listed. The integer variables have been indicated,
by groups, with the marker lines. Note that to guarantee better e�ciency of the branch-
and-bound search, the variables wi vt have assigned higher priority as they represent
the distribution center location and sizing decisions and thereby they have the greatest

impact on the model. Another order of priorities for integer variables may cause longer
solution process. In fact, in-deep analysis of the model leads to the conclusion that with
integer values of variables wi and integer data, all the transportation variables mr : ak wi

and mr : wi dj will take integer values in the optimal solution (compare, Nemhauser and
Wolsey, 1988). Thus, the integrality requirements need to be imposed only on 8 variables

wi vt. However, as it requires some experience with the integer optimization theory, we
have omitted this opportunity in the model formulation.

When solving the problem with MOMIP, the following log report has been received:

MOMIP | Modular Optimizer for Mixed Integer Programming
version 2.3 (1996)

Institute of Informatics, Warsaw University

MIP SETTINGS

Max no. of nodes to be examined . . . . . . . . . . . NODELIMIT = 100000
Max no. of nodes after last integer . . . . . . . . . NOSUCCLIMIT = 100000

Max no. of integer nodes . . . . . . . . . . . . . . . . . . . . SUCCLIMIT = 100
Max no. of simplex steps per node . . . . . . . . . . . . . ITERLIMIT = 500

Max no. of waiting nodes . . . . . . . . . . . . . . . . . . . .TREELIMIT = 1000

Node report frequency . . . . . . . . . . . . . . . . . . . . . NODREPFRQ = 10
Relative optimality tolerance . . . . . . . . . . . . . . . . . . . . OPTEPS = 0.0005

Maximal integer magnitude . . . . . . . . . . . . . . . . . . . . INTMAGN = 65535
Integrality tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . INTEPS = 0.0001

Quasi-integrality tolerance . . . . . . . . . . . . . . . . . . . . QINTEPS = 0.05

Relative postpone tolerance . . . . . . . . . . . . . . . . . . . POSTEPS = 0.2
Branching variable selection strategy . . . . . . . . . . . . . . . BRSW = AUTOMATIC
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Node selection strategy . . . . . . . . . . . . . . . . . . . . . . . . . SELSW = LIFO

Number of cuts to be generated . . . . . . . . . . . . . . . . . DOCUTS = 0

SOS preprocessing level . . . . . . . . . . . . . . . . . . . . . . . . . DOSOS = 1

Penalties on branching variable . . . . . . . . . . . . . . . . . . . DOPEN = YES

Primal feasibility tolerance . . . . . . . . . . . . . . . . . . . . TOLFEAS = 1e-07

Dual feasibility tolerance . . . . . . . . . . . . . . . . . . . . . . . . TOLDJ = 1e-07

Nonzero pivot tolerance . . . . . . . . . . . . . . . . . . . . . . . . TOLPIV = 1e-07

Refactorization frequency . . . . . . . . . . . . . . . . . . . . . INVFREQ = 100

Primal partial pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . PPRICE = 4

Primal anticycling perturbation . . . . . . . . . . . . . . . . . EPSPERT = 1e�08

PROBLEM: `AC Model'

Objective: `cost ' (MIN) Rhs: `I/1993 '

Bounds: `BD ' Ranges: ` '

25 (25) constraints with 41 (41) structurals including 38 (38) integer

Cuto� value: 1.797693e+308

� NODE 0 noninteger (6) Functional 1565.769231 (1635) Iter. 0 (0)
� AFTER node 0 and iter. 0

Nodes dropped if functional beyond 1.797693e+308
� AFTER node 0 and iter. 0

Any further solution cannot be better than 1635
� AFTER node 2 and iter. 8

Any further solution cannot be better than 1670

� AFTER node 2 and iter. 8 { 2 waiting nodes
� AFTER node 4 and iter. 11

Any further solution cannot be better than 1693.333333
� AFTER node 4 and iter. 11 { 3 waiting nodes
� INTEGER SOLUTION Functional 1700 at node 5 and iter. 13

Nodes dropped if functional beyond 1699.15

� MIP analysis completed
1 integer solutions found

� BEST SOLUTION with functional 1700 at node 5 and iter. 13

Best possible value: 1699.15
5 nodes examined

13 simplex iterations

Max list size: 2
One can read from the log report that the optimal solution to the continuous problem

(Node 0) has the functional value 1565.769231 (in hundreds of dollars) but the calculated

penalties show that integer solution cannot have functional value better than 1635. This
bound on the functional value of the integer solution increases during the solution process

(1670 after two and 1693.33 after four nodes solved). Finally, at node 5, the �rst integer
solution with the functional value 1700 is found, which turns out to be optimal. The

integer solution generates the cuto� value 1699.15 which allow to fathom all the remaining
nodes, thus completing the branch-and-bound search.

From the resume of the report one may read that only one integer solution has been

found during the entire branch-and-bound search. It was found at node 5 after 13 simplex
steps. If there exists another integer solution, its functional value cannot be better than

1699.15 (best possible value). Thus, due to the model speci�city (integer cost coe�cients),
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we can be sure that the strict optimal solution has been found. In general, if the achieved

optimization accuracy is not enough, the relative optimality tolerance OPTEPS should be

decreased. The entire branch-and-bound search required solution of 5 nodes (apart from

the original continuous problem) and it took 13 simplex steps.

Using the standard output function of the PROBLEM class one gets the following

solution report:

MIP problem | AC Model

MOMIP v.2.3

SOL STATUS: IP OPTIMAL Nodes: 5 Iters: 54 Value: 1.70000000e+03

COLUMNS SECTION

index label primal value reduced cost

0 w1 u1 1.66533454e-16 -0.00000000e+00

1 w1 u2 1.00000000e+00 1.42108547e-14

2 w2 u1 1.00000000e+00 -0.00000000e+00

3 w2 u2 0.00000000e+00 -5.00000000e+01
4 w2 u3 0.00000000e+00 -2.00000000e+02
5 w3 u1 0.00000000e+00 -0.00000000e+00

6 w3 u2 0.00000000e+00 2.00000000e+02
7 w3 u3 1.00000000e+00 3.00000000e+02
8 m1:a1 w1 4.50000000e+01 -0.00000000e+00
9 m1:a1 w2 0.00000000e+00 5.33333349e+00
10 m1:a1 w3 3.50000000e+01 -0.00000000e+00

11 m1:a2 w1 0.00000000e+00 3.00000000e+00
12 m1:a2 w2 0.00000000e+00 3.33333343e-01
13 m1:a2 w3 2.50000000e+01 -0.00000000e+00
14 m2:a1 w1 3.50000000e+01 -0.00000000e+00
15 m2:a1 w2 0.00000000e+00 5.33333349e+00

16 m2:a1 w3 0.00000000e+00 6.33333349e+00
17 m2:a2 w1 0.00000000e+00 2.66666675e+00
18 m2:a2 w2 0.00000000e+00 -0.00000000e+00
19 m2:a2 w3 6.00000000e+01 -0.00000000e+00
20 m1:w1 s1 0.00000000e+00 5.66666651e+00

21 m1:w1 s2 3.00000000e+01 -0.00000000e+00

22 m1:w1 s3 1.50000000e+01 -0.00000000e+00
23 m1:w2 s1 0.00000000e+00 1.36666670e+01
24 m1:w2 s2 0.00000000e+00 3.00000000e+00
25 m1:w2 s3 0.00000000e+00 -0.00000000e+00

26 m1:w3 s1 6.00000000e+01 -0.00000000e+00

27 m1:w3 s2 0.00000000e+00 5.33333349e+00
28 m1:w3 s3 0.00000000e+00 2.33333325e+00

29 m2:w1 s2 3.00000000e+01 -0.00000000e+00
30 m2:w1 s3 5.00000000e+00 -0.00000000e+00
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31 m2:w1 s4 0.00000000e+00 6.00000000e+00

32 m2:w2 s2 0.00000000e+00 3.00000000e+00

33 m2:w2 s3 0.00000000e+00 -0.00000000e+00

34 m2:w2 s4 0.00000000e+00 1.10000000e+01

35 m2:w3 s2 0.00000000e+00 3.00000000e+00

36 m2:w3 s3 2.00000000e+01 -0.00000000e+00

37 m2:w3 s4 4.00000000e+01 -0.00000000e+00

38 w1 8.00000000e+01 -0.00000000e+00

39 w2 0.00000000e+00 -0.00000000e+00

40 w3 1.30000000e+02 0.00000000e+00

ROWS SECTION

index label row value dual value

0 cost 1.70000000e+03 -1.00000000e+00

1 m1:a1 8.00000000e+01 -4.00000000e+00

2 m1:a2 2.50000000e+01 0.00000000e+00

3 m2:a1 3.50000000e+01 0.00000000e+00
4 m2:a2 6.00000000e+01 -6.66666687e-01
5 m1:d1 6.00000000e+01 9.00000000e+00

6 m1:d2 3.00000000e+01 8.66666698e+00
7 m1:d3 1.50000000e+01 1.36666670e+01
8 m2:d2 3.00000000e+01 6.66666651e+00
9 m2:d3 2.50000000e+01 1.16666670e+01
10 m2:d4 4.00000000e+01 3.66666675e+00

11 bw1 0.00000000e+00 -1.66666663e+00
12 bw2 0.00000000e+00 -5.00000000e+00
13 bw3 -1.00000000e+01 0.00000000e+00
14 m1:w1 0.00000000e+00 7.66666651e+00
15 m1:w2 0.00000000e+00 8.66666698e+00

16 m1:w3 0.00000000e+00 7.00000000e+00
17 m2:w1 0.00000000e+00 5.66666651e+00
18 m2:w2 0.00000000e+00 6.66666651e+00
19 m2:w3 0.00000000e+00 2.66666675e+00
20 ver w1 1.42108547e-14 1.66666663e+00

21 ver w2 0.00000000e+00 5.00000000e+00

22 ver w3 0.00000000e+00 0.00000000e+00

23 sel w1 1.00000000e+00 1.16666664e+02
24 sel w2 1.00000000e+00 0.00000000e+00

25 sel w3 1.00000000e+00 0.00000000e+00
From the solution report one can read that to minimize the total operating and trans-

portation costs the AC company should expand the distribution center W1 to capacity
80 and operate the center W3 with capacity 130 whereas the center W2 should not be

used. Values of the transportation variables mr : ak wi and mr : wi dj depict details of
the optimal distribution scheme.
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8 Computational tests

The MOMIP solver was tested on a variety of available problems. For detailed testing, the

problems reported by Haldi (1964) and some MIPLIB (Bixby et al., 1992) problems were

used. The problems represent a variety of di�erent applications. In tables reporting the

results of testing, problems are described with three parameters: number of constraints

| m, total number of variables | n and number of integer variables | int.

The test results on Haldi's problems are summarized in Table 1. The computations

have been made on a PC-AT microcomputer. The table provides for each problem the

total number of examined nodes (in the entire branch-and-bound process) and the corre-

sponding number of simplex iterations (pivots). There are also reported: the number of

node generating the optimal solution and the maximal number of waiting nodes (list size).

One may notice that some problems (like IBM5) have required a large number of nodes

to complete the branch-and-bound process, but in all the problems the optimal solutions

have ben found in no more than 35 nodes. Moreover, the waiting list was quite small (no

more than 33 waiting nodes).

Problem Total Optimal List

Name m n int nodes pivots at node size

FIX 10 12 12 8 29 4 3
JOB1 21 56 36 10 189 5 4
JOB2 21 56 36 4 96 2 1
JOB3 21 56 36 36 349 18 11

JOB4 21 56 36 5 104 5 2

JOB5 21 56 36 62 453 35 17
JOB6 21 56 36 67 986 34 14

IBM1 7 7 7 1 8 1 0
IBM2 7 7 7 10 25 10 4
IBM3 3 4 4 6 11 5 2

IBM4 15 15 15 21 72 21 10

IBM5 15 15 15 1277 3015 16 15
IBM6 31 31 31 613 4023 30 30
IBM7 12 50 50 59 124 28 17
IBM8 12 37 37 67 99 34 33

IBM9 50 15 15 115 586 7 6

Table 1. Results of tests for Haldi's problems

Table 2 presents performances of MOMIP on the MIPLIB (Bixby et al., 1992) test

problems. The computations have been made on DEC 5000/240 workstation. All the

problems have been solved with MOMIP from scratch and the corresponding CPU time

includes the initial LP solution process. Most problems have been solved in a reasonable

time. A few problems turns out to be di�cult for MOMIP. However, they are known to
be very hard discrete problems.
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Problem Total Optimal Total

name m n int nodes at node CPU sec.

bm23 20 27 27 340 237 2.20
sample2 45 67 21 167 97 0.78

sentoy 30 60 60 421 327 5.82

stein9 13 9 9 16 7 0.05
stein15 36 15 15 119 18 0.62

stein27 118 27 27 5200 29 66.38

stein45 331 45 45 80295 2730 5519.22

misc01 54 83 82 513 51 51.97

misc02 39 59 58 38 15 3.38

misc03 96 160 159 4177 922 567.82
misc04 1275 4897 30 10 8 124.58

misc05 300 136 74 679 59 133.68

misc06 820 1808 112 182 41 61.20
misc07 212 260 259 157477 37482 56066.30

bell3a 123 133 71 35474 107 863.95
bell3b 123 133 71 �500000 1161 6589.73

bell4 105 117 64 �500000 | 5229.97

Table 2. Results of tests for MIPLIB problems

MOMIP has been also initially tested on real-life problems originated from the water
quality management (Berkemer et al., 1993). The problems consist of 1041 constraints,
852 continuous variables and 94 binary variables. The optimal solutions have been found
and proven very quickly. Table 3 shows the MOMIP performances on these problems. All

the computations have been made on Sun Sparc 2 workstation. Table 3 reports for each
problem: number of solved nodes and total of simplex iterations (Pivots) required to solve
these nodes, pure MIP analysis CPU time (excluding solution of the continuous problem)
and CPU time used to solve the continuous problem. One may easily notice that on these
problems the MIP analysis time does not exceed 44% of the CPU time needed to solve
the continuous (LP) problem.

Problem Nodes Pivots MIP sec. LP sec.

t1 1 3 0.05 9.78

t2 13 128 1.64 8.27
t3 24 176 2.65 8.23

t4 25 281 3.68 8.52

t5 5 26 0.35 9.33
t6 11 116 1.20 9.32

t7 2 2 0.08 9.15

Table 3. Results of tests for water quality management problems

In order to show how the penalties e�ects on the branch-and-bound process, we have

solved all the Haldi's problems twice. In both runs we have deactivated SOS processing
and cuts generation (DOSOS= 0 and DOCUTS= 0), and have set the automatic branching
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and node selection strategies (SELSW= 0, BRSW= 0 and POSTEPS= 0:2). The only

di�erence between the runs depends on use of penalties in the second run (DOPEN= 1).

The results of this comparison are presented in Table 4. Use of penalties, usually, decreases

remarkably the total number of examined nodes.

DOPEN=0 DOPEN=1
Problem Total Optimal List Total Optimal List

nodes pivots at node size nodes pivots at node size

FIX 36 42 8 4 12 36 8 3

JOB1 33 468 33 11 32 339 32 7
JOB2 16 466 16 7 3 119 3 1

JOB3 90 662 35 11 40 478 5 5
JOB4 15 278 15 4 5 104 5 2

JOB5 95 513 95 13 62 453 35 17

JOB6 86 526 29 14 67 986 34 14
IBM1 2 8 1 0 1 8 1 0

IBM2 28 37 10 4 10 25 10 4

IBM3 24 22 22 4 6 11 5 2
IBM4 21 72 21 10 21 72 21 10

IBM5 4190 4582 29 224 1649 3550 31 122

IBM6 1144 4333 25 66 930 5383 25 49
IBM7 526 531 515 66 421 815 387 90
IBM8 781 1339 781 64 533 1432 533 45

IBM9 260 579 13 31 115 586 13 12

Table 4. Results of tests for use of penalties

Provided in MOMIP techniques of SOS processing and cuts generation on small and
easy problems may not speedup remarkably the solution process and sometimes even may
make it longer. However, on hard problems they may generate a dramatic improvement of
solver performances. Table 5 summarizes results of such tests on hard problems built on
the basis of the water quality management model (Berkemer et al., 1993). The problems

are really hard for standard MIP solvers. For instance, while solving problem t10p0
with CPLEX (CPLEX, 1993) it required to examine 734491 nodes and took 60858.90
seconds of the CPU time on Sun Sparc 2 workstation. For smaller problem t7p0 CPLEX

needed to examine 29650 nodes in 381.80 seconds. For each problem we have executed
three MOMIP runs using the default node selection strategy. In Run 1 we have not used

SOS reformulation (DOSOS= 0) neither cuts generation (DOCUTS= 0). In Run 2 we
have used SOS reformulation technique (DOSOS= 2) leaving cuts generation switched o�

(DOCUTS= 0). Finally, in Run 3 we have used both SOS reformulation (DOSOS= 2) and
cuts generation (DOCUTS= 5). All the computations have been made on DEC 5000/240

workstation. In Run 1 the branch-and-bound process for larger problems has not been
completed within 1000000 nodes. In Run 2 we have noticed a dramatic improvement and

all the problems have been solved with less than 10000 examined nodes. In Run 3 we

have got further improvement and the most di�cult problem t20p0 has been solved in
about 2 minutes. whereas all the other problems in less than 16 seconds. In particular,

problem t10p0 has been completely solved in less than 1 second.

DRAFT November 30, 1996



Problem Number of nodes CPU seconds

name m n int Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

t5p0 21 41 25 260 14 1 0.60 0.05 0.01
t5np0 21 41 25 42 10 9 0.10 0.07 0.07

t7p0 29 57 35 5253 30 9 14.50 0.18 0.07

t7np0 29 57 35 203 34 12 0.65 0.26 0.12
t10p0 41 81 50 129821 226 43 578.35 2.35 0.42

t10np0 41 81 50 3734 114 44 16.05 1.13 0.53

t15p0 61 121 75 �1000000 1310 979 �5710.60 24.18 15.50

t15np0 61 121 75 154900 590 238 865.72 8.71 3.68

t20p0 81 161 100 �1000000 8894 6311 �6955.24 252.15 129.00

t20np0 81 161 100 �1000000 8043 610 �7429.50 176.00 12.40

Table 5. Results of tests for DOSOS and DOCUTS parameters

9 Software availability

MOMIP is available for UNIX (currently implemented for Sun OS 4.1.2, Sun Solaris and

Ultrix v. 4.3) and for MS-DOS on IBM compatible PC. It has been already installed
in IIASA (on Sun Sparc 2) and in IIUW (on DEC 5000/240). For details on these in-
stallations one may contact Marek Makowski (marek@iiasa.ac.at) at IIASA or W lodek
Ogryczak (ogryczak@mimuw.edu.pl) at IIUW.

Executable form of MOMIP is available free of charge to educational and research

institutions (or to individuals working in this area), assuming that this product will not
be used for any commercial application. Inquiries for executable code should be addressed
to the Methodology of Decision Analysis Project at IIASA. Inquiries for linkable library
should be addressed directly to the authors.
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A Sample program

This appendix provides the complete text of the main �le used to setup the standalone

MOMIP program (Chapter 5).

#include \momip.h"

//momip.h header �le

PROBLEM problem;

//PROBLEM class constructor

MIP PAR mip par;

//MIP PAR class constructor

MIP mip(&problem);

//MIP class constructor

main( int argc, char ��argv )

f

if( argc < 2 ) printhelp(); //help call

//initializations

int iscuto�=0, ipar;

double cuto�=0;
char �parptr;
char spcname[60];
strcpy(spcname,\momip.spc");
char logname[60];

strcpy(logname,\momip.log");
int istextout=0;
char txtname[60];
int isinvname=0;
char invname[60];

int isnodeout=0;
char nodename[60];
int insel=ext;
int isout=1;
int issolout=0;
char solname[60];

char inname[60];

int isditout=0;
//options reading

for (ipar=1;ipar<argc;ipar++) f

parptr=argv[ipar];

if (�parptr!='-') break;
else switch (�(++parptr)) f

case 'b': isinvname=1; strcpy(invname,++parptr); break;
case 'c': cuto�=atof(++parptr); iscuto�=1; break;

case 'h': printhelp();

case 'i': switch (�(++parptr)) f
case 'e': insel=ext; break;

case 'm': insel=mps; break;
case 't': insel=txt; break;

case 'd': insel=dit; break;
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default: cerr<<\Invalid i-option!nn";

g

break;

case 'l': strcpy(logname,++parptr); break;

case 'n': isnodeout=1; strcpy(nodename,++parptr); break;

case 'o': switch (�(++parptr)) f

case 'n': isout=0; break;

case 's': issolout=1; break;

case 'd': isditout=1; break;

default: cerr<<\Invalid o-option!nn";

g

break;

case 's': strcpy(spcname,++parptr); break;

case 't': istextout=1; strcpy(txtname,++parptr); break;

default: cerr<<\invalid optionnn";

g

g

//�le names setting
char base name[60];
strcpy(base name,argv[ipar]);
strcpy(inname,base name);

parptr=base name;
char �dinv=\.inv";
char �dsol=\.sol";
char �frommps =\.mps";
char �fromdit =\.dit";

char �fromtxt =\.txt";
int ext name l = strlen(frommps);
int �le name l = strlen(base name);
int base name l = �le name l - ext name l;
if (insel==ext) f

if (! strncmp(&parptr[base name l], frommps, ext name l) ) f
insel=mps;
if (isout) issolout=1;
g

else if (! strncmp(&parptr[base name l], fromtxt, ext name l) ) f
insel=txt;

if (isout) issolout=1;

g

else if (! strncmp(&parptr[base name l], fromdit, ext name l) ) f
insel=dit;

if (isout) isditout=1;

g

else printhelp();

parptr=strrchr(base name,'.');

�parptr='n0';
g

strcpy(solname,base name);
strncat(solname,dsol,4);
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if (!isinvname jj invname[0]=='n0') f

strcpy(invname,base name);

strncat(invname,dinv,4);

g

if (istextout && txtname[0]=='n0') f

strcpy(txtname,base name);

strncat(txtname,fromtxt,4);

g

if (isnodeout && nodename[0]=='n0') f

strcpy(nodename,base name);

strncat(nodename,dinv,4);

g

//starting log �le

ofstream log�le(logname);

if (!log�le) fcerr<<\nnCANNOT open log�le!nn"; exit(1);g

else mip.initlog(&log�le);

if (insel==mps ) f //data reading from MPS �le

if(problem.readmip( inname )<0) exit(1);
g else if(insel==txt) f //data reading from TXT �le

problem.loadmip( inname );
g else if(insel==dit ) f //data reading from LP-DIT

problem.dit to mip( inname );
g else printhelp();

//TXT �le output
if (istextout) problem.writelp(txtname,0);
problem.writelp(\problem.txt");

//speci�cation �le reading
mip par.read(spcname);
mip par.checkpar();

//setting LP basis �le
mip.setinvin(invname);

//setting LP basis output
if (isnodeout) mip.setinvout(nodename);

//solvemip call

if(iscuto�)
mip.solvemip(cuto�,&mip par); //with CUTOFF

else

mip.solvemip(&mip par); //no CUTOFF

//solution output

//solution to DIT
if (isditout) problem.mip to dit();

//solution to text �le

if (issolout) problem.writesol(solname,problem.lp�>name,\MOMIP v.2.3" );

//log closing

log�le.close();
return(0);

g
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B Sample MPS �le

This appendix provides the complete text of the MPS �le built for the tutorial example

(Chapter 7).
MIN

OBJ cost

RHS I/1993

NAME AC Model

ROWS

N cost

L m1:a1

L m1:a2

L m2:a1

L m2:a2

E m1:d1

E m1:d2

E m1:d3

E m2:d2
E m2:d3

E m2:d4
L bw1
L bw2
L bw3
G m1:w1

G m1:w2
G m1:w3
G m2:w1
G m2:w2
G m2:w3
E ver w1

E ver w2
E ver w3
E sel w1 'SOSROW'
E sel w2 'SOSROW'
E sel w3 'SOSROW'

COLUMNS

sizes 'MARKER' 2 'INTORG'
w1 u1 ver w1 50 cost 200
w1 u1 sel w1 1

w1 u2 ver w1 80 cost 250

w1 u2 sel w1 1
w2 u1 sel w2 1

w2 u2 ver w2 50 cost 200
w2 u2 sel w2 1
w2 u3 ver w2 100 cost 300

w2 u3 sel w2 1
w3 u1 sel w3 1

w3 u2 ver w3 60 cost 200
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w3 u2 sel w3 1

w3 u3 ver w3 130 cost 300

w3 u3 sel w3 1

esizes 'MARKER' 'INTEND'

ows 'MARKER' 1 'INTORG'

m1:a1 w1 cost 2 m1:a1 1

m1:a1 w1 bw1 1 m1:w1 1

m1:a1 w2 cost 5 m1:a1 1

m1:a1 w2 bw2 1 m1:w2 1

m1:a1 w3 cost 3 m1:a1 1

m1:a1 w3 bw3 1 m1:w3 1

m1:a2 w1 cost 9 m1:a2 1

m1:a2 w1 bw1 1 m1:w1 1

m1:a2 w2 cost 4 m1:a2 1

m1:a2 w2 bw2 1 m1:w2 1

m1:a2 w3 cost 7 m1:a2 1

m1:a2 w3 bw3 1 m1:w3 1

m2:a1 w1 cost 4 m2:a1 1
m2:a1 w1 bw1 1 m2:w1 1
m2:a1 w2 cost 7 m2:a1 1
m2:a1 w2 bw2 1 m2:w2 1

m2:a1 w3 cost 9 m2:a1 1
m2:a1 w3 bw3 1 m2:w3 1
m2:a2 w1 cost 6 m2:a2 1
m2:a2 w1 bw1 1 m2:w1 1
m2:a2 w2 cost 1 m2:a2 1

m2:a2 w2 bw2 1 m2:w2 1
m2:a2 w3 cost 2 m2:a2 1
m2:a2 w3 bw3 1 m2:w3 1
m1:w1 d1 cost 7 m1:d1 1
m1:w1 d1 m1:w1 -1

m1:w1 d2 cost 1 m1:d2 1
m1:w1 d2 m1:w1 -1
m1:w1 d3 cost 6 m1:d3 1

m1:w1 d3 m1:w1 -1
m1:w2 d1 cost 14 m1:d1 1
m1:w2 d1 m1:w2 -1

m1:w2 d2 cost 3 m1:d2 1

m1:w2 d2 m1:w2 -1

m1:w2 d3 cost 5 m1:d3 1
m1:w2 d3 m1:w2 -1

m1:w3 d1 cost 2 m1:d1 1

m1:w3 d1 m1:w3 -1
m1:w3 d2 cost 7 m1:d2 1

m1:w3 d2 m1:w3 -1
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m1:w3 d3 cost 9 m1:d3 1

m1:w3 d3 m1:w3 -1

m2:w1 d2 cost 1 m2:d2 1

m2:w1 d2 m2:w1 -1

m2:w1 d3 cost 6 m2:d3 1

m2:w1 d3 m2:w1 -1

m2:w1 d4 cost 4 m2:d4 1

m2:w1 d4 m2:w1 -1

m2:w2 d2 cost 3 m2:d2 1

m2:w2 d2 m2:w2 -1

m2:w2 d3 cost 5 m2:d3 1

m2:w2 d3 m2:w2 -1

m2:w2 d4 cost 8 m2:d4 1

m2:w2 d4 m2:w2 -1

m2:w3 d2 cost 7 m2:d2 1

m2:w3 d2 m2:w3 -1

m2:w3 d3 cost 9 m2:d3 1

m2:w3 d3 m2:w3 -1
m2:w3 d4 cost 1 m2:d4 1
m2:w3 d4 m2:w3 -1
eows 'MARKER' 'INTEND'

w1 bw1 -1 ver w1 -1
w2 bw2 -1 ver w2 -1
w3 bw3 -1 ver w3 -1

RHS
I/1993 m1:a1 80

I/1993 m1:a2 30
I/1993 m2:a1 40
I/1993 m2:a2 60
I/1993 m1:d1 60
I/1993 m1:d2 30

I/1993 m1:d3 15
I/1993 m2:d2 30
I/1993 m2:d3 25
I/1993 m2:d4 40

I/1993 sel w1 1
I/1993 sel w2 1

I/1993 sel w3 1
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BOUNDS

UP BD w1 u1 1

UP BD w1 u2 1

UP BD w2 u1 1

UP BD w2 u2 1

UP BD w2 u3 1

UP BD w3 u1 1

UP BD w3 u2 1

UP BD w3 u3 1

UP BD m1:a1 w1 200

UP BD m1:a1 w2 200

UP BD m1:a1 w3 200

UP BD m1:a2 w1 200

UP BD m1:a2 w2 200

UP BD m1:a2 w3 200

UP BD m2:a1 w1 200

UP BD m2:a1 w2 200

UP BD m2:a1 w3 200
UP BD m2:a2 w1 200
UP BD m2:a2 w2 200
UP BD m2:a2 w3 200

UP BD m1:w1 d1 200
UP BD m1:w1 d2 200
UP BD m1:w1 d3 200
UP BD m1:w2 d1 200
UP BD m1:w2 d2 200

UP BD m1:w2 d3 200
UP BD m1:w3 d1 200
UP BD m1:w3 d2 200
UP BD m1:w3 d3 200
UP BD m2:w1 d2 200

UP BD m2:w1 d3 200
UP BD m2:w1 d4 200
UP BD m2:w2 d2 200

UP BD m2:w2 d3 200
UP BD m2:w2 d4 200
UP BD m2:w3 d2 200

UP BD m2:w3 d3 200

UP BD m2:w3 d4 200

ENDATA
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