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In this expository paper, we review a variety of resource allocation problems in which it is desirable to allocate limited resources
equitably among competing activities. Applications for such problems are found in diverse areas, including distribution planning,
production planning and scheduling, and emergency services location. Each activity is associated with a performance function,
representing, for example, the weighted shortfall of the selected activity level from a specified target. A resource allocation solution
is called equitable if no performance function value can be improved without either violating a constraint or degrading an already
equal or worse-off (i.e., larger) performance function value that is associated with a different activity. A lexicographic minimax
solution determines this equitable solution; that is, it determines the lexicographically smallest vector whose elements, the perfor-
mance function values, are sorted in nonincreasing order. The problems reviewed include large-scale allocation problems with
multiple knapsack resource constraints, multiperiod allocation problems for storable resources, and problems with substitutable
resources. The solution of large-scale problems necessitates the design of efficient algorithms that take advantage of special
mathematical structures. Indeed, efficient algorithms for many models will be described. We expect that this paper will help
practitioners to formulate and solve diverse resource allocation problems, and motivate researchers to explore new models and
algorithmic approaches.

Resource allocation problems are concerned with the
allocation of limited resources among competing ac-

tivities so as to optimize some objective. Linear program-
ming models with an objective function that minimizes, or
maximizes, the sum of linear terms are widely used to
formulate resource allocation problems. Advances in lin-
ear programming algorithms and computing power have
facilitated the solution of large-scale problems. Integration
of these algorithms with modeling languages and spread-
sheets has encouraged the use of linear programming
among practitioners and managers. However, such models
suffer from certain drawbacks. Extreme point solutions of-
ten minimize a single overall objective, e.g., total costs, at
the expense of disproportionately affecting some of the
individual activities. Such solutions may be viewed by deci-
sion makers as undesirable and difficult to implement. Fur-
ther, although small changes in input parameters typically
lead to small changes in the optimal objective function
value, they may lead to an extreme point with significantly
different activity levels. Such “nervousness” in the optimal
decision variables reduces a model’s credibility and is dif-
ficult to comprehend.

Many papers describe resource allocation problems with
special mathematical structures, solved by custom-made
algorithms that take advantage of these structures. The
books by Mjelde (1983b) and Ibaraki and Katoh (1988),

and a recent paper by Katoh and Ibaraki (1997) describe a
large collection of such resource allocation models and
algorithms.

In this paper, we focus on an objective function that
attempts to allocate resources equitably among the com-
peting activities. We first consider the minimax objective
function. Each activity is measured by a performance func-
tion that depends on the corresponding level assigned to
that activity; a smaller objective function value is consid-
ered better. For instance, a performance function may rep-
resent the weighted shortfall of the level assigned to the
activity from a specified target—the larger the assigned
level (up to the target), the smaller is the shortfall. The
weights may represent relative importance or cost param-
eters. A minimax objective function then minimizes the
largest performance function among all activities: in our
example, the largest weighted shortfall from the given tar-
get among all activities. Models with a minimax objective
function attempt to allocate limited resources equitably
among the worst-off activities, i.e., among activities whose
performance function value is the largest. However, the
minimax solution does not provide adequate guidance re-
garding the levels that should be assigned to all other ac-
tivities. Thus, the question arises: Which solution from
among those that yield the minimax objective value should
be selected, while allocating resources equitably among all

Subject classifications: Programming, large-scale systems: resource allocation algorithms. Programming, multiple criteria: lexicographic minimax objective. Production/
scheduling; applications: resource allocation models.

Area of review: OR CHRONICLE.

361
Operations Research 0030-364X/99/4703-0361 $05.00
Vol. 47, No. 3, May–June 1999 q 1999 INFORMS



activities? This is particularly important in large-scale
problems, where, typically, each activity uses only a small
subset of the resources. The lexicographic minimax objec-
tive function, explained below, addresses precisely this
issue.

The lexicographic minimax solution determines equitable
allocation of resources among all activities in the sense
that no performance function value can be improved
further without either violating a constraint or degrad-
ing an already equal or worse-off (i.e., larger) perfor-
mance function value that is associated with a different
activity. Let n1 and n2 be vectors with n elements each.
Suppose that the first element in which vector n1 5 (n11,
n12, . . . , n1n) differs from vector n2 5 (n21, n22, . . . , n2n)
is element e. Then, n1 is lexicographically smaller than
n2 if and only if n1e , n2e. Consider now the vector of
performance function values. The lexicographic mini-
max solution is then defined as a solution that provides
the lexicographically smallest vector whose elements,
the performance function values, are sorted in nonin-
creasing order.

The various resource allocation problems addressed in
this paper have mathematical structures that allow finding
the lexicographic minimax solution by repeatedly solving
problems with a minimax objective function. At each iter-
ation, the optimal level for some activities is determined.
A new minimax problem is then formulated without these
activities and with updated parameters, such as available
resource supplies.

We illustrate these ideas through a resource allocation
problem, where the only constraints imposed are inequal-
ity resource constraints of the knapsack type (one unit of
any activity consumes a specified nonnegative amount of
each resource) and zero lower bounds on the activity lev-
els. Also, suppose all performance functions are strictly
decreasing functions. The minimax objective value is then
obtained with one or more resource constraints, called crit-
ical resources, fully used. Since, in most large-scale prob-
lems, each activity uses only a small subset of the
resources, many activities may not use the critical re-
sources. Hence, the optimal levels assigned to all activities
are not necessarily unique. Among all vectors of activity
levels that provide the minimax objective value for this
problem, an appealing one is called the minimal solution.
Let the vector x* be the vector of activity levels that con-
stitutes the minimal solution. Then, x* ¶ y*, where y* is
any alternate vector that provides the same objective func-
tion value. Note that for problems with knapsack con-
straints, there exists a minimal solution; furthermore, this
solution provides the maximal amount of leftover
resources.

The tableau in Figure 1 shows resource constraints for a
problem with m resources (rows) and n activities (col-
umns). Suppose the minimal solution has resource ic as the
single critical resource. Each P in row ic implies that the
corresponding activity uses a positive amount of resource
ic, and each 0 implies that it does not use resource ic. The

coefficients in the remaining m 2 1 rows and the resource
supplies in the right-hand-side column are shown as dots.
None of the levels determined for activities with a P in row
ic can be feasibly changed without increasing the minimax
objective value. To see this, recall that by definition of the
minimal solution, none of the activity levels can be de-
creased without increasing the objective function value.
Furthermore, if the level of some activity with a P in row ic
is increased, the level of another activity with a P in row ic
must be decreased. We conclude that the minimal solution
determines the unique optimal levels of all activities with a
P in row ic. Once this minimal solution is found, a new
tableau, which excludes row ic and all activities with a P in
that row, can be defined. In the new tableau, the resource
supplies are updated to reflect the amounts used by the
activities whose levels were fixed. We can now allocate
these leftover resources among the remaining activities, by
optimizing the same minimax objective over the remain-
ing activities. The procedure can be repeated until all
activity levels are fixed, at which point the lexicographic
minimax solution is obtained. Luss and Smith (1986)
propose the lexicographic minimax objective to solve
resource allocation problems with multiple knapsack re-
source constraints.

A sample of applications for minimax and lexicographic
minimax resource allocation problems is presented in §1.
Although the discussions in this paper are in terms of
the minimax and lexicographic minimax objectives, anal-
ogous models with maximin and lexicographic maximin
objectives can readily be formulated and solved by sim-
ilar algorithms. Note that the lexicographic minimax
(maximin) objective determines equitable solutions for
problems where a smaller (larger) performance function
value is considered better. The relevant models are of-
ten solved in a real-time computing environment, either
as stand-alone models or as part of more complex sys-
tems. Hence, it is important to exploit the mathematical
structure of these models and provide efficient algo-
rithms, capable of solving large-scale problems in sec-
onds. Given the central role of the minimax problems in
the lexicographic minimax solution approach, a signifi-
cant part of the presentation is devoted to the underly-
ing minimax problems.

Figure 1. Example of the critical resource in the resource-
activity tableau.
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Section 2 considers the basic resource allocation prob-
lem with multiple knapsack-type resource constraints, and
where each term in the objective function represents a
performance function for a single activity. Section 3 ex-
tends the basic resource allocation problem to a multipe-
riod setting. Section 4 examines resource allocation
problems with substitutable resources. Section 5 highlights
various resource allocation problems whose mathematical
structure is more complex. Final remarks are given in Sec-
tion 6.

1. APPLICATIONS

We present below a sample of applications for which re-
source allocation models with minimax and lexicographic
minimax (or, equivalently, maximin and lexicographic
maximin) objective functions are appealing. In some appli-
cations, it is only important to protect the worst-off activi-
ties, in which case, any of the minimax solutions can be
selected. However, in many applications, selecting the lex-
icographic minimax solution from among the many mini-
max solutions provides a significant enhancement.

Distribution of Strategic Resource

Distribution of strategic resources among competing de-
mand locations requires equitable allocation methods, par-
ticularly during critical periods of expected shortages.
Consider, for example, distribution of spare parts for mili-
tary airplanes during a war. A reasonable approach would
consist of estimating relative importance parameters for
different airplane types at different locations. These pa-
rameters are then fed into a model with a lexicographic
minimax objective function that provides an equitable
spare part distribution plan. Similar examples include the
distribution of energy sources, water supply, specialized
high-tech integrated circuits, etc. Brown (1979a, 1983) pro-
vides an example of distributing coal among power compa-
nies during periods of shortage of coal supply. Agnihothri
et al. (1982) describe a model for the allocation of a criti-
cal product among competing locations under stochastic
demand.

Production Planning

An important function in the manufacturing of high-tech
products consists of the assembly of numerous (thousands)
components, like integrated circuits, onto a variety (hun-
dreds) of circuit boards. Because of rapid changes in tech-
nology and the large number of components involved,
shortages are often incurred. Effective allocation of re-
sources (components) among competing activities (circuit
boards) is critically important in order to minimize penal-
ties due to loss of current and future sales. The lexico-
graphic minimax objective function is quite appealing for
such production planning problems as it proposes equita-
ble allocation of components among all products, while
taking into consideration the relative importance of the
different products. King (1989) presents a multiperiod pro-

duction planning model that uses this approach. The
model serves as an enhancement to the popular Material
Requirement Planning (MRP) systems.

Production Scheduling

In the manufacturing of customized end-products, such as
cars and telecommunications systems, multiple feeder
shops supply subassemblies to the final assembly shop. The
daily demands imposed on the feeder shops depend on the
sequence in which the final assembly shop plans to assem-
ble the customized products, as each of these requires a
different amount of each of the subassemblies. In order to
facilitate efficient manufacturing of the subassemblies,
while keeping their inventories at a minimum, it is impor-
tant that the final assembly sequence impose smooth daily
demands for subassemblies on the feeder shops. Monden
(1983) describes a final assembly sequencing model for the
Toyota production system. Luss et al. (1990) describe a
final assembly sequencing model for private-branch ex-
change telecommunications systems that uses a lexico-
graphic minimax approach.

Emergency Services

Location of facilities for emergency services—like police,
fire department, and emergency medical facilities—is an
important and sensitive issue. Typically, such facilities
should be located so as to provide roughly the same re-
sponse time to all neighborhoods within a metropolitan
area. Such problems are often modeled as covering prob-
lems, i.e., locating facilities so that each demand location
will be served within a specified time, or as minimax prob-
lems, where the largest response time experienced by any
of the demand locations is as small as possible. Kolesar
and Walker (1974) describe, in their Lanchester prize-
winning paper, a model for relocating fire companies.
Daskin (1995) describes a variety of facility location mod-
els. Ogryczak (1997) proposes a lexicographic minimax ap-
proach to location problems.

Telecommunications Network Design

Modern telecommunications networks can provide instan-
taneous restoration service, in case of a link or node fail-
ure, due to the deployment of SONET (Synchronous
Optical Network) standards and network topologies with
multiple internetworked rings. The required capacity of
each ring is determined by the maximal load that may be
encountered by any of the links along the ring. Thus, min-
imizing the required capacity of a ring can be formulated
as a minimax problem. Cosares et al. (1995) describe a
ring-based network design tool used by multiple telecom-
munications companies.

As a second example, telecommunications networks are
expected to accommodate multimedia services. Hence, it is
important to allocate network resources, such as available
bandwidth, so as to provide equitable performance in
terms of, say, expected delays to all services at numerous
destination nodes. Such problems can be formulated as
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minimax network flow problems; see, for example, Brown
(1983).

Workforce Management

Consider crew scheduling problems for transportation
companies. Once a crew is assigned to a trip, it is not
available for another assignment for a specified time. Trips
not assigned to any crew are served through outsourcing to
an external crew or to another company, thus incurring
significant penalties. In order to manage these shortages
effectively, it is desired to spread them equitably over time.
Meketon (1996) describes a lexicographic minimax model
for crew scheduling in a rail company.

As a second example, consider call service centers that
handle large volumes of calls, serving requests for informa-
tion, reservations, etc. It is challenging to design long em-
ployee shifts that provide acceptable service levels during,
say, every 15-minute time interval throughout the day. The
schedules need often address complicating issues, such as
multiple teams of employees that overlap only in some of
the required skills. Munson and Kodialam (1995) and
Gawande (1996) describe variants of such problems.

Other Applications

A variety of other potential applications for minimax and
lexicographic minimax resource allocation models have
been mentioned by different authors. A few of these are
mentioned below.

Chaddha et al. (1971) describe assignment of sample
sizes for a stratified sample survey of different types of
telephone switchboards. Kaplan (1974) discusses the allo-
cation of the right mix of supplies, such as ammunition,
food and fuel for a military mission. Garfinkel and Rao
(1976) examine bottleneck problems. Brown (1979b) de-
scribes a minimax model for salary administration for a
large number of job classifications. Mendelson et al. (1980)
describe allocation of computer storage among numerous
files so as to maximize the time until any of the application
programs runs out of space. Mjelde (1983a) presents an
example of allocating inspection and maintenance efforts
among multiple components that are part of the same
system. Eiselt (1986) discusses allocation of government
funds fairly among nationally important projects. Ibaraki
and Katoh (1988, Ch. 7) describe apportionment prob-
lems, concerned with the allocation of seats among elec-
toral districts, so that the number of seats given to each
district is as proportional to its population as possible.
Tang (1988) presents several manufacturing applications,
including storage space allocation for high-speed compo-
nent insertion machines. The objective there is to maxi-
mize the time until any of the components needs to be
replenished. Kouvelis and Yu (1997) describe robust opti-
mization for various applications, such as project portfolio
selection. A robust solution selects the portfolio whose
return is maximized under the worst possible scenario.

2. EQUITABLE RESOURCE ALLOCATION
PROBLEMS WITH MULTIPLE RESOURCES

In this section, equitable resource allocation problems with
multiple resource constraints are reviewed. The presenta-
tion provides the foundation for more complex resource
allocation problems described in subsequent sections.

2.1. The Minimax Problem

The minimax problem considers the allocation of multiple
resources among competing activities so as to minimize
the largest performance function value associated with any
of the activities.

We use the following notation:

i 5 Index for resources; i 5 1, 2, . . . , m, where m is
the number of resources. Let I be the set of
indices i of all resources.

j 5 Index for activities; j 5 1, 2, . . . , n, where n is
the number of activities. Let J be the set of
indices j of all activities.

aij 5 Amount of resource i needed for each unit of
activity j; aij Ä 0.

bi 5 Amount available of resource i; bi . 0.
xj 5 Level selected for activity j. Let the vector x 5

(x1, x2, . . . , xn).
fj(xj) 5 Performance function associated with activity j.

It depends only on xj.
fj

2 1[ 5 Inverse function of fj[; that is, if fj(xj) 5 m,
then fj

21(m) 5 xj.
* 5 Superscript that denotes optimal values.

The resource allocation problem with multiple re-
sources, referred to as PROBLEM RESOURCE, is for-
mulated as follows:

PROBLEM RESOURCE

V* 5 min
x @ max

j[J
f j ~ x j !# (1.1)

so that

O
j[J

a ij x j < b i , i [ I, (1.2)

x j > 0, j [ J. (1.3)

We are interested in finding not merely an optimal solu-
tion to PROBLEM RESOURCE, but rather the minimal
solution. The latter is denoted as x*. The performance
functions fj(xj) are assumed to be continuous, strictly de-
creasing, and invertible functions. Hence, the inverse func-
tions fj

21[ are also continuous and strictly decreasing.
Resource constraints (1.2) are inequality constraints of the
knapsack type (aij Ä 0). Various extensions are described
in Subsection 2.3.

Several key properties of PROBLEM RESOURCE are
exploited to develop efficient algorithms:

(a) Objective function (1.1) is separable. That is, each per-
formance function depends only on the level selected
for the corresponding activity.
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(b) All aij Ä 0. That is, activities do not generate
resources.

(c) All resource constraints (1.2) are inequality con-
straints.

Suppose the activities are indexed so that

f j11 ~0! > f j ~0!, j [ J . (2)

Intuitively, if the minimal level of activity j1 is positive,
then the minimal level for any activity j . j1 must also be
positive since its performance function value at 0 is larger
than the performance function of activity j1 at any positive
value. We conclude that there is an optimal set J* 5 { j*,
j* 1 1, . . . , n} such that

x*j . 0, j [ J*, (3.1)

x*j 5 0, j [y J*. (3.2)

Furthermore, the minimal solution x* satisfies:

f j ~ x*j ! 5 V* ~i.e., x*j 5 f j
21~V*!! , j [ J*, (4.1)

f j ~ x*j ! < V* ~i.e., x*j > f j
21~V*!! , j [y J*. (4.2)

Thus, from (3) and (4), the minimal solution x* can be
expressed as:

x*j 5 max@0, f j
21~V*!# , j [ J . (5)

Since the performance functions are strictly decreasing, at
least one of the resource constraints (1.2) would be fully
used by the minimal solution.

2.2. Minimax Algorithms

As a prelude to solving PROBLEM RESOURCE, con-
sider a relaxed version, where only a subset of the activities
Js 5 { js, js11, . . . , n} # J are considered and the nonnega-
tivity constraints (1.3) are deleted. Also, suppose momen-
tarily that the problem has only a single resource
constraint, namely, constraint i with a supply of bi, and let
Vi

R be the minimal value of this relaxed problem. Vi
R is

obtained by equating fj(xj) 5 Vi
R for all j [ Js and solving

for ¥j[Js
aijxj 5 bi which implies:

O
j[Js

a ij f j
21~V i

R! 5 b i . (6)

The minimax value VR for the relaxed problem with all
resource constraints (and activity set Js) is simply obtained
by computing Vi

R for all i [ I and setting

V R 5 max
i[I

V i
R. (7)

The corresponding minimal decision variables are x*j 5
fj
21(VR) for all j [ Js.

Consider, for example, linear performance functions
fj(xj) 5 pj 2 rjxj (rj . 0) for all j [ J. Such functions may
represent weighted shortfall from given targets. Let dj be
the target for activity j, and let aj be the relative impor-
tance of activity j. Then, fj(xj) 5 aj(dj 2 xj)/dj is the
weighted (normalized) shortfall from the target; i.e., pj 5
aj and rj 5 aj/dj. From (6), Vi

R is given by the closed-form
expression:

V i
R 5

O j[Js a ij p j /r j 2 b i

O j[Js a ij /r j

. (8)

We present below several approaches that use the solu-
tions Vi

R and VR to solve PROBLEM RESOURCE. We
assume that the activities are reindexed according to (2).

Activity-Deletion Algorithm for PROBLEM
RESOURCE

The activity-deletion algorithm is proposed in Luss and
Smith (1986) and Luss (1987) for linear and certain non-
linear performance functions for which the values Vi

R are
given in closed-form. The idea is to start with the initial set
Js 5 J as a candidate set for the optimal set J*. The relaxed
problem is then repeatedly solved, where at each iteration
some activities are excluded from the set Js. The algorithm
is outlined as follows:

Step 1. Initialize Js 5 J.

Step 2. Obtain the minimal value VR for the relaxed
problem with activity set Js.

Step 3. If fj(0) Ä VR for all j [ Js, STOP; V* 5 VR, J*
includes all activities in Js for which fj(0) . VR, and x* is
given by (5). Otherwise, exclude from Js all activities with
fj(0) , VR and return to Step 2.

Activity-Addition Algorithm for PROBLEM
RESOURCE

The activity-addition algorithm is proposed in Tang
(1988). The idea is to start with an initial set Js 5 {n}. The
relaxed problem is then repeatedly solved, where at each
iteration a single activity is added to the set Js. The algo-
rithm is outlined as follows:

Step 1. Initialize Js 5 {n}.

Step 2. Obtain the minimal value VR for the relaxed
problem with activity set Js.

Step 3. If fjs21(0) ¶ VR, STOP; V* 5 VR, J* 5 Js, and x*
is given by (5). Otherwise, add js 2 1 to Js and return to
Step 2.

Hybrid Algorithm for PROBLEM RESOURCE

As proposed by Luss (1992), the two algorithms above can
be combined by starting with an initial set of activities Js

that includes about half of the activities. Based on the
initial solution of the relaxed problem, the algorithm pro-
ceeds with either the activity-deletion or activity-addition
algorithm. One can also modify the algorithm by adding in
the activity-addition algorithm multiple activities to Js at a
time, and resorting to the activity-deletion algorithm if too
many activities were added.

The algorithms above are especially attractive when the
values Vi

R are computed as closed-form expressions. Con-
sider the expression in (8) for linear performance func-
tions. Not only are the values Vi

R easy to compute, but

365LUSS /



their updates from one iteration to the next simply require
subtracting or adding terms to the summations. Although
all three approaches above solve large-scale problems effi-
ciently, the activity-deletion approach performs best when
most optimal activity levels are positive, the activity-
addition approach performs best when most of these are
zero, and the hybrid approach performs best when about
half of the optimal levels are positive.

Now, suppose the performance functions are such that
the values Vi

R are not available as closed-form expressions.
Although they can be derived from (6) through numerical
methods, computing their values may be computationally
costly. Fortunately, in order to find J*, we do not have to
compute the values Vi

R. Note that if js [ J*, then fjs
(0) .

V*, implying x*j 5 fj
21(V*) . fj

21( fjs
(0)) for j [ J*. Hence,

as shown in Luss (1991), the following property can be
used:

If O
j[Js

a ij f j
21~ f js

~0!! > b i for some i [ I,

then J* , J s ; otherwise J* $ J s . (9)

Property (9) can be used to find J* by applying a bisection
search on the activities in J. Note that J* is then derived
through function evaluations, without resorting to numeri-
cal methods. Once J* is found, V* is computed through
numerical methods by solving equations in the format of
(6), for each i [ I.

Among other noteworthy references, Chaddha et al.
(1971), Brown (1979b), Mjelde (1983), and Czuchra (1986)
examine PROBLEM RESOURCE with a single resource
constraint. We conclude this subsection by mentioning the
well-studied resource allocation problem of minimizing
¥j[J fj(xj) for convex functions fj(xj), subject to a single
linear resource constraint and nonnegativity constraints on
the activity levels. As shown by Czuchra (1986), the Kuhn-
Tucker conditions for this problem lead to optimality con-
ditions that have similar structure to (3) and (4). Not
surprisingly, the solution approaches for this problem are
similar to those presented here. Relevant references in-
clude Luss and Gupta (1973), Zipkin (1980), Bitran and
Hax (1981), Vidal (1984), Ibaraki and Katoh (1988), and
Kodialam and Luss (1998).

2.3. Extensions to Problem Resource

Lower and Upper Bounds. Suppose nonnegativity con-
straints (1.3) are replaced by lower and upper bound con-
straints:

l j < x j < u j , j [ J , (10)

where uj Ä lj for all j [ J.
Lower bounds can be handled by an analysis similar to

that presented above for lj 5 0 for all j [ J, or simply by a
linear transformation of variables xj 4 xj 2 lj.

Upper bounds can be handled by solving PROBLEM
RESOURCE without the upper bounds, resulting in an
objective value V*. The minimax objective value V** for
PROBLEM RESOURCE with the upper bounds is V** 5

max[V*, maxj[J fj(uj)]. The minimal solution is xj 5
max[lj, fj

21(V**)] for all j [ J.

Sensitivity Analysis. Sensitivity analysis is an extremely
important feature of practical optimization software.
Given the simple nature of the algorithms for PROBLEM
RESOURCE, such capabilities can be readily provided,
especially, when the values Vi

R are given as closed-form
expressions. For example, consider PROBLEM RE-
SOURCE with linear performance functions, so that the
values Vi

R are given by (8). Suppose the resource supplies
are given as bi 1 lb0i, where the b0i’s are constants and l

Ä 0 is a changing parameter. Parametric analysis then
provides the optimal solutions for all l Ä 0. Figure 2
exhibits an example with three resource constraints. The
first constraint has b01 . 0, the second has b02 5 0, and
the third has b03 , 0. The figure shows for the three
constraints Vi

R(l), that is, the value of Vi
R as a function of

l, where Js is the optimal set J* for that l. The bold line is
V*(l) 5 maxi Vi

R(l). Initially, at l 5 0, constraint 1 is the
critical one. At l 5 l1, an additional variable is added to
the optimal set J*. At l 5 l2, constraint 2 becomes the
critical one. At l 5 l3, constraint 3 becomes the critical
one, and at l 5 l4, the variable added before to the set J*
is excluded from this set. Note that V*(l) is a piecewise
linear, convex function. Luss (1992) presents details on
post-optimization and parametric analysis for PROBLEM
RESOURCE with linear performance functions.

General Performance Functions. Brown (1991, 1994) pre-
sents detailed analysis for variants of PROBLEM RE-
SOURCE with more general performance functions.
Consider the performance function depicted by the solid
line in Figure 3. This function has both increasing and
decreasing segments. However, since all aijs in PROBLEM
RESOURCE are nonnegative, each increasing segment
may be replaced by a segment with zero slope (depicted by

Figure 2. Example of parametric analysis.
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dashed lines) without affecting the minimax solution. The
resulting performance function is called a descending func-
tion, as it is nonincreasing. It may have segments with an
infinite slope, representing multiple values for the same
activity level, as well as segments with a zero slope in
which the function value does not change. Thus in Figure
3, the descending performance function has an infinite
slope at xj 5 22, a decreasing segment from xj 5 22 to xj

5 1, a zero-slope segment from there to xj 5 2.5, etc. The
algorithms for solving PROBLEM RESOURCE with de-
scending performance functions use optimality properties
similar to (9). However, special care should be devoted to
using the proper function value (the smallest one) in seg-
ments with infinite slope, and the proper inverse value
(again, the smallest one) in segments with zero slope. Due
to performance functions with zero-slope segments, the
minimal solution may be such that no resource constraint
is fully used. A resource constraint is then called critical if
the minimax objective value cannot be improved even if all
other resource constraints are deleted.

Integer Solutions. Suppose constraints (1.3) are replaced
by xj Ä 0 and integer for all j [ J. Brown (1979b) pro-
poses an algorithm that finds an integer solution to PROB-
LEM RESOURCE with a single resource constraint, and
Tang (1988) extends the algorithm to problems with mul-
tiple resource constraints. Their algorithms repeatedly
solve problems in the format of PROBLEM RESOURCE
with continuous activity levels. Consider the minimal non-
integer solution x* for the original PROBLEM RE-
SOURCE. Activities with x*j 5 0 are fixed and excluded
from further consideration. Note that x* is a feasible
integer solution. A new integer solution (perhaps infeasi-
ble) is constructed by increasing by one unit the levels of
all activities whose performance function value is the larg-
est at x*. If the new integer solution does not satisfy all
resource constraints, the algorithm terminates with x* as

the integer optimal solution. If it satisfies all resource con-
straints, the activities whose levels were increased are ex-
cluded from further consideration and their levels are fixed
at those determined by the new integer solution. This may
lead to fixing more activity levels at zero, and to deleting
constraints whose leftover supplies are not needed by any
activity that was not fixed. A new problem in the format of
PROBLEM RESOURCE is then solved.

Other papers that present marginal allocation algo-
rithms for the problem with a single resource constraint
include Jacobsen (1971), Porteus and Yormark (1972),
Zeitlin (1981), and Ichimori (1984).

2.4. The Lexicographic Minimax Problem and Its
Solution

The solution of PROBLEM RESOURCE determines the
minimax objective value and the minimal solution x*. It
also identifies activities whose corresponding level x*j can-
not feasibly be changed without increasing the objective
function value. However, the minimal solution may pro-
vide leftover resources that can be allocated equitably
among activities that do not need the critical resources.

In order to address this important issue, Luss and Smith
(1986) extend the minimax solution for PROBLEM RE-
SOURCE to the lexicographic minimax solution. Given a
vector of activity levels x, let f(n)(x) be a vector composed
of the n elements fj(xj), where these elements are sorted
in a nonincreasing order. That is, f(n)(x) 5 [ fj1

(xj1
),

fj2
(xj2

), . . . , fjn
(xjn

)], where fj1
(xj1

) Ä fj2
(xj2

) Ä . . . Ä fjn
(xjn

).
The lexicographic minimax problem, referred to as PROB-
LEM L-RESOURCE, is formulated as follows:

PROBLEM L-RESOURCE

V L 5 lexmin
x

@ f ~n!~ x!# (11.1)

so that

O
j[J

a ij x j < b i , i [ I, (11.2)

l j < x j < u j , j [ J. (11.3)

The objective function minimizes lexicographically the vec-
tor f(n)(x). Let xL 5 (x1

L, . . . , xn
L) be the optimal vector of

activity levels; then VL 5 f(n)(xL). The vector xL provides
an equitable solution to all activities, in the sense that no
performance function value can be decreased without ei-
ther violating feasibility or increasing an already equal or
larger performance function value, associated with a dif-
ferent activity. The performance functions are assumed to
be continuous, strictly decreasing, and invertible (the dis-
cussion can readily be extended to descending functions).
Constraints (1.3) are replaced by general lower and upper
bound constraints (11.3).

The solution of PROBLEM L-RESOURCE is obtained
by the repeated solution of PROBLEM RESOURCE. Af-
ter each solution of the latter problem, some activity levels
are fixed at their minimal values and deleted from the
problem. Some resources may be deleted as well from

Figure 3. A more general performance function trans-
formed to a descending function.
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further consideration. Consider the solution of PROB-
LEM RESOURCE without the upper bounds, with activ-
ity set J and resource set I. Let V* be the optimal objective
value and let x* be the corresponding minimal activity
levels. The following properties provide the foundation for
the lexicographic minimax solution approach:

(a) Suppose x*j Ä uj for one or more activities. Then,
xj

L 5 uj for these activities.
(b) Suppose ic is a critical resource (i.e., it is fully used

by the solution x*) and x*j ¶ uj for all activities j with
aicj

. 0. Then, xj
L 5 x*j for all activities with aicj

. 0.

Algorithm for PROBLEM L-RESOURCE

Step 1. Formulate the initial PROBLEM RESOURCE
with activity set J and resource set I, and lower and upper
bounds lj and uj.

Step 2. Solve PROBLEM RESOURCE without the up-
per bounds. Determine the minimal solution x*j.

Step 3. Using properties (a) and (b) above, fix activity
levels at xj

L 5 uj and xj
L 5 x*j, as appropriate.

Step 4. Delete from J all activities whose values were
fixed. If J is now empty, STOP; the lexicographic minimax
solution was obtained.

Step 5. Update the values bi. Delete from I all resources
that are not used by any of the activities in the updated set
J. Return to Step 2.

The algorithms described for PROBLEM RESOURCE
and PROBLEM L-RESOURCE can solve large-scale
problems, especially when the expressions for Vi

R are avail-
able in closed form. The computational effort for PROB-
LEM RESOURCE is then on the order of O(mn); in
practice, however, the effort is on the order of O(umn),
where u is the fraction of positive aijs. The computing
effort for PROBLEM L-RESOURCE is on the order of
O(mn2), as the number of iterations is O(n). Lennon
(1991) experimented with Luss and Smith’s Activity-
Deletion Algorithm to solve problems with linear perfor-
mance functions. Examples for PROBLEM RESOURCE
with 3,000 activities, 3,000 resources, and u ranging from
0.01 to 0.04 were solved in a fraction of a second on an
IBM 3090 computer. Typically, these computation times
were hundreds of times faster than those obtained by a
simplex-based linear programming software (interior point
methods are significantly slower than the simplex method
for these problems). Examples for PROBLEM
L-RESOURCE with u 5 0.01 were solved in 200 to 300
iterations in 6 to 30 seconds. Since the number of lexico-
graphic iterations decreases when u increases, the comput-
ing time for PROBLEM L-RESOURCE did not change
much with u; the added effort required to solve each
PROBLEM RESOURCE is compensated for by the need
to solve fewer of these problems.

3. MULTIPERIOD RESOURCE ALLOCATION

In this section, PROBLEM RESOURCE and PROBLEM
L-RESOURCE are extended to a multiperiod setting, pri-
marily for storable resources.

3.1. The Minimax Multiperiod Problem

The minimax multiperiod problem extends PROBLEM
RESOURCE to a multiperiod setting with a finite plan-
ning horizon. We use the same notation as in §2, with the
following additions:

t 5 Index for time periods; t 5 1, 2, . . . , p, where
p is the planning horizon. Let T be the set of
indices t of all time periods.

(j, t) 5 Referred to as activity-period pair.
(i, t) 5 Referred to as resource-period pair.

bit 5 Incremental amount of resource i made
available at period t; bit Ä 0.

Bit 5 Cumulative amount of resource i made
available up to period t; Bit 5 ¥t51

t bit.
xjt 5 Level selected for activity j at period t; xjt Ä 0.

Xjt 5 Cumulative level selected for activity j up to
period t; Xjt 5 ¥t51

t xjt, implying Xjt Ä Xj,t21

where Xj0 5 0. Let X be the vector of np
variables Xjt; X 5 (X11, . . . , X1p, . . . , Xn1, . . . ,
Xnp).

fjt(Xjt) 5 Performance function of activity j at period t.
It depends only on Xjt.

Ljt 5 Lower bound for Xjt; Ljt Ä Lj,t21 (Lj0 5 0).
Ujt 5 Upper bound for Xjt; Ujt Ä Uj,t21 (Uj0 5 0)

and Ujt Ä Ljt.

We formulate below the multiperiod problem, referred
to as PROBLEM MULTIPERIOD, for storable resources,
where unused resources in one period can be used in sub-
sequent periods. Storable resources are common in many
of the application areas described in §1.

PROBLEM MULTIPERIOD

M* 5 min
X

@ max
j[J,t[T

f jt ~X jt !# (12.1)

so that

O
j[J

a ij X jt < B it , i [ I and t [ T, (12.2)

X jt > X j,t21 ~X j0 5 0!, j [ J and t [ T, (12.3)

L jt < X jt < U jt , j [ J and t [ T. (12.4)

Each performance function in (12.1) is assumed to be con-
tinuous, strictly decreasing, and invertible. Resource con-
straints (12.2) are expressed in cumulative terms, thus
allowing for usage of surplus resources at period t in sub-
sequent periods. Ordering constraints (12.3) are equivalent
to constraints xjt Ä 0. Constraints (12.4) impose lower and
upper bounds on cumulative activity levels. PROBLEM
MULTIPERIOD is feasible if and only if the lower
bounds satisfy all the resource constraints. Then, an upper
bound on M* is given by MU 5 maxj[J,t[T fjt(Ljt), and a
lower bound is given by ML 5 maxj[J,t[T fjt(Ujt). The
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mathematical structure of PROBLEM MULTIPERIOD is
quite similar to that of PROBLEM RESOURCE, with the
added complexity because of ordering constraints (12.3).

Suppose the minimax value M* for PROBLEM MUL-
TIPERIOD is known. The minimal solution, as a function
of M*, satisfies the following recursive equations:

X*jt ~M*! 5 max@L jt , X*j,t21 ~M*! , f jt
21~M*!# ,

j [ J and t [ T , (13)

where X*j0(M*) 5 0 for all j [ J. This recursive equation is
an extension of the minimal solution (5) for PROBLEM
RESOURCE, as it assures that the ordering constraints
will be satisfied. Recursion (13) forms the basis for a solu-
tion approach that implements a bisection search for find-
ing M*. For any trial value M, recursion (13) is used to
compute the corresponding minimal solution X*(M). If
that solution satisfies all resource constraints, then M* ¶
M; otherwise, M* . M.

Betts et al. (1994) present a solution approach for
PROBLEM MULTIPERIOD that is particularly attractive
for cases in which the values Vi

R, used to solve PROBLEM
RESOURCE, are available in closed form. Their algo-
rithm solves at each iteration a problem in the format of
PROBLEM RESOURCE (i.e., the ordering constraints
are deleted), where the performance function of each
activity-period pair ( j1, t1) is represented by one of the
original performance functions fj1t[ for some t ¶ t1.
Based on the solution at each iteration, either optimality is
established, or the number of possible choices for t in
subsequent iterations is reduced for at least one activity-
period pair ( j, t).

3.2. Linear Performance Functions

We explore below PROBLEM MULTIPERIOD with cer-
tain linear performance functions. Let

ajt 5 Weight (e.g., relative importance) of activity-period
pair (j, t),

Djt 5 Target for cumulative level of activity j up to
period t.

We assume that Djt Ä Dj,t21 (Dj0 5 0) for all j [ J and
t [ T, that is, the incremental changes in the targets from
one period to the next are nonnegative for each activity j.

The problem, referred to as PROBLEM MPL
(MultiPeriod-Linear), is formulated as follows:

PROBLEM MPL

M* 5 min
X @ max

j[J,t[T
a jt ~D jt 2 X jt !/D jt # (14.1)

so that

O
j[J

a ij X jt < B it , i [ I and t [ T, (14.2)

X jt > X j,t21 ~X j0 5 0! , j [ J and t [ T, (14.3)

X jt < D jt , j [ J and t [ T. (14.4)

The objective function (14.1) minimizes the largest
weighted shortfall from its target among all activity-period

pairs. The upper bounds (14.4) state that no level can
exceed its target. Indeed, the minimal solution is either X*jt
5 Djt for all j [ J and t [ T, or X*jt , Djt for all j [ J and
t [ T. Note that if X*jt 5 Djt for all j [ J and t [ T, and
excess supplies are still available, a similar maximin prob-
lem can be formulated to allocate these supplies equitably
above the specified targets.

Suppose the optimal solution of PROBLEM MPL satis-
fies X*jt , Djt for all j [ J and t [ T. Consider a relaxed
version of PROBLEM MPL, where constraints (14.3) and
(14.4) are deleted. To simplify the presentation, the pa-
rameters aij are replaced below by parameters aijt, allowing
for dependency on t. The relaxed problem has the same
mathematical structure as the relaxed problem for PROB-
LEM RESOURCE, and, hence, its solution is the same as
(7) and (8). Let Js(t) be the set of activities considered by
the relaxed problem at period t. In the initial relaxed prob-
lem, Js(t) 5 J and aijt 5 aij for all i [ I, j [ J and t [ T. Let
Mit

R be the solution of the relaxed problem if only the
single resource constraint for resource-period pair (i, t) is
considered, and let MR be the solution when the con-
straints for all resource-period pairs are considered. With
this notation the minimax solution of the relaxed problem
is:

M it
R 5

O j[Js~t! a ijt D jt 2 B it

O j[Js~t! a ijt D jt /a jt

, (15.1)

and

M R 5 max
i[I,t[T

M it
R. (15.2)

Given the solution of the relaxed problem MR and Xjt
R 5

fjt
21(MR) for all j [ Js(t) and t [ T, the following optimality

properties form the basis for an algorithm for PROBLEM
MPL:

(a) Suppose, for a given j, ajt , MR (note that ajt 5
fjt(0)) for t 5 1, 2, . . . , t0. Then the minimal solution of
PROBLEM MPL satisfies X*jt 5 0 and fjt(X*jt) , M* for
t 5 1, 2, . . . , t0.

(b) Suppose, for a given j, Xjt
R , Xjt1

R for t 5 t1 1 1, t1 1
2, . . . , t2 (t2 . t1). Then,

(i) The minimal solution of PROBLEM MPL sat-
isfies X*jt 5 X*jt1

for t 5 t1 1 1, t1 1 2, . . . , t2.
(ii) For any feasible solution of PROBLEM MPL

with Xjt 5 Xjt1
for t 5 t1 1 1, t1 1 2, . . . , t2,

either fjt(Xjt1
) ¶ fjt1

(Xjt1
) or fjt(Xjt1

) , M* for
t 5 t1 1 1, t1 1 2, . . . , t2.

Property (a) allows for fixing some variables at zero,
while part (i) of Property (b) allows for the collapsing of
strings of variables to a single variable. Part (ii) of Prop-
erty (b) assures that the performance function terms of the
collapsed variables can indeed be deleted from the objec-
tive function. Luss and Smith (1988) propose an efficient
algorithm for PROBLEM MPL. The algorithm, outlined
below, is an extension of the activity-deletion algorithm
presented for PROBLEM RESOURCE.
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Algorithm for PROBLEM MPL

Step 1. Check whether Xjt 5 Djt for all j [ J and t [ T is
feasible. If so, STOP; M* 5 0 and X*jt 5 Djt for all ( j, t).

Step 2. Initialize Js(t) 5 J and aijt 5 aij for all i [ I, j [ J
and t [ T.

Step 3. Solve the relaxed problem with sets Js(t).

Step 4. Use Property (a) above to fix activity-period pairs
at zero.

Step 5. Use Property (b) above to collapse strings of
activity-period pairs into a single pair.

Step 6. If some activity-period pair was set to zero or
collapsed into another pair, update the sets Js(t) and pa-
rameters aijt, as needed, and return to Step 3. Otherwise,
STOP; M* 5 MR and X*jt 5 Xjt

R for all j [ Js(t) and t [ T.

Klein et al. (1992) extend the algorithm to handle arbi-
trary lower bounds on variables Xjt. This extension is
needed to obtain the lexicographic minimax solution. Al-
though the analysis of the extended problem is quite in-
volved, the resulting algorithm is similar to that presented
for PROBLEM MPL.

3.3. The Lexicographic Minimax Multiperiod
Problem

Let f(np)(X) be the vector of the np elements fjt(Xjt),
sorted in nonincreasing order. The lexicographic minimax
extension of PROBLEM MULTIPERIOD, referred to as
PROBLEM L-MULTIPERIOD, is formulated as follows:

PROBLEM L-MULTIPERIOD

M L 5 lexmin
X

@ f ~np!~X!# (16)

so that (12.2)–(12.4) are satisfied.
The methodology for solving PROBLEM

L-MULTIPERIOD is similar to that for PROBLEM
L-RESOURCE. It repeatedly solves PROBLEM MULTI-
PERIOD, where at each iteration some of the variables
are fixed at their lexicographically optimal value, denoted
as Xjt

L, and excluded from further consideration. The fol-
lowing properties are used to determine which variables
can be fixed:

(a) Suppose that the minimal solution X* of PROB-
LEM MULTIPERIOD without the upper bounds has X*jt
Ä Ujt for one or more activity-period pairs. Then, Xjt

L 5 Ujt

for these pairs.
(b) Suppose X*jt ¶ Ujt for all activity-period pairs, and

suppose (ic, tc) is a critical resource-period pair constraint.
Then, Xjt

L 5 X*jt for all activity-period pairs ( j, tc) with
aic j . 0.

Suppose that at some iteration activity-period pair ( j1,
t1) is fixed. As this activity-period pair is deleted from the
minimax problem that will be solved at the next iteration,
the following lower and upper bounds need to be revised:

L j1 t 4 max@L j1 t , X*j1 t1
#, t 5 t 1 1 1, t 1 1 2, . . . , p,

(17.1)
U j1 t 4 min@U j1 t , X*j1 t1

#, t 5 1, 2, . . . , t 1 2 1. (17.2)

Property (b) above is slightly more restrictive than that
shown for PROBLEM L-RESOURCE. An outline of the
algorithm, described in Klein et al. (1992) and Betts et al.
(1994), is as follows:

Algorithm for PROBLEM L-MULTIPERIOD

Step 1. Formulate the initial PROBLEM MULTIPE-
RIOD with all activity-period pairs ( j, t), resource-period
pairs (i, t), and lower and upper bounds Ljt and Ujt.

Step 2. Solve PROBLEM MULTIPERIOD without the
upper bounds. Determine the minimal solution X*.

Step 3. Using properties (a) and (b) described above, fix
activity-period pairs Xjt

L 5 Ujt or Xjt
L 5 X*jt, as appropriate.

Step 4. Delete activity-period pairs fixed at Step 3. If all
activity-period pairs were fixed; STOP.

Step 5. Update lower and upper bounds according to
(17) and the supplies Bit. Delete resource-period pair con-
straints not needed by any remaining activity-period pair in
the updated formulation. Return to Step 2.

Luss and Smith (1988) and Klein et al. (1992) provide
computational results for PROBLEM MPL and its lexico-
graphic extension. For PROBLEM MPL, most of the com-
putational effort is spent on computing the initial values of
Mit

R. This requires an effort of O(umnp), where u is the
fraction of positive aij’s, and m, n and p are the number of
resources, activities and periods, respectively. The minimax
solutions for problems with 100 activities, 100 resources,
10 time periods, and u 5 0.5 were obtained in less than
one second on an Amdahl 5890-300E computer. The com-
puting times were, on average, about 200 times faster than
those required by linear programming software. The lexi-
cographic minimax solution is obtained by repeatedly solv-
ing (up to np) problems in the format of PROBLEM MPL
with general lower and upper bounds. The number of iter-
ations depends on u and was, in practice, quite small. The
lexicographic solutions for these problems required 30–
100 iterations and were obtained in about three seconds.

3.4. Nonstorable Resources

Although many resource allocation applications consider
only storable resources, this is not always the case. For
example, idle machine time, or idle people’s time, in one
period is a lost resource that cannot be carried over to the
next period, unless it is used to generate inventory.

Resource constraints for nonstorable resources are ex-
pressed in terms of noncumulative decision variables xjt

and noncumulative resource supplies bit. Likewise, each
performance function fjt[ depends on the sum of noncu-
mulative decision variables, namely, ¥t51

t xjt. Alternatively,
nonstorable resource constraints can be expressed as ¥j[J
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aij(Xjt 2 Xj,t21) ¶ bit, in which case each performance
function fjt[ would depend on the single variable Xjt. Ei-
ther formulation violates one of the key properties (sepa-
rable objective function or knapsack resource constraints)
used to develop the efficient algorithms presented in this
paper. Section 5 provides a brief review of resource alloca-
tion problems with more general structures, which include
multiperiod problems with nonstorable resources.

4. RESOURCE ALLOCATION WITH
SUBSTITUTABLE RESOURCES

In this section we review resource allocation models in
which certain substitutions among resources are allowed.
Indeed, in many practical resource allocation problems,
effective management of substitutable resources is essen-
tial. Consider, for example, the assembly of diverse high-
tech circuit boards, where each of these is composed of
many different components like integrated circuits. Pru-
dent allocation of components among circuit boards
should consider possible substitutions among the compo-
nents. Myopic allocation of substitutes to relatively more
important boards can lead to severe, unacceptable short-
ages for many other boards. Thus, models that seek opti-
mal allocation of substitutes among all boards are needed.

4.1. Framework for Problems with Substitutable
Resources

We extend PROBLEM RESOURCE (and PROBLEM
L-RESOURCE) to models that explicitly consider substi-
tutions among resources. Each resource is classified into
one of several groups, where resources in one group can-
not substitute for, or be substituted by, any resource that is
not in the same group. Within each group, certain substi-
tutions among resources are allowed, as described below.

We use the same notation as before with the following
additions:

q 5 Index for groups of substitutable resources q 5 1,
2, . . . . Let Q be the set of indices q of all groups.

i, k 5 Indices for resources; i, k 5 1, 2, . . . , m.
Iq 5 Set of resources in group q.
I0 5 Set of singleton resources that cannot substitute

for, or be substituted by, any other resource (note
that 0 [y Q).

yik 5 Amount of resource i used as a substitute for
resource k, where yii is the amount of resource i
used directly—not as a substitute.

g(i) 5 Set of resources that can be substituted by
resource i (we include i in g(i)).

d(i) 5 Set of resources that can substitute for resource i
(we include i in d(i)).

The minimax resource allocation problem with substitut-
able resources, referred to as PROBLEM SUBRES (for
SUBstitutable RESources), is formulated as follows.

PROBLEM SUBRES

S* 5 min
x

@max
j[J

f j ~ x j !# (18.1)

so that

O
j[J

a ij x j < b i , i [ I 0 , (18.2)

O
k[g~i!

y ik < b i , i [ I q and q [ Q, (18.3)

O
k[d~i!

y ki 5 O
j[J

a ij x j , i [ I q and q [ Q, (18.4)

l j < x j < u j , j [ J, (18.5)

y ik > 0, k [ g~i!, i [ I q and q [ Q. (18.6)

The performance functions fj(xj) are assumed to be con-
tinuous, strictly decreasing, and invertible. For each group
q [ Q, constraints (18.3) ensure that the total amount
used of resource i does not exceed its supply. Constraints
(18.4) ensure that the amount used of resource i, or its
substitutes, suffices to sustain the selected activity levels for
all j [ J. For simplicity, we assume that a single unit of
one resource can substitute for a single unit of another
resource. However, the formulation can readily handle,
through change of units, cases where bik . 0 units of
resource i can substitute for one unit of resource k for k [
g(i), provided the factors bik are consistent across all pos-
sible substitutions within each group q.

An effective solution approach repeatedly solves relax-
ations of PROBLEM SUBRES, where each relaxed prob-
lem is in the format of PROBLEM RESOURCE. For
each group q [ Q, the initial relaxed problem is formu-
lated by assuming that all resources i [ Iq can substitute
for each other. This results in an aggregation of constraints
(18.3)–(18.4) for all i [ Iq to a single knapsack resource
constraint,

O
j[J

S O
i[Iq

aijD xj < O
i[Iq

bi, q [ Q. (19)

The relaxed problem can therefore be solved by any of the
algorithms for PROBLEM RESOURCE.

Let x1 be a (not necessarily feasible) vector of selected
activity levels. Consider a group q [ Q of resources. A
self-sufficient subset Fq for activity levels x1 is defined as a
subset of resources in Iq that satisfies the following
conditions:

(a) Demands by activity levels x1 for any resource i [
Fq can be met by resource i or possible substitutes for i
within the subset Fq.

(b) Resources in Fq cannot substitute for any resources
that are not in Fq.

Once a solution x1 is obtained for the relaxed problem
with aggregated constraints (19), we need to check for
each group q [ Q whether the solution is feasible or not
for PROBLEM SUBRES. If the solution is feasible for
group q, then the set Iq itself is self-sufficient for x1. For
each group q for which feasibility is violated, a self-
sufficient subset of resources Fq , Iq is identified and
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excluded from further consideration. As a result, a new
relaxed problem is formulated with tighter resource con-
straints in the format of (19), whose solution has a larger
objective function value. An outline of the algorithm is
given below.

Algorithm for PROBLEM SUBRES

Step 1. Formulate the relaxed problem, in the format of
PROBLEM RESOURCE, with resource constraints
(18.2), a single aggregated constraint (19) for each q [ Q,
and constraints (18.5).

Step 2. Find the minimal solution to the relaxed problem
by one of the algorithms for PROBLEM RESOURCE.

Step 3. Find whether the solution for the relaxed prob-
lem is feasible for PROBLEM SUBRES. If feasible, it is
optimal; determine feasible (and, hence, also optimal) val-
ues for the variables yik that satisfy constraints
(18.3)–(18.4) and STOP.

Step 4. If not feasible, find for each violated group q a
self-sufficient subset Fq, and formulate a new aggregated
constraint (19) with resources Iq 4 Iq\Fq.

Step 5. Formulate a new relaxed problem with the new
aggregated resource constraints for the violated groups.
(All other resource constraints, including (18.2), are delet-
ed.) Return to Step 2.

This algorithm is effective if the following conditions hold:
(a) An efficient algorithm exists for solving the relaxed
problem, PROBLEM RESOURCE.
(b) An efficient method is available for checking feasibility
and for identifying self-sufficient subsets.
(c) The number of iterations is small.

As shown in §2, PROBLEM RESOURCE can be solved
efficiently; and, as shown in subsequent subsections, condi-
tions (b) and (c) are satisfied for a variety of substitutional
relations. The solution approach can be extended to han-
dle the more general descending performance functions.

The lexicographic minimax extension of PROBLEM
SUBRES, referred to as PROBLEM L-SUBRES, is for-
mulated as follows.

PROBLEM L-SUBRES

S L 5 lexmin
x

@ f ~n!~ x!# (20)

so that (18.2)–(18.6) are satisfied.
Extension of the algorithm for PROBLEM SUBRES to

PROBLEM L-SUBRES is similar to the extension of the
algorithm for PROBLEM RESOURCE to PROBLEM
L-RESOURCE.

Algorithm for PROBLEM L-SUBRES

Step 1. Formulate the initial PROBLEM SUBRES with
activity set J and resource constraint sets I0 and Iq for each
q [ Q.

Step 2. Solve PROBLEM SUBRES. Determine the min-
imal solution x*.

Step 3. (i) Fix xj
L 5 uj for any activity with x*j 5 uj.

(ii) Suppose constraint ic [ I0 is critical. Fix xj
L 5

x*j for all j with aic j . 0.
(iii) Suppose the aggregated constraint for group

q is critical. Fix xj
L 5 x*j for all activities which

use one or more of the resources that form
the aggregated constraint.

Step 4. Delete from J all activities whose values were
fixed. If J is now empty, go to Step 5. Otherwise, delete the
critical resources from sets I0 and Iq, update parameters
for the next PROBLEM SUBRES to be solved, and go to
Step 2.

Step 5. The lexicographic minimax solution xL is ob-
tained. Solve the feasibility problem for the initial formu-
lation of PROBLEM SUBRES to determine feasible (and
optimal) values for the variables yik. STOP.

4.2. Transitive Substitutional Relations

We present below resource allocation models, where the
substitutional relations among the resources are transitive.
That is, if resource i1 is a substitute for resource i2 and
resource i2 is a substitute for resource i3, then resource i1
is also a substitute for resource i3.

Resource Substitutions Represented by Trees. Consider a
group of resources where the substitutional relations can
be represented by a tree. An example is shown in Figure 4.
Each node represents a resource, and a link from node i to
k indicates that resource i is a direct substitute for re-
source k. In addition, by transitivity, resource i is a substi-
tute for all descendants of node k. Thus, for example,

Figure 4. Substitutional relations represented by a tree.
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resource 3 is a direct substitute for resources 7 and 8, and
a substitute by transitivity for resources 9 and 10.

Klein and Luss (1991) describe an algorithm for PROB-
LEM SUBRES for substitutional relations that are repre-
sented by a tree for each group q [ Q. The relaxed
problem in each iteration is in the format of PROBLEM
RESOURCE. Let x1 5 (x1

1, x2
1, . . . , xn

1) be the minimal
solution of the relaxed problem at the first iteration. Tak-
ing advantage of the tree structure, it is easy to determine,
through a backtracking procedure, whether the resources
in any group have sufficient supplies to sustain activity
levels x1. For convenience, the resources in each group are
indexed so that each node has a larger index than its
unique predecessor. Starting at the node with the largest
index (in Figure 4, node 10), we check whether its supply
b10 is sufficient to sustain x1. If so, we mark it by a plus
sign, and if not, we mark it by a minus sign and debit its
predecessor (node 7) by the shortage. We repeat this pro-
cedure with every unmarked node in decreasing order of
the indices until the root is marked. If the root is marked
by a plus sign, the resources in this group can sustain
activity levels x1. If the root is marked by a minus sign, the
associated resource supplies cannot sustain x1 and at least
one subtree within the tree can be identified with its root
(the node with the smallest index) marked by a plus sign.
The resources associated with each such subtree, as well as
the union of these subtrees, form a self-sufficient subset of
resources for activity levels x1.

In the next iteration, all self-sufficient subsets are
dropped from the trees and a new relaxed problem is for-
mulated. The minimax objective value of the new relaxed
problem will be larger than that of the current problem.
The values y*ik are also determined by a simple backtrack-
ing procedure. First, the resource with the largest index
(resource 10) is allocated, then the resource with the next
largest index, etc. This scheme ensures that a substitute is
used only if the supplies of all its descendants have been
exhausted. Klein and Luss (1991) present computational
results for problems with linear performance functions.
Problems with 1,000 resources, 1,000 activities, and a frac-
tion of u 5 0.015 of positive aijs were solved in less than a
second on an Amdahl 5890 computer. Although the num-
ber of relaxed problems that need to be solved is at most
n, it was less than 10 in all reported examples. The lexico-
graphic minimax solutions were obtained for the problem
sizes mentioned above in about 5 seconds.

Resource Substitutions Represented by Graphs. Substitu-
tional relations represented by trees are somewhat restric-
tive as each node has only one predecessor (the root has
none). A natural extension includes representation of sub-
stitutional relations by general graphs. An example for a
single group is shown in Figure 5, which is the same as
Figure 4 with three additional links: from node 3 to 6,
from node 4 to 9, and from node 5 to 9. Thus, both re-
sources 2 and 3 are direct substitutes for resource 6; and
resources 4, 5, and 7 are direct substitutes for resource 9.

Again, substitution by transitivity is assumed, for instance,
resource 2 can substitute for resources 4, 5, 6, and 9. The
graphs would not contain any cycles because the resources
represented by the nodes along a cycle can substitute for
each other, implying that they can simply be represented
as a single resource (node).

Klein et al. (1993) adapt the algorithm for PROBLEM
SUBRES to such substitutional relations. The backtrack-
ing methods, used for tree-type substitutions to check fea-
sibility of the relaxed solution (referred to as x1) and to
identify self-sufficient subsets, cannot be used for general
graphs. Instead, the graph for each group q [ Q is aug-
mented to the following network flow problem. A source
node sq and a sink node tq are added with links (sq, i) from
sq to i for each i [ Iq, with upper bounds bi, and links (i,
tq) from i to tq for each i [ Iq, with upper bounds ¥j[J

aijxj
1. All links (i, k), which describe the possible substitu-

tions within group q, have infinite capacity. It is shown that
if the maximal flow from sq to tq is equal to ¥i[Iq

¥j[J aijxj
1,

then the resources in group q can sustain the selected
levels x1. However, if the maximal flow is less than the
above, these resources cannot sustain x1. In the latter case,
the max-flow solution is used to identify self-sufficient sub-
sets of resources. Specifically, all labeled nodes in Iq form a
self-sufficient subset, where i [ Iq is labeled if any of the
following conditions holds: (a) The flow on the link (sq, i)
is less than bi; (b) Node k is labeled and k [ d(i); (c) Node
k is labeled, k [ g(i) and the flow on link (i, k) is positive.
These self-sufficient subsets are deleted from group q in
the next iteration.

Extension of the minimax algorithm to derive the lexico-
graphic minimax solution follows the algorithm described
for PROBLEM L-SUBRES. Klein et al. (1993) report

Figure 5. Transitive substitutional relations represented by
a graph.
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computational results for problems with linear perfor-
mance functions. Minimax problems with 1,000 resources
and 1,000 activities (or even larger problems) were solved
in less than one second on an Amdahl 3090 computer.
Lexicographic solutions were obtained for most of the re-
ported problems in less than 30 seconds.

4.3. More General Substitutional Relations

Figure 6 shows an example of nontransitive substitutional
relations in a single group q. Each resource is represented
by a “supplying” node and a “receiving” node. Substitution
of resource k by resource i is indicated by a link from
supplying node i to receiving node k. Thus, resource 1 can
substitute for resources 2 and 3, and resource 2 can substi-
tute for resource 4. However, resource 1 cannot substitute
for resource 4. Figure 7 shows activity-dependent substitu-
tional relations, that is, resource i1 may substitute for re-
source i2 when used for activity j1, but not when used for
activity j2. To model these relations, the receiving nodes
represent attributes, rather than resources, where each unit
of activity j requires akj units of attribute k. The variables
yik are redefined to represent the amount of resource i
used for attribute k. In Figure 7, four resources supply five
attributes, where attributes 1 and 2 are required by activity
1, and attributes 3–5 are required by activity 2. Thus, for
example, although both resources 1 and 2 can supply at-
tribute 2, resource 1 (but not 2) can supply attribute 5 and
resource 2 (but not 1) can supply attribute 3.

As discussed in Klein et al. (1994), these more flexible
models can also be solved by an adaptation of the algo-
rithm for PROBLEM SUBRES, similar to that described
for transitive substitutional relations. Finding whether a
solution x1 of a relaxed problem is feasible for group of
resources q [ Q and identifying self-sufficient subsets of
resources is done by employing a max-flow algorithm on a

network constructed from the corresponding graph that
represents the substitutional relations.

Pang and Yu (1988) present a variant of these models
with linear performance functions. They describe a para-
metric transportation solution method for their variant.
Starting with a feasible solution, the minimax objective
function value is reduced at each iteration, while maintain-
ing feasibility, until optimality is achieved. The reported
computational results exhibit significant reduction in com-
puting time over those obtained by linear programming
software.

Extension of the minimax solution for these models to
the lexicographic minimax solution is obtained by the algo-
rithm described for PROBLEM L-SUBRES.

4.4. Multiperiod Allocation of Substitutable
Resources

The combined formulation of PROBLEM MULTIPE-
RIOD and PROBLEM SUBRES, referred to as PROB-
LEM MSRA (Multiperiod Substitutable Resource
Allocation), is as follows:
PROBLEM MSRA

W* 5 min
X

@ max
j[J,t[T

f jt ~X jt !# (21.1)

so that

O
j[J

a ij X jt < B it , i [ I 0 and t [ T, (21.2)

O
p51

t O
k[g~i!

y ikp < B it , i [ I q , q [ Q and t [ T, (21.3)

O
p51

t O
k[d~i!

y kip 5 O
j[J

a ij X jt , i [ I q , q [ Q and t [ T,

(21.4)

Figure 6. Nontransitive substitutional relations.

Figure 7. Activity-dependent substitutional relations.
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X jt > X j,t21 ~X j0 5 0! , j [ J and t [ T, (21.5)

L jt < X jt < U jt , j [ J and t [ T, (21.6)

y ikt > 0, k [ g~i! , i [ I q , q [ Q and t [ T. (21.7)

The notation is the same as before, where yikp is the
amount of resource i used as a substitute for resource k at
period p, and yiip is the amount of resource i used direct-
ly—not as a substitute—at period p. Constraints (21.2) are
the multiperiod resource constraints for resources in I0.
Constraints (21.3) and (21.4) extend constraints (18.3) and
(18.4) to a multiperiod setting.

As discussed in Klein et al. (1994, 1995), the algorithm
described for PROBLEM SUBRES can be readily ex-
tended to solve PROBLEM MSRA. The relaxed problem
is in the format of PROBLEM MULTIPERIOD and can
be solved by the algorithms described in Section 3. Substi-
tutional relations among resources in a multiperiod setting
are represented by multiperiod versions of the graphs in
Figures 4 through 7. The graphs are extended to network
flow problems, which, in turn, are used to determine
whether a solution is feasible or not and to identify self-
sufficient subsets of resources. However, unlike for PROB-
LEM SUBRES, a self-sufficient subset in one iteration
may not be self-sufficient in subsequent iterations.

Nguyen and Stone (1993) describe a variant of PROB-
LEM MSRA with activity-dependent substitutions and lin-
ear performance functions. They present a primal-dual
solution approach. The algorithm starts with an infeasible
minimax objective value. At each iteration, a measure of
infeasibility is computed by solving a max-flow problem.
The measure is used to increase the estimate of the mini-
max objective function value for the next iteration, until
optimality is established. Computational results exhibit
computing times that are significantly smaller than those
obtained by linear programming software.

Extension of the minimax solution for PROBLEM
MSRA to the lexicographic minimax solution is similar to
that described in §3 for multiperiod problems.

5. RELATED MINIMAX PROBLEMS

As already mentioned, there exist important resource allo-
cation problems, like the multiperiod problem with non-
storable resources, that do not conform to the special
structures considered in §§2 through 4. Klein et al. (1994)
present the following more general formulation of a mini-
max optimization problem:

W* 5 min
x

@max
j[J

f j ~ x j !# (22.1)

so that

Ax < By 1 b, (22.2)
Cx < d, (22.3)
x > l, (22.4)
y > 0. (22.5)

The performance functions fj(xj) are continuous, strictly
decreasing, and invertible. The vector x is composed of

performance variables that appear in the objective func-
tion, whereas the vector y is composed of auxiliary vari-
ables that are not part of the objective function. A, B, and
C are matrices of parameters, and b, d, and l are vectors of
parameters. Constraints (22.2) are called the primary con-
straints and include both vectors x and y. Constraints
(22.3) are called secondary constraints and include only x.
Formulation (22) can be reduced to the multiperiod prob-
lem with storable and nonstorable resources and to the
various resource allocation problems with substitutable
resources.

Klein et al. describe a solution approach that alternates
between solving a relaxed version of problem (22) and
solving Phase I of the simplex algorithm for a linear pro-
gramming problem to check whether the solution to the
relaxed problem is feasible for (22). Brown (1984) presents
a model that is similar to (22), and provides a solution
approach that improves at each iteration a lower bound
for the objective function value by solving a series of knap-
sack problems and employing a dual simplex algorithm.
The solution approaches above can be extended to handle
the more general descending performance functions. Al-
though such solution approaches for problem (22) (and
similar variants) are quite elegant, the computation time
required to solve large-scale problems may be large. More-
over, the lexicographic minimax solution may not necessar-
ily be obtained by the repeated solution of the minimax
problem, as the minimal solution to the minimax problem
may not be the right one to select or it may even not exist.

Consider now a minimax objective function, where the
performance functions (indexed by h) are of the form
fh(x) 5 fh(¥j[J wjhxj), where the parameters wjh are given.
The minimax objective function is then minx[maxh fh(¥j[J

wjhxj)]. Formulation (22) can handle such performance
functions by defining new performance variables zh 5 ¥j[J

wjhxj, one for each h. The minimax objective function re-
duces then to minz[maxh fh(zh)] and the variables xj be-
come auxiliary variables. New equality constraints zh 5
¥j[J wjhxj (formulated, for each h, as two inequalities) are
added to (22.2). Recall that the multiperiod problem with
nonstorable resources can be formulated with such non-
separable terms in the minimax objective function. As an-
other example, suppose that each h represents one
scenario of possible parameter values wjh for all j [ J.
Each performance function fh(x) represents the outcome,
as a function of x, under scenario h. The minimax problem
then determines the decision vector x, that minimizes the
objective function value under the worst possible scenario.
Kouvelis and Yu (1997) refer to such a model as the ro-
bust optimization problem, and provide numerous applica-
tions to such models.

Various papers examine variants of minimax (or maxi-
min) problems with either non-separable, linear perfor-
mance functions, and/or linear constraints that are not of
the knapsack inequality type constraints. Kuno et al.
(1991), Karabati et al. (1995), Yamada et al. (1996), Yu
(1996), and Kouvelis and Yu (1997) describe algorithms
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for problems with a non-separable objective function and a
single knapsack resource constraint. The first reference
focuses on a problem with continuous decision variables,
and the others discuss algorithms for problems with inte-
ger variables. Papers that examine problems with general
linear constraints include Kaplan (1974), Posner and Wu
(1981), Ahuja (1985), Eiselt (1986), and Kuno et al.
(1989). Marchi and Oviedo (1992) apply the lexicographic
minimax approach to multiple objective linear programs.
Dutta and Vidyasagar (1977), Madsen and Schjaer-
Jacobsen (1978), and Bazaraa and Goode (1982) describe
algorithms for more general nonlinear minimax problems.
Brown (1989) classifies and describes a variety of refer-
ences on minimax and maximin constrained optimization
problems.

We conclude this section by discussing an important
class of problems in which the constraints represent flows
on networks. Various applications in logistics, transporta-
tion, and telecommunications can be modeled as minimax
network problems where supplies are shipped from given
sources to destinations. The flow conservation constraints
are obviously not of the knapsack type. However, their
special structure can still be exploited to design effective
solution approaches that repeatedly employ efficient net-
work flow algorithms. Megiddo (1974, 1977) presents a
lexicographic minimax network flow model for distributing
flows from multiple sources or among multiple destina-
tions. Brown (1979a) provides an algorithm for a minimax
model which is concerned with allocation of supplies
among competing destinations, where each destination is
associated with a performance function. Brown (1983) ex-
tends the previous model by including performance func-
tions for a designated subset of links. Ahuja (1986)
presents a minimax algorithm for the more restricted
transportation problem. Betts and Brown (1997) present a
proportional equity network flow problem. The flow on a
designated link is maximized under constraints that other
links will receive flows that are within a proportional range
of that received by the designated link. This objective is,
though, quite different from the minimax and lexico-
graphic minimax objectives.

6. FINAL REMARKS

In this expository paper, we concentrated on resource allo-
cation problems in which it is desirable to allocate numer-
ous resources among competing activities in an equitable
way. This led to defining the lexicographic minimax objec-
tive that emphasizes equitable resource sharing among all
activities. This objective is particularly of interest in large-
scale problems, with numerous resources and activities,
where typically, each activity uses only a small subset of
the resources.

Since the lexicographic minimax solution approach often
requires solving the minimax problem many times, it is
imperative that the latter problem be solved very quickly.
This, in turn, led to the imposition of certain modeling

assumptions that facilitated the design of efficient algo-
rithms, and, at the same time, were not too restrictive for
diverse application areas. The exposition covered primarily
three classes of problems: the basic problem with multiple
resource constraints, multiperiod problems, and problems
with substitutable resources. Other minimax problems that
do not conform to the imposed assumptions were briefly
mentioned with appropriate references.

Although the lexicographic minimax objective appears
to be intuitively appealing for resource allocation prob-
lems, it is not well-known or understood. It is hoped that
this paper will popularize the approach among practitio-
ners. The classes of problems presented are quite general,
and may be used as stand-alone models or integrated as
modules within more complex models. The results of the
models are easy to explain to decision makers, which en-
hances credibility. Furthermore, post-optimization and
parametric analysis, which are critically important for real-
life applications, can be easily implemented.

We have also found that the nice mathematical struc-
tures facilitate the design of efficient, elegant algorithms. It
is hoped that the exposition provides insights to various
resource allocation problems, so that it will encourage re-
searchers to explore new, related problems and propose
effective solution approaches. Not only are the presented
algorithms efficient, but they are also easy to implement as
effective software tools. Modern computer science meth-
ods, including efficient data structures and parallel compu-
tations, can be used to further enhance implementation of
these algorithms.
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