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Abstract

An approach to road parameter recognition in monocular image se-
quences under egomotion is described. Two stabilization mechanisms
are integrated into the basic recursive estimation procedure: a short
sequence averaging of individual measurements and a scalar filter for
long-term stabilization. Besides the bottom-up measurements a sec-
ond type of road measurements is provided - synthetic measurements
derived from model-based road stripe tracking.

1 Introduction

A specific application area of dynamic computer vision (based on image sequence
analysis) is the autonomous vehicle guidance on roads ([1]). Two common tasks of
such vision systems are: 1) road border following and 2) detection and tracking of
obstacles. In this paper an extension of the first task to a road recognition problem
and an adaptive solution of this problem are described. Besides the road border
following the road class (i.e. lane number) is recognized and the following road
parameters are estimated: width, camera orientation against the road plane, the
relative egocar position on the road plane. Related work about road recognition
is described, for example, in [2] (road border following) and [3] (vanishing point-
based road curvature estimation),

The most frequent approach for the stabilization task is a recursive filtering of
the state parameter values ([4], [5]). But the important problem is how to detect
the road elements robustly, in order to supply the filter with measurement data,
and how to make certainty judgements of the measurements. In this paper the ro-
bustness of measurements is achieved by using two types of the measurement data:
bottom-up and synthetic (top-down) measurements. The judgement schemes are
based on short-sequence variances of detected road elements (bottom-up data) or
are long-sequence variances of road stripes (synthetic data). Related work about

•This work was partly supported by the "Deutsche Forschungsgemeinschaft", Bonn, Germany,
and partly by the BMW AC, Munich, Germany. Only the authors are responsible for the content
of this paper.
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estimation mechanisms for road analysis is described, for example, in [6] (short
sequence tracking of image points) and [7] (adaptive object estimation).

2 The road recognition module

The road recognition module is part of a road object tracking system under ego-
motion that is depicted in Figure 1. The system consists of an application-
independent module for image contour detection and 2-D motion estimation [8],
the 2,5-D road recognition module (top part) and of a model-based module for
object initialization and object tracking [9].

f Camera model j

2,5-D
3) Road parameter

detection

Vanishing point

Road measurements

2) Contour classification 4) Road parameter
stabilization

CONTOURS/EDGES ROAD PARAMETERS

Image motion estimation
Contour detection
Edge detection 2-D

Object initialization and tracking
3-D / 4-D

Figure 1: The road object tracking system structure, VP: vanishing point

The road estimation module interacts at one side with the 2-D module through
image contours, supplies the 3-D object initialization unit with current road hy-
potheses and receives a feedback from the tracking unit in form of "synthetic"
measurements.

Application-specific knowledge about the scene is used for the vanishing point
(VP) detection and the detection of the road border and the road stripes in the
image. Several road hypotheses could be generated which are characterized by
different parameter sets. One road parameter set consists of the road type switch
Ti, the road width W and the observer location relative to the road centre line B.
The vanishing point and the road hypotheses are recursively stabilized during the
image sequence processing cycle.

3 Road measurement detection

At time tk of the fc-th image in the sequence the transformation EGO[H, a(k), f3(k)]
of a point in the camera coordinate system (xc, yc,zc) into a point in the road co-
ordinate system (xw,yw,zw) consists of a translation along y by H (the camera
height above the road), a translation along x by B(k) (the distance to the road
centre), a rotation by a(k) around the x axis and a rotation by /3(fc) around the
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(a) (b)

Figure 2: The road-to-camera transformation (a) and one original image (b)

(a) (b)

Figure 3: Vanishing point detection (a) and the FP-based image areas for contour
classification (b)

y axis (fe is focus length) (Figure 2 (a)). The parameter H is assumed to be
known and constant, but the remaining three transformation parameters have to
be estimated.

3.1 Vanishing point tracking

The assumptions of approximate road planarity are made at this point of analy-
sis. The non-horizontal edges of vertically elongated contours are supposed to be
placed on the VP-lines (Figure 3(a)). The highest density area of intersection
points between these lines is detected, and its centre point is the current vanishing
point measurement. The vanishing point position is stabilized both in a short (up
to 5 images) and a long sequence by a linear Kalman Filter (for details see section
4)-

The rotation angles a(k) and /3(k) are directly derived from the location of the
vanishing point in the image (Figure 3(b)):

«(*) = - arctan
fe

; p(k) = arctan
\ fe

(i)



694

3.2 Contour classification

On the basis of current VP location the image pixels are classified into three
classes: "road", "surrounding area" and "heaven" (Figure 3(b)). The contours
containing some number of "road" pixels are classified as "road" contours, the
contours without such pixels but containing enough "surrounding" area pixels are
classified as surrounding contours. The remaining contours are assumed to be
placed above the horizon.

3.3 Bottom—up road measurements

The FP-edges of "road" contours which are below the point VP in the image
and are oriented towards this point are hypothesized to be the projections of road
stripe borders. These FP-edges are backprojected into the road plane (due to
the transformation EGO(-H, -a(k), -/?(&))) (Figure 4). The weigths of back-
projected edges are now determined, depending on the length, the distance from
the observer, and the elongation along the zw axis. An accumulator vector is
provided, that corresponds to a cross section of the road (to a discrete segment
of the Zw axis) At the end the edges are projected onto the Zw axis, and the
edge weights are added in appropriate accumulator cells. The analysis of densities
in this accumulator contours leads to different hypotheses about the road type -
Ti (let us fix i = 2,3) (where i is the lane number), the road width Wi and the
location of the road grid relative to the observer (or dually the camera position
Bi relative to the road centre line) (Figure 5). The certainty of each road type
hypothesis Ti is evaluated also.

(b)

Figure 4: The backprojection of final VP-edges on the supposed road plane: (a)
straight road, (b) curved road
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(b)

Figure 5: The weights in the accumulator vector corresponding to the final projec-
tion of the VP-edges onto the Zw axis (histogram-like shape) and one road grid
hypothesis: (a) a 3-lane hypothesis in a straight road case, (b) a 2-lane hypothesis
in a curved road case

3.4 Top—down (synthetic) road measurements

The measurements detected directly in the image are not alone affecting the road
parameter estimation. The egomotion detection procedure in the 4-D tracking
module is looking at each new image for "stationary" road object hypotheses in
order to estimate the egomotion. But the successfully tracked objects allow also a
feedback to the road estimation module. Synthetic (top-down) measurements of
the road parameters are extracted from the best "stationary" object set. Especially
the selection of a proper road type hypothesis can now be improved. These top-
down measurements induce a second road parameter stabilization step.

4 Road parameter stabilization

Let Sj(fc) = [Wi(k),Bi(k)]T be a 2-dimensional parameter vector at time tk for the
road type Ti (i = 2,3) and let m,(fc) = [wi(k), bi(k)] be an associated measurement
vector containing the road measurements at time tk- The time-dependent model
of both vectors behaviour is given by a stochastically disturbed dynamic system
with discrete time:

Si(k
- h[si(k)]

v(k);
w(k)

(2)
(3)

where v(k) is the system noise and w(k) the measurement error. The filtering task
is to estimate the state s*(t) on the basis of measurements m{t). A consecutive
solution is achieved by recursive methods, where the old estimate of s(k) is updated
after new measurements m(k + 1) are available. The covariance matrices express
the error probability of the measurement m(k) and of the state estimation s*(k).

4.1 Weighted averaging of single measurements

The success of stabilizing each road parameter set Sj,(i — 2,3) during adaptive
filtering mainly depends from proper estimation of the measurement variances Ri.
Instead of working with measurements in one image a weighted average of up to



696

N (N = 3 — 5) corresponding measurements in the last N images is preferred here.
The variances of individual parameter measurements in a short sequence of up to
N images determine the current measurement variance of this parameter. Default
minimum and maximum variances are provided, limiting the influence of single
measurements on the estimated values.

The stabilization speed depends directly on the robustness of measurement
detection and how far the initialization values are located from the real values.
Besides the certainty estimation of measurements (which is opposit to the mea-
surement variance) the weigthed averaging of corresponding measurements allows
a more robust measurement detection (with subpixel accuracy) than in a single
image case.

4.2 Adaptive estimation procedure

At time tk of the fe-th image there is a four-value set for each parameter Sij, (i —
2,3; j = 0,1) of a road hypothesis Ti : two measured values (detected and syn-
thesized), and a predicted and modified estimation value. For the stabilization
task a linear Kalman filter ([10]) is provided. The recursive estimation procedure
for each road type hypothesis Ti consists of following steps:

1. State vector initialization: After the number fco of single measurements
m,j(k),k = 1, ...,fc0 is greater than the number 2 of state variables, the first
estimation a*(fco) and its covariance matrix P*(fco) are computed. A skip
to step 5(c) follows.

2. Bottom-up measurement: At every new image fc > fco a new measurement
vector m(fc) and its covariance matrix R(k) are determined. Thery are
results of short-sequence weighted averaging of individual measurements.

3. First stabilization step: with (a) computation of the Kalman gain and (b)
update equations for the estimated vector s*(fc) and its covariance matrix
P*(fc) (but no prediction equation).

4. Synthetic measurement: On the basis of road stripe tracking a synthetic
road parameter measurement ms(k) and its covariance matrix Rs(k) are
determined.

5. Second stabilization step: with (a) computation of the Kalman gain, (b)
the update equations for estimations s*(k) and variances P*(k) and (c) the
prediction equations for next time prediction of the parameter setva(fc + 1)
and its covariance matrix^(fc + 1).

6. With fc *- k + 1 repeat from point 2.

4.3 Road class selection

The selection of the best road hypothesis is based on the relation between the
variances P2* and P3* of the estimated road parameter B2 and £3, normalized over
the road widths W2 and W3, respectively. The following rule can be applied for
the selection of best road type hypothesis:

W2

IF(P3* < ^ | P2*) THEN Class <- T3 ELSE Class <- T2 (4)
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5 Results

The adaptive road recognition module was tested on several image sequences with
125 images of non-interlaced 350x282x8 bit resolution in each sequence. Images
of motorway scenes and federal road scenes, with linear and curved road elements,
have been provided.

In order to determine the detection and stabilization errors the original val-
ues have been measured in the image. For every image the original positions
{(xo,yo)(k), (k = 0,..., 124)} of the vanishing point were manually determined.
The road type Ti (2-lanes or 3-lanes) was obviously known. The real values of
road width Wo(k) and the original camera position Bo(k) relative to the road
centre line, have been manually measured in the backprojected images obtained
during processing.

5.1 Vanishing point tracking

The results of detecting the vanishing point in 4 image sequences of real road
scenes are summarized in Table 1. The second and fourth sequence are character-
ized by high road curvature. Nevertheless, while working with FP-edges which
are relatively near to the observer, the original point was detected with good
performance.

The differences between detected (x(k),y(k)) or stabilized values (x*(k),y*(k))
and the original values (xo(k), yo{k)) are represented by the error variables (X, Y)
or (X*,Yu*). For every variable from the set {X, X*,Y, Y*} its expected value £
und variance a2 have been calculated.

The mean error values of VP detection and estimation are below 6 pixels. The
error variances of the estimated values are from 5 to 10 times lower than the error
variances of the measurements.

The stabilization speed depends directly on the relation between the mea-
surement variances Rvp(k) and the estimation variances PyP(k). The applied
measurement variance estimation scheme, based on short sequence measurements,
allows a stabilization of the estimations after 20 images with the uncertainty value
in the covariance matrix P(k) limited to app. 40 x 20\pixel2].

Seq.

S 1
S 2
S 3
S 4

X = xv p — xo
Sx

-1.57
-5.18
-3.67
-3.51

*x
66.82
17.17
80.35
155.64

X* = Xyp — XO

£x-

-1.07
-4.42
-6.18
-4.66

°x-
7.15
0.73
21.08
11.54

Y = yVp - yo
BY

5.15
-0.82
-3.06
-6.37

aY

22.37
6.91
17.06
63.69

Y* = VVP - yo
£Y-

5.12
-0.91
-2.72
-6.01

o-y.

3.12
1.25
3.17
6.59

Table 1: Mean error and error variance of VP-detection in four image sequences
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Figure 6: Vanishing point detection and stabilization in two sequences - with
linear (top image) and curved (bottom image) road elements

5.2 Road parameter estimation

In Table 2 there are results presented from processing four image sequences by
three stabilization methods: (a) single-image measurements, (b) short-sequence
averaged measurements and (c) two stabilization steps. The estimated parameters
from two road hypotheses T2 and T3 are related to the original road data. In
particular, the stabilized values of road width - W2*, W£, the observer location -
B\, B% and the variances P*s of the estimated 5,-values are provided, as well as
the number of images in which the given hypothesis has been selected.

The fine measurement detection procedures in case (b) and (c) allow a much
better performance of the estimated road parameters for proper road type than in
single stabilization of single-image measurements (case (a)). The variances and
road parameter errors of proper hypotheses have been decreased by 50% while
relating case (b) to case (a), and they have been decreased by another 20% if the
case (c) is related to case (b). At the same time the variances of wrong hypotheses
have been increased.
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Seq.
Method

1: (a)
1: (b)
1: (c)

2: (a)
2:(b)
2: (c)

3: (a)
3:(b)
3:(c)

4: (a)
4: (b)
4: (c)

T2: two lanes
B*2

[m]
-0.69
-0.78
-0.29

WS
[m]
7.12
7.02
7.53

[m2]
1.06
0.59
1.51

Select
T2
5
2
0

T3: three lanes

M
-0.82
-0.83
-0.78

ws
[m]

10.52
10.54
11.14

[m2]
1.85
0.84
0.52

Select
T3
118
121
123

Original: B = -0.85 [m]; W = 11.00 [m]; Class = T3

1.32
1.11
1.15

7.08
7.07
7.21

0.62
0.37
0.96

50
22
8

2.66
2.89
3.04

10.41
10.74
10.91

0.56
0.19
0.22

73
101
115

Original: B = 3.00 [m]; W = 10.80 [m]; Class = T3

1.31
1.39
1.62

7.28
7.66
7.47

0.54
0.11
0.10

101
112
117

0.84
0.62
0.42

9.68
9.47
10.42

1.21
1.01
0.92

22
11
6

Original: B = 1.50 [m]; W = 7.10 [m]; Class = T2

1.12
1.11
1.15

7.24
7.00
7.41

0.47
0.25
0.24

92
102
104

0.94
0.89
0.92

10.38
10.37
10.46

0.94
0.83
1.32

31
21
19

Original: B = 1.35 [m]; W = 7.30 [m]; Class = T2

Table 2: Applying three methods of road parameter estimation to four image
sequences. The results for two road type hypotheses after processing 125 images

The columns Select T2 and Select T3 in Table 2 specify the number of images,
for which the 2- or 3-lane road hypothesis have been selected. For stabilization
method (a) the success ratio of proper road type selection is 60 - 90%. This ratio
is increased in the case (b) to 82 - 98% and in the case (c) it reaches 85 - 100%.

The stability of parameters for a proper road type is of satisfying performance
and the mean error of B and W is below one meter. An optical evaluation of the
tracking performance for W and B in two image sequences can be extracted from
the Figure 7.

6 Conclusion
The characteristic features of proposed approach to road estimation are as follows:

• vanishing point lines are detected directly on the top of the camera vehicle
=>• avoiding the problems with road curvature

• weigthed averaging of corresponding features in a short image sequence
=> more reliable estimation of image measurements than in single or two
image case

• stabilization od road parameters
=> increasing the signal to noise ratio and filtering out the detection errors

• integrating the road detection with the model-based object tracking module
=*• long-term road stripe tracking ==> synthetic road measurements are
provided that improve the road recognition
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Figure 7: Detection and stabilization of road parameters in two image sequences:
linear road (top image), (b) curved road (bottom image)
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