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Abstract. A domain—independent tree search algorithm for semantic network—based image understanding systems
is proposed. The basic transition operators for this search, that provide search space expansion, have been designed
for a (hierarchical) model-to—image match. In this paper two operators for data—dependent matching are additionally
defined. The first operator forces an iteration of the model concept—to—image match, the second one concerns the
instantiation of generic relations. At end minimal data requirements of conceptions are introduced, allowing the design
of one additional global operator of the search space — a data—driven search tree pruning.

1. INTRODUCTION

In this paper the image interpretation problem is viewed as
an optimal forward search in an implicit space of partial
symbolic descriptions [1]. A semantic net-based system shell
ERNEST [2, 3] and the A*—tree search algorithm constitute
the basis of presented approach. The basic transition opera-
tors in ERNEST, that provide search space expansion, have
been designed for a (hierarchical) model-to-image match.
But one needs data—driven search operators in vision sys-
tems too because the number of non—competitive instances
of given conception may be image-dependent (can not be
predetermined in the model). Two such operators are pro-
posed here for data—dependent matching. The first one causes
an iteration of the model-to—image match. For example it
can be used in following cases: an unlimited number of ob-
ject instances may exist in the scene, iterative volume parts
of a solid may exist, non—-merged segments may exist in the
image description due to segmentation faults. The second op-
erator concerns the instantiation of generic relations for the
verification of hypotheses and for consistency maintenance.
Additionally minimal data requirements may be specified for
each conception. They allow a global pruning of search space
nodes while retaining the admissibility of search.

2. KNOWLEDGE-BASED ANALYSIS IN ERNEST

The semantic network in ERNEST provides three node
types: the concept, the modified concept and the instance,
as well as three link types: part, concrete, specialization. A
part is context dependent or not. Part— and concrete—links of
a concept are aggregated into modality sets, and each link is
marked inside a set by one of the labels: obligatory, optional,
inherent or reference.

There are three domain—independent rules for the instan-
tiation of concepts and three rules for the modification of
concepts, that describe the use of knowledge. First a partial
instance Ipartiai(A) of a concept A (or its modified concept
Qpartiai(A)) is computed by requiring instances of the con-
text independent parts and concretes only (RULE 1). Hav-
ing the partial instance of A instances of contert dependent
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parts { M} can be generated. With the instances of {M} and
due to the RULE 2 the partial instance of A can be com-
pleted (Icompiete(A)) The RULE 3 checks whether there are
instances of optional parts or concretes and it generates ez-
tended instances from a complete instance of A. Constraints
can be propagated upwards (RULE 4) or downwards (RULE
5) in the knowledge hierarchy. Initial modifications of con-
cepts are derived by the application of RULE 6 directly to
the image data.

The rules for instantiation and modification in connection
with the A"—tree search algorithm form the skeleton for dif-
ferent control strategies. The basic alternating control con-
sists of a bottom-up selection of (temporary) goal concepts
and of matching them to the image data. This matching
process is tailored into a top—dow model ezpansion (inverse
application of the instantiation rules combined with modifi-
cation of expected conceptions) and bottom—up instantiation
until the application specified goal is reached.

3. THE BI-DRIVEN CONTROL (Table 1)
3.1 Data—driven goal selection

The primary problem of ERNEST-based signal analysis is
to find an optimal path in the graph of modified goal con-
cepts. This graph is extended over the concrete—of- and
specialization—hierarchies of the model (and the Z axis for
multiple modifications of a concept) and a path leads from
some initial goal concept from the set Cy to some terminal
one (from the set of most abstract and most specialized con-
cepts in the model net). The search tree is expanded by the
application of following operators:

— initilization by the application of RULE 6 to the image
data; one successor node is generated for each initialized goal
— superior goal generation (applying RULE 4 to the instance
of current goal); one successor node for each modified supe-
rior concept

— more specialized goal generation (applying the inheritance
mechanism to the instance of current goal); one successor
node for each partial instance of direct specialization con-
cept



| Input: APPLICATION function to provide a list Cj of competitive goal concepts

Initialize: search tree S= (V,E) with V={R}, E= 0; lists OPEN= 9, CLOSED=R

provide APPLICATION function for initial parameters

FOR all concepts K € Cy, DO:

apply RULE 6 to K

FOR all modified concepts Q;(K) = o; generated by RULE 6 DO:

generate one successor node VX of root R in search tree S
DATA(V;¥)= {o0; }; GOAL(V,])= 0;; h(V;¥)= judgement(V;¥)

IF K is a minimal concept
THEN | OBL_.PREM(VX,0,)=T
ELSE | OBL_.PREM(V*,0,)=F

refer unlimited objects in DATA(V,®) in ITER[V,"]

IF

the segmentation data satisfy MIN.REQUIRED[VX]

THEN

add VX to OPEN

WHILE O

PEN is not empty DO:

select the node IV with best score from OPEN

remove node N from OPEN; add it to CLOSED

IF

the APPLICATION decides that an analysis goal or an end has been reached

THEN

STOP - successful end of search or end of resource

activate

APPLICATION function to provide a (possibly empty) set S of new goal concepts

IF

S is not empty

THEN

FOR all concepts C; € S DO:

apply RULE 4 to C;

FOR all objects o; generated this way DO:

generate one successor node V;; of N in S; add V;; to OPEN
DATA(V;) = DATA(N) U { o, }; OBL.PREM(V;;, 0/) = F
h(Vy) = judgement(Vy;); GOAL(V;;) = o

ELSE

IF

some object o € DATA(N) can be instantiated by one of the RULES 1-3

THEN

activate ERNEST function instant (N) to instantiate the model in node N
determine the set Next(IV) of successor nodes of N in OPEN

activate ERNEST function consistency_check (Next(N))

FOR all nodes N; € Next(N) DO:

refer all unlimited objects from DATA(N;) in ITER|[N;

FOR all unlimited objects 7(;) € (ITER[N] — ITER|V,] ) DO:

generate one successor node N} of N in S and OPEN
copy N; to N}'; DATA(N}') = DATA(N;) U Tyi41)
ITER[N}] = ITER[N;] U T(;41)

extend the premises of superior objects of T(;) by T(;+1)

ELSE

IF there is at least one object 0o; € DATA(N) with
OBL_PREM(N,0;) = F

THEN | activate ERNEST function ezpand (N) to expand the model in N

determine the set Next(N) of successor nodes of N in OPEN
activate ERNEST function pruning (Next(IN)) to prune the
nodes N; € Next(N) from OPEN if the available segmentation
data does not satisfy MIN_ REQUIRED|N;]

ELSE IF there is at least one object 0o, € DATA(N) with
OPT PREM(N, o)) = F

THEN | activate ERNEST function opt_ezpand(N)
to expand the model in node N

ELSE | activate ERNEST function opt_spec(IN) to consider
optional parts and specializations

STOP — no success of analysis

Table 1: The bi—driven search
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3.2 Model-to—image matching

The parts and concrets of a concept are aggregated into a
finite set of competitive modalities (md), i.e. subsets of parts
and concrets. The match of selected goal to the image data
is a combination of two search problems: a search for a best
solution graph in an AND-OR graph (expanded model) M
for current goal A (Fig. 1) and the search in the space of
competitive instances of entities from M. The entities in M
are modified concepts created for model paths starting from
current goal A. These modified concepts are refered by so
called object-data structures (denoted by ;) in a search
space node. Due to the identification of equivalent paths (as
specified in the model) or equivalent objects (from various
modality sets of one superior object), one object can repre-
sent multiple paths.

Hence two search operators are applied during the basic
matching process. Successors of a search tree node are cre-
ated either for competitive premises of instantiation (due
to different modalities and different modifications generated
by RULE 5) or for competitive instances of every object
Qi € M.

A A
'O

md1 mdQ[A]

a b c Modality 570\/6\

(A = fax d o d b d 8
Pathi(A) = mdila] md; md[c
Pathsy(A) = } f}F A
‘ AND/OR model graph ‘

QI(A) Ql(A)
mdl[ 1 )}')’Ldz[Q md1 }'TLdZ[Ql
A Identificatio
Ql a) Q 2 b Ql C Ql 1 Cil
md; Q (a)] . md1 Q:1(©)) mdl[Ql(a)] . md;&(c)l
QR1(W\Q2(x QS( )
1) Q y) Q2 (Q)l(W) R1(x) Q1(y)Q:2(y)Q1(2)

Identified: @Q1(b) =
Pathi(A)

Q2(b);

‘ Expanded model ‘ > Patha(A)

Figure 1: Model expansion with path identification

Actually the model expansion mechanism is more complex
than the one presented on Fig. 1 because the elements of
one modality are additionally classified into obligatory or
optional. For a given goal concept the obligatory model-to—
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Qpartzal (Az)

expansion for
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RULE 1, 2
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context
dependent

Figure 2: Expanded obligatory model
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obligatory optional

Qeztended (A )

Qcomplete
expansmn for

RULE 1, 2, 3

(0)
QK1) Q(Kn) Q(P1)Q(Fr)

Figure 3: Expanded optional model

image match is performed. In this case RULE 1 and RULE 2
are considered only during the model expansion process (Fig.
2). Due to the optional parts, required by the RULE 3, the
optional model-to-image match can be distinguished. Before
an eztended instance can be created from the complete one,
instances of optional parts are searched for (empty instances
are allowed) (Fig. 3).

The matching process consists of interlaced expansion— and
instantiation—steps. The instantiation step has always the
greatest priority. By applying RULES 4 and 5 to new gen-
erated instances, the object domains from the data set
DATA(N) can be more constrained. In this way the later
expansion of each such object can be restricted to those
premises only, which satisfy the new constraints.

For the judgement of search space nodes an estimation of the
goal object judgement with respect to the set DATA(N) is
performed. This measure satisfies the admissibility require-
ments for the A*—tree search algorithm.

3.8 Iterative match for "unlimited” objects

If the dimension item of some (optional) link is equal to the
number "unlimited” then it will be searched for an image—
dependent number of instances of the appropriate concept.
This is represented in the expanded model by an unlimited
object. The set of such objects in a node N is recognized
by the operator ITER[N]. After n instances of an unlim-



l CLOSED
N | ITER[N] = Quy({car) |
{Ii | (i =1,..n)} — n instances of Q)({car))
ITER[N,] = @
o o DATA[N,] = DATA[N] U Qn(Q({car))) —
Ny No | Quy({car))
OPEN {
N | ITER[N;] = Qqy1)((car))
" | DATA[N}] = DATA[N,] UQ41)({car)) U
QNn' — QNn

QNn = { q| q € DATA[N.], Qq)((car)) € Premise(q) }
QNn' = { ¢' | 3¢ € QNn, Premise(q') = Premise(q) U
Qa+1)({car)) }

Figure 4: Iterated search for object (car)

ited object (for example object Q) of concept (car)) have
been created, the search space node N is firstly expanded by
nodes Ni,..., N, as usual (Fig. 4). After one of the nodes
N; (i=1,...,n) has been selected for expansion one additional
successor node N;' of node N is created. From this new node
the model-to—data match for this unlimited object will be it-
erated — a next version Q41)({car)) of the unlimited object
is added to the set DATA(N}). The premises of all superior
objects of the unlimited object have to be changed in or-
der to include the next version of this object. The iteration
stops because of the limited image data — no data can be in-
terpreted twice on one path in the search space. Thus in the
subsequent iteration only this data can be matched, which
is not interpreted by instances from DATA(N) yet.

3.4 R-objects for generic relations

A specific unlimited object, called the R—-object, is given if its
part— and concrete—links have all the reference labels. These
links are not expanded — new objects are not generated for
concepts reached by them. For each object tuple from the ex-
panded model that satisfy the premise of the R—concept one
appropriate R-object is generated in the expanded model
(Fig. 5). This set may be extended by new objects generated
during the analysis if some link of the R-object refers to an
”unlimited” object.

One application example of generic relations is the repre-
sentation of relationships for consistency maintenance of the
search space. After some inconsistent DATA set has been dis-
covered (so called NOGOOD search space node) the proce-
dure inconsistency_check tries to detect inconsistent subsets.
Nodes which contain at least one of the detected inconsis-
tency can be removed from the OPEN set.

3.5 Minimal data requirements for non-expanded objects

The third operator concerns a data—driven pruning of search
space nodes. A set MIN_REQUIRED is specified for each
search node. It contains the minimal image data require-
ments for the non—expanded object set of given search node.
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Sample model | Expansion Objects

A " Qu(A)
\ \
\ 1 \
v D@ \7
B K/ Q:1(B)

Dimension(l)= 2

v
C
K

>

Q1(B) @1(R) | Q2(R) [@:(C)

Q:1(K) Q2(K)

Figure 5: Expansion of the R—concept R

In order to pass the pruning test the subset of image data,
that is available in a node, should include the appropriate
MIN_REQUIRED set.

4. CONCLUSION

Two data—driven search operators have been proposed for
knowledge-based image understanding and they have been
integrated in a model-driven optimal search algorithm. Con-
trary to the basic model expansion prinicple the number of
some objects ("unlimited”, "R-objects”) is not determined
by the model but depends on the current analysis results.
The specification of minimal (remaining) data requirements
implies a data—dependent global pruning of the search space.
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