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Abstract

In this paper a robust method for visual motion estimation under ego{motion is developed. The possible

application of this method is image sequence analysis of road tra�c or airport runway/taxiway scenes, where the

camera is located in a moving vehicle. The method combines an application independent estimation of visual

motion with speci�c methods for instantaneous detection of the vanishing point in the image plane and of the

over{road location of the camera. The stationary background is separated form the obstacles while detecting the

ego{motion corrected visual motion of on{road objects.
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1 Introduction

Speci�c image sequence analysis systems for many object scenes are moving robot guidance (

1

) and vision

systems for driver support on roads (

2

). Most of the developed methods for automatic road following and collision

avoidance can also be used in airport's runway or taxiway scenes. An obstacle in this context can be de�ned as

something rising above the plane. Up to now the classi�cation whether a (relatively) moving object is a speci�c

case of an obstacle or not depends from concrete application. In this paper we de�ne an obstacle as a speci�c

subclass of a moving object with a zero motion vector.

Generally we can classify the methods for object (obstacle) detection into application independent visual

1
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motion estimation methods, working in the 2{D image or a constrained plane in space (e.g. ground plane, road

plane), and into model{based 3{D object recognition methods (

3

), (

4

). The later methods usually require a

dynamic 3{D model of the scene and are outside of our interest here.

Usually the approaches to visual motion (or optical 
ow) estimation (

5

), (

6

) are divided into two classes:

the gradient{based and token matching classes. In the methods of �rst type the local visual motion estimates

are derived from local changes in the image intensity (

7

), (

8

). These methods typically yield dense optical 
ow.

In the token matching (or correspondence) techniques discrete features such as corners and line segments are

independently detected in each image and features in one image are matched with features in the second image

(

9

), (

10

). Complete motion vectors are provided at a few points in the image only, leading to a sparse motion

�eld.

The detected visual motion allows to separate the entire image into stationary background and moving objects.

This kind of image segmentation is very often applied in tra�c scene analysis, as the objects are usually projected

to small image regions what prohibits their detailed recognition, e.g. (

11

), (

12

), (

13

). These methods are especially

useful for single object scene analysis.

In applications where the observer is moving with a longitudinal motion (the ego{velocity case) the object

motion can no longer be assumed to be parallel to the image plane. For robot navigation purpose it was proposed

to compute the optical 
ow in a virtual horizontal scene plane instead of the image plane (

14

). Assuming that a

stationary obstacle has to be detected only, in the back{projected plane such an object will correspond to high

velocity values.

If the observer is moving on roads with large speed the vehicle is turning left or right and the camera may

frequently perform an unknown nodding movement (the true ego{motion case). Additionally the pitch angle

between the optical axis of the camera and the ground plane is relatively small (< 10

o

) and one has to cope

with perspective distortions of scene objects. Despite these di�culties a lot of work on obstacle detection for

visual navigation purposes has been done while trying to compute and evaluate the optical 
ow �eld in the image

plane (

15

). Other class of method in image plane estimates the dynamic focus of expansion point (FOE). Image

segments whose motions match the FOE point are classi�ed into 'stationary' ones. The remaining segments are

"moving" segments. But this method was tested to be not robust enough for real outdoor sequences (

16

).

The main objective of current paper is to propose a robust computational scheme for obstacle detection on

the basis of ego{motion corrected visual motion. In order to accommodate above disturbances of conventional

visual motion an estimation of instantaneous 3{D ego{motion is performed. This estimation data in
uences the

visual motion scheme leading to necessary corrections of image{to{image correspondence. We proceed as follows.

At �rst, in section 2 we classify the motion estimation schemes according to their working space. In section 3 the

new method for pixel{based motion estimation under ego{motion is described. First the geometrical elements of

the system leading to a virtual road plane estimation are given. Next the adaptation of camera movements and

ego{velocities in the visual motion estimation procedure follows. Some test results on real data are provided in

section 4. A summary section concludes the paper.

2 Pixel motion based obstacle detection

In this paper we consider pixel based methods for visual motion detection (or estimation) only. Other classes

of methods like feature motion detection (e.g. for corners, edges, line segments, contours) or frequency based

methods of optical 
ow estimation are beyond the scope of this paper. We distinguish here three classes of pixel

based visual motion: detecting a motion in the image plane, in the ground plane (the ego{velocity case) or in the

road plane (the ego{motion case).
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(a) (b) (c) (d)

Figure 1: Pixel motion based moving object detection in case of a stationary camera: (a) single image frame, (b)

the dynamic mask extracts 'moving" segments from the set (c) of all image segments, (d) the moving segments

are grouped to objects by segment growing methods or model{based matching.

(a) (b) (c) (d)

Figure 2: Even a small unknown movement of the camera may lead to wrong results of moving object detection:

(a) one original frame from the sequence, (b) detected pixel motion corresponds (nearly) properly to moving

objects, (c,d) due to camera movement a wrong pixel motion of the background is detected.

2.1 Visual motion in the image plane

The straightforward solution is to apply the conventional visual motion in the image plane. A pixel based

motion (a dynamic mask image) is generated by one of the following methods: a simple di�erence image method,

adaptive di�erence image (Figure 1) or one of optical 
ow methods. The image segments are classi�ed into

"moving" or "stationary" depending on the amount of covered "moving" pixel. The neighbor moving pixel can

be grouped to moving segments. In case of a stable camera position this method works well. But even a small

unknown movement of the camera introduces errors of visual motion estimation as shown in Figure 2.

2.2 Visual motion in the ground plane

Let us assume that the camera is moving with constant and known velocity and that no nodding movement

occurs. This is approximately true for an indoor environment and for relatively slow moving car or robot. The

camera is turned toward the ground, i.e. the vanishing point is located in the image plane over the visible image

area (compare the cross{section of a scene given in Figure 3).

The vehicle is moving straight ahead along the depth axis

~

O

g

Z

g

. The camera depth axis

~

O

c

Z

c

is vertical

to the image plane and is projected onto the ground depth axis

~

O

g

Z

g

. In the focus point of the camera the
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Figure 4: The principle of visual motion in the

ground plane.

origin of the camera coordinates O

c

X

c

Y

c

is located. The origin of the image coordinates is given as the point

o = (0; 0;�f)

T

of the camera coordinates (where f is the focal length). The image coordinate axes ~ox and ~oy

are parallel to appropriate camera coordinate axes

~

O

c

X

c

and

~

O

c

Y

c

. The image coordinates (x; y)

T

of an image

point are equivalent to following camera coordinates (X

c

; Y

c

; Z

c

)

T

= (x � �x; y � �y;�f)

T

, where �x; �y are the

width or height of one image pixel.

We set F

x

= f=�x and F

y

= f=�y and express the focal length in pixel size along both axis directions. Now

the mapping between the camera coordinates P = (X

c

; Y

c

; Z

c

)

T

of a point in space and its projection p = (x; y)

T

onto the image plane is as follows:

x = �F

x

X

c

Z

c

; y = �F

y

Y

c

Z

c

(1)

As the vanishing point is located over the image window every image can be fully back{projected onto the

assumed ground plane O

g

Z

g

X

g

(Figure 4). The transformation from camera coordinates into ground coordinates

is given as:

X

g

= X

c

(2)

Y

g

= Y

c

cos(�)� Z

c

sin(�) +H (3)

Z

g

= Y

c

sin(�) + Z

c

cos(�) (4)

As all points are assumed to be located on the ground, i.e. Y

g

= 0, the above equations (1) and (2) can be

solved for unknown X

g

; Z

g

(let us notice that the measured depths have negative values):

X

g

= �

xHF

y

F

x

[y cos(�) + F

y

sin(�)]

(5)

Z

g

=

H[F

y

cos(�)� y sin(�)]

y cos(�) + F

y

sin(�)

(6)

Now a standard visual motion estimation can be applied for two consecutive ground images. This leads to

motion vectors in the ground plane. The known ego-velocity of the vehicle provides a threshold for obstacle

detection. As an obstacle is violating the planarity assumption it corresponds to high displacement values in the

estimated motion �eld.
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Figure 6: The principle of visual motion under ego{

motion.

2.3 Visual motion under ego{motion

If the observer is moving on roads with large speed the vehicle is turning left or right and the camera may

frequently perform an unknown nodding movement. Due to large speed a large scene depth range should be

covered by the vision system. Hence the pitch angle between the optical axis of the camera and the ground plane

should to be relatively small (i.e. below 10

o

) and the vanishing point is located inside the image window. Thus

this true ego{motion case di�ers from the previous ego{velocity by two aspects: �rstly the back{projection is

dynamically changing from image to image and secondly the back-projected ground image has unlimited height.

In case of an unknown camera nodding movement it is required either to have an outer orientation point or

to measure the relative position against the ground and/or horizon. In both cases it is useful to consider two

coordinate systems in 3{dimensional space, that are dynamically changing in time: the camera coordinate system

O

c

X

c

Y

c

Z

c

with origin point O

c

and the road coordinate system O

r

X

r

Y

r

Z

r

(Figure 5). The origin O

r

of road

coordinates is de�ned by the middle road axis and the road cross section at the actual position of the camera. Its

origin is located in the center of the road on the road plane and on the same road's vertical cross section as the

origin of the camera coordinates. The direction of the depth axis

~

O

r

Z

r

is a tangential line of the road curvature

on the road plane 0X

r

Y

r

.

The principle of proposed approach is to establish a correspondence between current image and a corrected

previous image, from which the in
uence of estimated current ego{motion is eliminated (Figure 6). In next

section our approach is described in more details.

3 Obstacle detection from visual motion under ego{motion

First a general scheme of our approach is given. Then the dynamic transformations between image and road

are explained. Next the estimation of the vanishing point and the (optional) road recognition step are described.

At end the applied visual motion estimators are mentioned and the obstacle detection rule is sketched.

The �rst step is required for estimation of unknown transformation parameters: �(t), �(t). Road recognition

is an optional step, i.e. it is not required if the rotational velocity of the ego{vehicle ! is already given, otherwise
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INPUT: fImage(0), Image(1), ... g

DATA: Motion, VP, ROAD

OUTPUT: ObsMask - binary image of obstacle object pixel

i=0; Motion = 0; set VP, ROAD to default values

WHILE Input is not empty

i= i+1;

VP = vanishing point(VP, Image(i)

ROAD = road recognition(ROAD, Image(i))

PrevImage = transformation(VP, ROAD, Image(i))

Motion = motion estimation(Motion, PrevImage, Image(i))

ObsMask = obstacle detection(Motion)

Figure 7: General scheme of obstacle detection from visual motion under ego{motion.

this parameter can be estimated relative to road curvature knowing the dynamics of the on{road position of

the camera B(t) and the rotation �(t). In any case the proposed scheme requires additional information about

translational ego{velocity V and of camera height H(t) over the road plane.

3.1 The procedure

The general algorithm scheme for pixel{based motion estimation in the virtual road plane is shown in (Fig-

ure 7). After the steps of vanishing point and road recognition the actual space transformation parameters are

determined. With this current 3{D transformation a virtual correspondence for every pixel in the image with its

predecessor in the previous image, assuming the on{road constrain, can be established. The �rst step is required

for estimation of unknown transformation parameters: �(t), �(t). Road recognition is an optional step, i.e. it

is not necessary if the rotational velocity of the ego{vehicle ! is already given, otherwise this parameter can be

estimated relative to road curvature knowing the dynamics of the on{road position of the camera B(t) and the

rotation �(t). In any case the proposed scheme requires additional information about translational ego{velocity

V and of camera height H(t) over the road plane.

In the step motion estimation di�erent motion detectors/estimators can be applied, for example a di�erence

image method or a gradient based optical 
ow method. Due to the obstacle detection step an image mask is

generated, corresponding to projections of expected obstacles.

3.2 Transformations

A full transformation at time t between road coordinates X

r

Y

r

Z

r

and camera coordinates X

c

Y

c

Z

c

consists

of following sequential steps (Figure 5):

� translation of the origin along the Y axis from Y

r

= 0 to Y

r

= H(t) (H(t) is the height location of the

origin over the road plane).

� translation of the origin along the X axis from X

r

= 0 to X

r

= B(t) (B(t) is the horizontal distance

between road center line and image origin point).

� rotation around the Y axis by angle �(t)

� rotation around the X axis by angle �(t)
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� rotation around the Z axis by angle 
(t)

The transformation from road into camera coordinates of a speci�c point in space is given by the same sequence

of single steps but each step transform parameter has an opposite sign. Such a transformation consists then of

appropriate translations by �H and �B, and rotations by ��;�� and �
.

For establishing the image{to{previous image correspondence, as shown in Figure 6 some simpli�cations may

be done. As a relative on{road plane position need to be estimated only, it can be set B = 0. The angle 
 describes

the side movement of the ego-car. There is no robust method available for the detection of this movement. The

angle 
 could be detected, for example, from the analysis of the horizon orientation. But a large view on a nearly

linear horizon should be available in nearly every image of the sequence. This can not be guaranteed. As the side

movement of the car is small compared to the nodding movement, the angle 
 is assumed to be constant all the

time.

Let us now explain the transformation steps in Figure 6. For every pixel (x; y) 2 Image(i+1) a corresponding

pixel (x

p

; y

p

) 2 Image(i) is to be �nd, that represents the same on{road position. This is achieved by following

consecutive space transformations:

1. backprojection, i.e. determining the on{road position corresponding to (x; y) (for y < V P

y

):

Y

c

=

�Hy

y cos(�) + F

y

sin(�)

(7)

Z

c

= �

F

y

Y

c

y

; X

c

= �

Z

c

x

F

x

(8)

X

r

= X

c

; Z

r

= Y

c

sin(�) + Z

c

cos(�) (9)

2. ego{motion adaptation, i.e. determining the on{road position of this stationary point at previous time

t

i

= t

i+1

� � :

X

r

(i) = X

r

cos(!�) + Z

r

sin(!�)�

V

!

[cos(!�)� 1] (10)

Z

r

(i) = �X

r

sin(!�) + Z

r

cos(!� ) +

V

!

sin(!� ) (11)

where V; ! are translational and rotational velocities of the ego-car, � is the time interval between two

consecutive images

3. projection of previous position onto the image plane (X

c

= X

r

):

Y

c

= Y

r

cos(�) + Z

r

sin(�)�H cos(�) (12)

Z

c

= �Y

r

sin(�) + Z

r

cos(�) +H sin(�) (13)

x = �

F

x

X

c

Z

c

; y = �

F

y

Y

c

Z

c

(14)

For the backprojection selected image points are considered to be located on the road plane, i.e. Y

r

= 0. The

parameter H(t) is assumed to be known and constant, but the remaining three transformation parameters: B(t),

�(t) and �(t) have to be estimated from the image data. This process is described in next section.
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Figure 8: Vanishing point measurement steps: (a) image normalization, (b) detection of image segments and

their initial classi�cation into road area segments (light color) and surrounding area (dark color), (c) selection

of hypothetic vanishing point segments, (d) the search area (large rectangle) is �lled with hypothetic V P{lines

induced by the longitudinal sizes of selected stripe segments and the V P point is measured as a small rectangle

with highest density of V P{lines, (e) the estimated VP point and image area classi�cation.

3.3 Vanishing point recognition

The vanishing point V P is de�ned as the point in the image plane, where the projections of the road border

lines vanish (Figure 8). If the road curvature is signi�cant the straight lines change to tangential lines of the

road stripes and borders in front of the ego{car. The purpose of vanishing point recognition is to estimate the

current orientation of the camera in relation to the road plane and the road trajectory. The angle � determines

the vertical rotation of the camera and � the horizontal rotation. These angles are estimated from image data as

follows:

�(k) = � arctan

�

FP

y

(k)

F

y

�

; �(k) = arctan

�

FP

x

(k)

F

x

�

(15)

For dynamic estimation a linear Kalman �lter (

17

) is applied. The state vector of V P consists of the position and

translation in the image plane: s

V P

(k) = [x(k); y(k); �x(k); �y(k)]

T

. The measurement vector consists of position

parameters only: m

V P

(k) = [xm(k); ym(k)]

T

$ s

FP R

(k).

The computation steps, required for vanishing point measurement in each image frame, are exemplary given in

Figure 8. From the set of all segments the assumed road stripe segments and road border segments are selected

�rst. Such segments are mainly vertically elongated in the image (i.e. the relation of their width to height is

larger than a given threshold value), the neighbor region intensities are "white" and the segments are positioned

under current lowest vanishing point hypothesis (but at least in the lower image half) (Figure 8(c)). Only these

segments are �nally selected that are located on lines, which are at a small distance to at least one vanishing point

hypothesis. Weights of these lines are calculated and their are added in a accumulator image. Next a search is

performed for an image area with highest density of these lines, giving the current measurement �

V P

(k) (Figure

8(d)). The individual measurements are supplied to the adaptive estimator in order to give an estimated value

s

V P

(k) of the vanishing point (

18

).

3.4 The on{road position

On the basis of initial image region classi�cation (Figure 8(e)) the image segments are classi�ed into road,

surrounding area and heaven classes. For this a rule{based procedure is used: segments containing a su�cient

rate of "road" pixels are classi�ed into "road" segments, the ones without such pixels but containing enough

"surrounding" area pixels are classi�ed into surrounding segments. The remaining segments are assumed to be

placed above the horizon.

A relatively complex procedure is applied for road recognition (

18

). One of results of this procedure is the
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Figure 9: Main road recognition steps: (a) road region search (it gives the minimum road width

~

X

L
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R

, (b,c)

selection of line segments that are expected to correspond to road stripes, (d,e) backprojection of these segments

onto the expected road plane, their weighted projection onto the road's cross{section and evaluation of densities.

The images (b) and (d) are for linear road case, whereas (c) and (e) are for a curved road case.

relative position of the camera against the center line of road B(t). Due to the dynamics of B(t) and �(t) a

rotational velocity of the ego{car relative to current road curvature can be estimated. The main steps of road

recognition are: road region estimation for road width interval determination, (Figure 9(a)), selection of �nal

VP{line segments from the set of road segments, that are expected to correspond to road stripes (Figure 9(b,c)),

their backprojection onto the expected road plane and search for pike densities across the road (Figure 9(d,e)).

3.5 Virtual pixel motion and obstacle detection

We applied following methods for visual motion detection/estimation: adaptive di�erence image (

19

), gradient

based optical 
ow (

20

), p.116, and block{matching (

21

). The �rst method is adaptive { it processes each image

by recursive means. The second method is adaptive to some kind, as the previous optical 
ow constitutes the

starting condition for the next time computation. The third method is non{adaptive { every two consecutive

images are processed independently from previous results. Due to ego{motion adaptation the detected visual

motion corresponds either to moving objects or to stationary obstacles rising above the ground.

4 Results

The developed method has been tested on several real image sequences from a moving camera. The other

mentioned methods of image plane and ground plane motion, known from the literature, have also been imple-

mented, allowing the comparison of results of di�erent approaches. The frames of monochrome image sequences

have usually a resolution of 384x282x8bit each (Figure 10).
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Figure 10: Single frames of several image sequences, applied in computer simulation experiments.

Figure 11: Image masks used for quantitaive evaluation of visual motion based object detection.

Some preliminary simulation results are already available. At �rst the above methods for motion detection in

the image plane, i.e. adaptive di�erence image, gradient based optical 
ow and block{matching have been tested

with no modi�cations (Figure 12 (a,b)). In the result images the gray value of a pixel corresponds either to

moving pixel (if motion detection is made only) or to the absolute motion value detected for this pixel (if visual

motion estimation is provided). Then the in
uence of known ego{motion on each of the above methods and the

obstacle detection in ground plane, according to the scheme proposed in the (

14

), has been tested (Figure 12(c)).

At the end the adaptation of ego{motion for each of above methods as proposed in current paper has been tested

(Figure 12(d)). An optical comparison of results from above three approaches already shows the advantage of

our method of ego{motion adaptation in visual motion detection.

In the original frame these regions which correspond to moving objects have been marked manually. Then a

pixel{wise comparison between these regions and the result images has been made. First quantitative evaluations

have shown an increase of obstacle detection quality. The pixel covering rates are summarized in Table 1. As the

(a) (b) (c) (d)

Figure 12: Example results of three obstacle detection approaches: (a) single frame, (b) from standard visual

motion in the image plane, (c) the ground{plane approach with ego{velocity adaptation, (d) our approach with

unknown ego{motion adaptation.
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Approach Properly covered Wrongly covered

Visual motion from: image ground ego{motion image ground ego{motion

Adaptive di�erence image 61% 82% 84% 55% 33% 26 %

Block{matching 70% 75% 84% 56% 32% 26 %

Gradient{based method 66% 75% 85% 52% 25% 22%

Table 1: The rates of properly covered moving regions and non-properly covered background in three approaches.

detection error is still in the range of 20 percent an region based evaluation should be considered in the future.

Due to ego{velocity accommodation the average processing times for one motion frame (image pair) have

been increased if compared to the motion estimation in image plane. For given image size the times have been

measured on a DEC Alpha Station 250 (4/266) (see Table 2). The average time for VP estimation was 0.06 s and

for road recognition and transformation calculation - 0.08 s per image. As a parallel processing of all algorithms

is realizable these additional processing times are not crucial for real{time requirements.

Approach Average times per image

Visual motion from: image ground ego{motion

Adaptive di�erence image 0.28 s 0.29 s 2.20 s

Block-matching 21.20 s 21.30 s 23.50 s

Gradient-based method 1.09 s 1.10 s 3.10 s

Table 2: Processing times of three approaches for obstacle detection with three visual motion detectors.

5 Conclusions

The speci�c problem of vision based application{independent obstacle detection scheme was addressed. A

moving camera case with unknown nodding movement has been considered. A combination of geometry based

analysis for visual motion estimation under ego{motion in both image plane and road plane has been proposed.

An automatic estimation of current projection conditions and of the on{road position gives the instantaneous

transformation parameters. Hence the unknown camera movement and the transformation between image and

road coordinates can be estimated. Three methods of visual motion detection/estimation have been modi�ed by

adapting the ego{motion. Tests have shown that in comparison to original methods (without ego{motion) a large

improvement in the quality of visual motion obstacle detection may be achieved.
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