
car detection, character recognition, traffic
scenes, vision sensor

Włodzimierz Kasprzak∗, Marcin Jankowski

The implementation of a vision sensor for traffic surveillance

1 Road traffic control within OMNI

The EC project OMNI ("Open Model For Network-wide Heterogeneous Intersection-based
Transport Management") [1] provides an open-architecture model for road traffic management,
by defining: standard interfacing for new applications or devices, and the integration of tech-
nology (surveillance applications, advanced sensors, other urban traffic strategies, etc) from
different vendors.

First of all a surveillance application allows for an automatic incident detection (Fig. 1).
Next, the advanced traffic control system means the integration of two complementary systems
for traffic light control: one for the real-time local control of signals at the junction level, the
other for the congestion monitoring and control at the network level. Other important applica-
tion is devoted for customized information to users via WWW - real time traffic information
may be presented to the user through the INTERNET (traffic status on a set of given itineraries,
on line trip-planning, alternative routing and information customized to a profiled user). Finally,
the fleet management means the use of GPS/GSM and the road sensors to locate the vehicles
and eventually to reschedule their activities.

The OMNI model provides classes and interfaces that describe various traffic situations
appearing on road crossings in an urban network (Fig. 2).One of the devices on road crossings,
specified in the OMNI model, is the video sensor [2], [3] (Fig. 3).

In this paper we describe the implementation of a modular video sensor software - the
general design was initiated in our earlier paper [9]. We have implemented following vision
modules within OMNI [4]: (1) camera auto-calibration, (2) traffic flow and (3) queue length
detection, (4) car plate recognition. An additional communication module provides an interface
to the OMNI-MOUN data base. A programming class implements each vision module and it
can be transformed into an independent process or object, if a distributed system is required for
it, by using the libraries of DCOM or CORBA.

2 Communication with OMNI

The OMNI interface module constitutes an object of a class calledLLFieldVideoSensor . The
information exchange between OMNI and our video sensor is implemented by a set of DCOM
interfaces, which are defined by OMNI:ILLFieldVideoSensor - to control the image anal-

∗Institute of Control and Computation Eng.,Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665
Warszawa. E-mail: W.Kasprzak@ia.pw.edu.pl , M.Jankowski@elka.pw.edu.pl



Figure 1. Example of an OMNI-based traffic information system.

ysis process,ILLLaneSensor - to inform about the lane’s queue length and occupancy ratio,
ILLZoneSensor - to inform about the traffic flow (Fig. 4).

The selection of appropriate interface objects appears by referring the observed road (se-
lecting the interface HLArc). Then the image segment along which we measure the queue length
corresponds to an object of type HLLane, that is linked with the selected HLArc, whereas the
border line, which we use to detect the passing vehicles, corresponds to an object of LLZone,
linked to HLArc.

Let us shortly describe the initialization procedure of our sensor program, which is a
DCOM-client of the OMNI-MOUN application. At first, the client should get the pointer to the
server object interfaceMOUNManager. Next we select the sensor (LLFieldVideoSensor ), to be

Figure 2. The road concepts provided in the OMNI model [1].
Figure 3. Road crossings controlled by
sensors in the OMNI model [1].



Figure 4. The objects responsible for communication of the vision sensor with OMNI.

controlled by the client program, by calling the methodIMOUNManager::getIdsOfType() . In
order to select the observed road one should get the object of classHLArc , whose one of sensor’s
is our selectedLLFieldVideoSensor , by calling IHLArcContainer::getSensorsOnArc() .
For each road lane, along which the queue length detection should be performed, we select an
appropriate road lane object of typeLLLane and get an pointer to its interfaceILLLaneSensor

by calling ILLLaneContainer::getSensorsOnLane() . For each zone, where we want to
detect traffic flow, we select an appropriate object of classLLZone and get the pointer to its
interfaceILLZoneSensor by calling ILLZoneContainer::getSensorsOnZone() .

In order ro transmit the measurements the client calls the methodMeasure , which is
declared by both interfacesILLZoneSensor andILLLaneSensor .

3 The auto-calibration module

A pin-hole camera model is assumed, which requires the on-line detection (or a priori knowl-
edge) of 6 geometric parameters - the position (Xc,Yc,Zc) and the orientation of the camera
(α,β,γ), and 4 intrinsic parameters - the focal length of the projective transformation (F), the
pixel size (sP) and the localization of the image origin point (X0,Y0)). The intrinsic param-
eters (except focal length, which may be changed) are usually calibrated before the analysis
system starts its operation, whereas the 6 geometric parameters should be modified on-line, in
accordance with instantaneous, real position and orientation of the camera. Our auto-calibration
procedure for traffic scene analysis assumes for simplicity, that the height (i.e.Yc = H ) over
the road plane is known and that the theZc value remains constant (let fix it toZc = 0). In this
way the camera direction angles (α,β,γ) and the "side" positionXc relative to the general road
system (for example fixed with the central road axis) have to be on-line re-computed.

We have implemented a semi-automaticcamera calibrationprocedure, a simplification of
[5]. The user should first measure manually in the environment and secondly he should set the
following parameters, required by the semi-automatic calibration procedure (Fig. 5): to select
image lines, defining the Vanishing Point (VP), to point the line segment, according to which
the calibration of the camera’s focal length shall be performed, to measure the height over the
road of camera’s origin center. After the transformation parameters from the camera to road
coordinates are known the complete camera transformation matrix can be computed.



Figure 5. Camera calibration: (left) the dialogue window, used for camera calibration; (right) example of camera
calibration (blue lines were automatically detected - red line is marked by the user to specify the scale factor).

4 Traffic flow and queue length detection

In a selective way, for each lane, the following ’measurement’ is performed:

• traffic flow, i.e. the number of vehicles in a lane per minute, which are passing the zone
(Fig. 6);

• queue length(occupancy ratio) detection - if vehicles are queuing (Fig. 7).

Figure 6. The horizontal lines represent two scan lines in the image, where the number of passing cars is counted.
The vertical lines represent lanes, along which the queue lengths are detected.

The user is positioning a horizontal line segment in the image, where the vehicle counting
should take place (Fig. 6). The intensity distribution along this line is examined from image
to image. A normal distribution corresponds to the road area - a situation with no vehicle. An
intensity increase to more brightness or an intensity drop toward more darkness is recognized as
the appearance of a vehicle. The count of vehicles is increased by one. As long as the intensity
distribution does not change to the usual "empty road"-one, we still assume the single vehicle
continues.

Queue length detection (or in other words - line occupancy detection) means, that for
each predefined lane of the road the current queue length and the occupied parts in predefined
area are detected. On the basis of an already calibrated camera and a user-given (vertically or



Figure 7. Example of queue length detection: the car
detected in the lane on the left side causes two black
and two light regions along the line of search.

Figure 8. The queue lengths are detected and expressed
numerically in terms of average car lengths, for each
road lane under control.

mostly diagonally elongated) set of image lines (usually - one line per one road lane) the queue
length (or dually the vehicle occupancy ratio) is detected (Fig. 7). Each image line is virtually
projected back onto the road plane and its intensity distribution is examined. The road’s normal
intensity (exactly a small interval of intensity values) is first detected (assuming no vehicle along
the line) for each distribution cell. In the working phase each cell with intensities below the
minimum road intensity or above the maximum road intensity is assumed to contain a vehicle.
The real length corresponding to such "occupied" cells is summarized, giving the queue length
for the corresponding road lane (Fig. 8). The occupancy ratio can be computed from the queue
length data, due to a simple division of the queue length by the total length of examined road.

The tests of the traffic flow and queue length detection modules have been provided in
an off-line mode, while running simulations for various image sequences acquired in the road
environment of Warsaw city [4] (Fig. 9). The processing speed of system modules was tested
on a processor with 345.5 MFLOPS (Tab. 1).

Module Analysis time MFlops required
(for 1000 frames) (for 25 frames/sec)

Queue length 1.77 sec 15.3 MFlops
Car counting 0.37 sec 3.2 MFlops
Licence plate 14.6 sec 126 MFlops

Table 1. Average processing times for three vision modules.

5 Licence plate recognition

The licence plate detection performs three main tasks: (1) the detection of a rectangular image
area, where the licence plate is expected to be located, (2) the detection of each individual
character in the licence plate area ([4], [6]); (3) applying a conventional OCR (optical character
recognition) package or our character recognition procedure, which can learn character patterns
from current user-defined image data ([7], [8]).



Figure 9. Some results of car counting (change from a blue horizontal line to a green one) and queue length
estimation (red line is changing to a yellow one).

The first task can be performed by searching for intensity gradients along scan lines. Sev-
eral adjacent lines showing similar high-gradient behavior allows to generate a hypothesis of
a licence plate. In our simplified approach we operate directly on scan lines (Fig. 10). The
detection procedure counts the number of 0-1 "connected" peak pairs, which appear directly
one after the other along the line. If this number is over some threshold a segment hypothesis is
stored (Fig. 11). Some number of next or previous image lines should also show similar behav-
ior, then the segment hypotheses are verified and a licence plate is assumed in these segment’s
positions.

For every licence plate hypothesis we try to decompose its entire region into individual
characters as follows :

1. Local mean removal. The local mean grey-level intensity is removed.



Figure 10. The idea of licence plate detection: the analysis of intensity distributions along image lines.

Figure 11. The distribution of first derivatives of the image intensity function along 2 image lines.

2. Binary image computation. The intensity image is converted into a binary image by
comparing pixel intensities with a threshold.

3. Connected component detection. The significant pixels are grouped into 4-way connected
components - the width, height, area and centric position of each connected component
are recorded (Fig. 12).

4. Size filtering. All candidate-connected components greater, or smaller than a pre-defined
size, corresponding to the approximate character dimension, are rejected.

5. Detection of character areas. Two histograms are computed for the remaining compo-
nents - the first one along the X axis, and the second one - along the Y axis. In the
X-histogram a uniformly distributed pattern of low-valued breaks between characters is
detected, whereas in the Y-histogram the top and bottom borders of the character set are
detected (Fig. 13).

6. Finally, the detected character areas allow to generate from the binary image a sequence
of rectangular windows, corresponding to single characters (Fig. 14).

The "Plate detection" window
On the right-hand side of the window the analyzed image appears (Fig. 15). Additionally,

there are visible parameters and buttons "Detect" and "Calibrate". On the analyzed image a red
or blue rectangle is overlaid, which allows the calibration of the automatic detection procedure.
The parameters can be set "by hand" or automatically (in the latter case the user should select
some image region, which contains only the character region of the license plate, and push the
button "Calibrate").



Figure 12. Detection of connected components in the
binary image - one label identifies one chain.

Figure 13. Detecting the areas of individual charac-
ters by exploring two histograms - along X and Y
axes.

Figure 14. The detected image windows containing single characters.

The "OCR" window
Our OCR module recognizes car plates, set in accordance with polish standard. The pro-

gram requires some tuning and adjustment of parameters performed by an operator, especially
in the character template learning stage. The result of analysis is the set of characters, that were
recognized on the car’s plate, for example: "WA 04328". Figure 16 presents the window after
selection of the menu item "Ocr". It contains: a magnification of the detected license plate
region, a magnification of the selected character and several buttons and menu items. A blue
rectangle shows the boundary of a selected character. The user can point to some character,
which will be shown on the bottom, and the recognized character will be shown in an editor
window. Then the user can change the recognized character and by pushing the button "Add"
he can store it as a "new character".

There exists many methods of character recognition. Two simple methods are (Fig. 17:
(1) counting several distances from the bottom and top lines to the character, (2)counting the
number of intersections between the character and several horizontal and vertical lines. In our
system we implemented a template-matching approach, where the candidate character is size-
normalized to a reference size before a template matching against a set of stored templates is
performed (Fig. 18).

Figure 15. Dialogue window for licence plate detection.Figure 16. Dialogue window for character recognition.



(a)

(b)

Figure 17. Character recognition by (a) distance mea-
surement or by (b) counting the intersections with hori-
zontal and vertical lines.

Figure 18. The window normalization procedure: (A)
some detected character window, (B) the reference size
required, (C) transforming the original window into an in-
termediate one with size determined by the product of the
original size and the reference size, (D) shrinking the in-
termediate window to the reference size with numbers of
"ones" counted in sub-windows of the intermediate win-
dow.

6 Summary

The implementation of a vision-based traffic scene sensor, working within OMNI was reported.
The following vision modules were implemented and tested: (1) camera auto-calibration, (2)
traffic flow and (3) queue length detection, (4) car plate recognition. The communication mod-
ule - the OMNI-MOUN interface module was also implemented.

Future image measurement tasks should include vehicle classification and vehicle track-
ing. The first task is to detect and to classify a particular vehicle object into small car, lorry, bus,
van, etc. [9]. Different approaches are possible: an iconic classification approach, assuming the
front view availability [9], line-density and -orientation detection [10] or a model-based 3-D ap-
proach, assuming both height and length of a vehicle are detectable in the image [11]. The most
complex image analysis includes the interpretation of object tracking data: the individual and
average speed detection of vehicles in each lane over a given period of time [5]; the detection
of events, like crossing a continuous road line, stopping in a non-allowed area.

Hence, we expect that the fully developed sensor, for each predefined lane, inside of some
zone of some arc, will deliver following measurement data: TRAFFIC_FLOW - the number of
vehicles per minute, which are passing the zone; QUEUE_LENGTH - if vehicles are queuing
and not moving; VEHICLE_IDENT - for a car passing a predefined zone with a sufficiently
large front (or back) part, visible in the image, its licence plate will be detected, stored and
recognized; VEHICLE_CLASS - the vehicle will be classified into: person car, truck, bus and
lorry; VEHICLE_TRACK - the individual speed of a vehicle passing a predefined zone will be
estimated.



Acknowledgment

This work was supported by project "Open Model for Network-Wide-Heterogeneous Intersection-
Based Transport Management (OMNI)", EC-IST 1999-11250. (http://www.omniproject.net).

References

[1] WWW page of the OMNI project:Open Model for Network-Wide-Heterogeneous Intersection-Based Trans-
port Management, IST 1999-11250. WWW page: http://www.omniproject.net

[2] R. Blissett.Eyes on the road. Roke Manor Research, IP Magazine, May/June 1992, U.K.. WWW page:
www.roke.co.uk

[3] K. Takahashi et al.. Traffic flow measuring system by image processing. MVA’96,IAPR Workshop on Ma-
chine Vision Applications, Tokyo, Japan, 1996, 245-248.

[4] M. Jankowski.Implementation of a road traffic sensor. Warsaw University of Technology, M.Sc. thesis, ICEE
WUT, Warsaw, Feb. 2003.

[5] W. Kasprzak, H. Niemann. Adaptive Road Recognition and Egostate Tracking in the Presence of Obsta-
cles.International Journal of Computer Vision, Kluwer Academic Publ., Boston - Dordrecht - London, vol
28(1998), No. 1, pp. 6-27.

[6] J. Balas-Cruz, J. Barroso, A. Rafael, E.L. Dagless. Real-time number plate reading.4th IFAC Workshop on
Algorithms and Architectures for Real-time Control, Vilamoura, Portugal, April 1997.

[7] J. Barroso, A. Rafael, E.L. Dagless, J. Balas-Cruz. Number plate reading using computer vision.IEEE Inter-
national Symposium on Industrial Electronics, Guimaraes, Portugal, July 1997.

[8] Y.G. Won, Y-K. Park. Property of greyscale hit-or-miss transform and its applications,Machine Graphics &
Vision, vol. 9(2000), 539-547, ICS PAS Warsaw, Poland.

[9] W. Kasprzak. An Iconic classification scheme for video-based traffic sensor tasks", in: W.Skarbek (ed.):
Computer Analysis of Images and Patterns 2001, Springer-Vg. LNCS 2124, Berlin, 2001, pp. 725-732.

[10] T.N. Tan, G.D. Sullivan, K.D. Baker. Fast Vehicle Localisation and Recognition Without Line Extraction
and Matching. BMVC94.Proceedings of the 5th British Machine Vision Conference, Sheffield, U.K., BMVA
Press, 1994, 85-94.

[11] W. Kasprzak.Adaptive Erkennung von bewegten Fahrbahnobjekten in monokularen Bildfolgen mit Eigenbe-
wegung. Infix Publ., Sankt Augustin, Germany, 1997.


