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On-line adaptive learning algorithms for cancel- 
lation of additive, convolutive noise from linear 
mixtures of sources with a simultaneous blind source 
separation are developed. Associated neural network 
architectures are proposed. A simple convolutive 
noise model is assumed, i.e. the unknown additive 
noise in each channel is a (FIR)filtering version 
of environmental noise, where some convolutive ref- 
erence noise is measurable. Two approaches are 
considered: in the first, the noise is cancelled from 
the linear mixture of source signals as pre-pro- 
cessing, after that the source signals are separated; 
in the second, both source separation and additive 
noise cancellation are performed simultaneously. 
Both steps consist of adaptive learning processes. 
By computer simulation experiments, it was found 
that the first approach is applicable for a large 
amount of noise, whereas in the second approach, 
a considerable increase of the convergence speed 
of the separation process can be achieved. Perform- 
ance and validity of the proposed approaches are 
demonstrated by extensive computer simulations. 

Keywords: Adaptive noise cancellation; Blind separ- 
ation; FIR filters; ICA; Learning algorithms; Neu- 
ral networks 

1. Introduction 

Blind Source Separation (BSS) has recently become 
an active research area both in statistical signal 
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processing and unsupervised neural learning [1-8]. 
The goal of BSS is to extract statistically inde- 
pendent but otherwise unknown source signals from 
their linear mixtures without knowing the mixing 
coefficients. BSS techniques have many potential 
applications in, for example, data communications, 
speech processing and medical signal processing. 

Most approaches to BSS assume that sensor sig- 
nals are noiseless or noise is considered as one of 
the primary sources [4-7]. In the past we have 
developed efficient and robust learning algorithms 
for blind separation of 1-D and 2-D signals (images) 
[1,8]. We have demonstrated by computer simula- 
tions the high performance and efficiency of the 
proposed algorithms. These algorithms can extract 
all source signals even if some of them are 
extremely weak or the mixing matrix is very ill 
conditioned, assuming that additive noise ni(t) at 
each sensor is equal to zero or is negligibly small. 
In fact, we have assumed that the noise signal is 
one of the unknown primary source signals which 
could be separated from other sources. Of course, 
more than one source could be noise, but one of 
them can be Gaussian noise if it is necessary to 
extract all source signals including noises. 

A more realistic and practical model of BSS 
considers that different unknown noise signals, poss- 
ibly representing coloured noise, are added to each 
sensor signal [9-11]. Such a situation appears in 
most real-life (real-world) problems. Now the fol- 
lowing problem arises: how can signals be efficiently 
separated if additive noise can no longer be neg- 
lected? Alternatively, the problem can be stated as: 
how to cancel or suppress the additive noise. Thus, 
our problem is how to modify existing algorithms 
to be still valid and efficient with additive noise. 
The main objective of this paper is to investigate this 
problem, and to propose some constructive solutions. 
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In this paper we propose an adaptive approach to 
simultaneous source separation and cancellation of 
additive, convolutive noise from many-source sig- 
nals. In the basic demixing model, we simul- 
taneously separate signals and subtract additive noise 
by employing an adaptive FIR filter in each channel. 
In an alternative model, we first attempt to reduce 
or cancel noise, and then perform the blind separ- 
ation of sources. Each step is performed by adaptive 
learning algorithms, based on the mutual stochastic 
independent principle and generalized energy minim- 
ization of the output signals. 

2. Basic Model of Noise and Mixture 

2.1. The Mixing Model 

In this paper we consider the extended BSS mixing 
model that includes additive noise [9-11] (Fig. l(a)) 

x (t) = As(t)  + n(t) (1) 

where s(t) = [sl(t) . . . . .  Sm(t)] T is a vector of unknown, 
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Fig. 1. The model of source mixing with additive noise. (a) 
General model, (b) a mixing model with convolutive noise, 
(unknown environment noise and its secondary (convolutive) 
reference noise), (c) more detailed model of  the additive convotu- 
tive noise. 

independent primary sources, A is a m x n unknown 
mixing matrix, x(t) = [Xl(t) . . . . .  x,,(t)] T is the observed 
(measured) vector of sensor signals, and nit)  = 
[nl(t),n2(t) . . . .  nn(t)] ~ is an additive noise vector. We 
assume that the noise signals ni(t) are decorrelated 
to source signals s~(t), Vi. 

In general, the problem is quite difficult because 
we have n + m unknown signals (where m is the 
number of  sources and n is the number of  sensors). 
Hence, the problem is highly under-determined, and 
without any a priori information about the mixture 
model and/or noise it is very difficult or even 
impossible to solve it [9,10]. 

2.2. The Noise Model 

However, in many practical situations we can meas- 
ure or model the environmental noise. Such noise 
we will denote further as reference noise vR(t). For 
example, in an acoustic cocktail party problem we 
could measure such noise during a short salience 
period (when no persons speak), or we could meas- 
ure and record such noise by an extra isolated 
microphone. In a similar wa~, we could measure 
noise in biomedical applications like EEG or ECG 
by extra electrodes, appropriately positioned. 

This reference or environmental noise vR(t) influ- 
ences each sensor, but it could be added to a mixture 
of signals with different strength. Moreover, noise 
could reach each sensor with some delay due to the 
finite time propagation of signals. For this reason 
in this work we model the additive and convolutive 
noise by the Finite Impulse Response or Moving 
Average (FIR or MA) model [9,12] (Fig. lib)), i.e. 

N P N 

hi(t) = ~'~bij(z)vR/t) = ~fi'~b~jkvRj(t -- kT) (2) 
j=0 j= 1 k=0 

where z -1 = e -sT is unit delay and vRi are refer- 
ence noises. 

Such a model is generally accepted as a realistic 
(real-world) model in both areas of signal and image 
processing [9,12]. In this model, we assume that the 
known reference noises vR = [vRl,vm . . . . .  vRe] T are 
added to each sensor (mixture of sources) with 
different unit delays T and various but unknown 
coefficients b~k(t). In other words, we assume that 
additive noise is a convolution and superposition of 
some reference noises vRj (see Fig. l(c)) 

x(t) = As(t)  + B(z)vR(t) (3) 

where B(z) = [bij(z)],,• with 

bi/z) = boo + bi;lZ -1 + . . .+  bijNZ -N (4 )  

and vR = [VRI,UR2 . . . . .  VRp] T. 
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For simplicity, we assume that only one single 
reference noise vR (bij(z)=bj(z)) is available (see 
Fig. 1). However, we could easily extend our 
approach for the case of an arbitrary number of 
reference noises. 

2.3. Measured Reference Noise 

As already mentioned, to propose a realistic solution 
for source separation in a noisy environment, we 
should be able to measure a reference noise vR 
directly, or some of its convolutive form nR. Here 
we assume that a convolutive reference noise nR(t) 
can be measured independently from the sensors 
measuring the noisy source mixtures (see Fig. l(b)). 
Noise nR(t) is also modelled as the convolution of 
the unknown environment noise vR(t), i.e. 

NR 

nR(t) = ~bRjVl~(t - jT) = bR(Z)VR(t) (5) 
j=O 

Thus, a general mixing model (Fig. l(b)) contains 
the following unknown elements: the matrix A, 
matrix B(z) and the vector bR(z). It is assumed that 
the number of sources and the number of  time delay 
units N (i.e. maximum order of FIR filters) are 
completely unknown (however, the number of sen- 
sors must be larger or equal to the number of 
sources). 

3. De-mixing and De-noising Neural 
Network Models 

In this section we describe the basic model for 
simultaneous source separation and noise cancel- 
lation, as well as a simplified model. Also, their 
multi-layer versions are proposed. 

3.1. Basic Model 

In the basic approach two learning steps are simul- 
taneously performed: the signals are separated from 
their linear mixture and the additive noise is esti- 
mated and subtracted (Fig. 2(a,b)). Thus, the output 
signals are derived as 

y(t) = Wx(t) - H(Z)nR (6) 
= WAs(t) + WB(z)vR -H(z)be(z)vR 

where H(z) = [hi(z) . . . . .  hn(z)] T with 

hi(z) = hio + hi17. -1 + hi2z -2 +.. .+ hiMZ -M (7) 

In such a simplified case, the de-mixing model can 
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Fig. 2. The basic de-mixing model. (a) Applying two learning 
algorithms LA1, LA2 simultaneously, (b) detailed structure of the 
de-mixing and de-noising models. 

be described by a set of equations (see Fig. 2(b) 
and Fig. 3) 

M 
yi(t) = yi(t) - n,(t) = y,(t) - ~h,jnR(t - j r )  (8) 

j=0 
where ~i(t) = " ~  wi~(t)xj(t), (i = 1,2 . . . . .  m). 

For simplicity, let us assume that signals from 
y(t) are properly scaled and ordered in accordance 
with s(t). Then y(t) ~- s(t) if 

H(z)bR(z) : WB(z) (9) 

i.e. ~ hi(z)be(z)= wijbj(z),Vi 
/c=l j=l 

and WA = I (10) 

The number of time delay units M in the de- 
noising model should be at least equal to the sum 

ng(t-2T ) rig(t-T) 

Xl(t)~ [ - ~ ~ ' O ~  R(t) 

x2(t~___3".. ~ ~', yi( 0 

x(t )~.  / Win 

Fig. 3. Simple model of single neuron for simultaneous blind 
extraction and noise cancellation. 
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of corresponding numbers N, NR in the mixing 
model (i.e. M --> (N + AIR)), but in practice, especially 
if AIR > 1, it should be much larger. 

3.2. Alternative Simplified Model 

In a simplified model the two learning steps are 
performed in sequence. Here, as pre-processing we 
first attempt to cancel the noise contained in the 
mixture, and then to separate the sources (Fig. 4). 
This is the simplest way to deal with noise cancel- 
lation. Its drawback is that in real life problems we 
never expect to be able perfectly to cancel noise. 

Thus, the output signals are derived from 

y(t)  = W[x(t)  - H(z)nR] (11) 
= WAs(t )  + W[B(z)  - H(z)bR(z)] vR 

so it is obvious that y(t)  ~- s(t) if (again, problems 
of signal scaling and permutation are ignored) 

W A  = I and H(z)bR(z) = B(z)  (12) 

3.3. Improved Multi-layer Models 

To improve the learning performance multi-layer 
neural neworks could be used for both basic and 
simplified models (Fig. 5). These models perform 
separation and noise elimination by using multi- 
layer networks with pre- or post-processing noise 
cancellation steps. 

At first, employing many layers is justified if we 
want to apply a local learning rule (discussed in the 
next section) for the separation of mixtures in which 
some signals are very weak or a mixing matrix A 
is ill-conditioned. Secondly, a multi-layer model 
might be a proper solution if the initialisation and 
decay factor of learning rates ~(t) and ~ have not 
been chosen optimally. To optimally choose them, 
the noise level contained in the mixtures should be 
known in advance, otherwise specific methods for 
the learning rate adaptation itself may be con- 
sidered [3]. 

Unknown 

x( 

Fig. 4. Alternative (simplified) model for blind separation with 
noise cancellation as pre-processing. 

4. Neural Network Learning 
Algorithms 

In this section we describe the adaptive learning 
rules that perform simultaneous noise cancellation 
and blind source separation, according to a specified 
demixing model. 

4.1. Separation Learning Rules 

The dependency among output signals is measured 
by the Kullback-Leibler divergence between the 
joint and the product of the marginal distribution of 
the outputs [1,2] 

f D(W) = p(y)log 7rTz_lpi(Yz) dy (13) 

where Pi(Yi) is the marginal probability density func- 
tion (pdf). 

This Kullback-Leibler divergence D(W) is related 
to the MI of y (mutual information of the outputs) 
given by [1] 

n 

D(W)  = - H ( y )  + ~ ,  H(yi) (14) 
i = 1  

n 

=-logldct(.3] +  ]log[pi(yz)] 
i = i  

where H(y) = - i l l  p(y)log[p(y)]dy and H(yi) = 
- f pi(yz)log[pi(yi)]dy~ is the marginal entropy. By 
applying the standard stochastic gradient descent 
algorithm 

OD 
W(t  + 1) = W(t) - ~(t) OW (15) 

we obtain the following learning algorithm [6] 

W(t  + 1) = W(t) + 71(t) [I - f ly( t ) ]  yT(t)]W-X(t) 
(16) 

where ~(t) is the learning rate and f(y(t)] is a vector 
of nonlinear activation functions. Typically, f (Yi)  = 
]yilPsign(yi) (p > 1, typically p = 2,3) for sub- 
Gaussian source signals, and (0 ~< p < i) for sub- 
Gaussian signals. 

To avoid matrix inversion and to improve per- 
formance, we can apply a natural gradient approach 
introduced by Amari [1] 

OD 
W(t  + 1) = W(t) - ~q(t) o w W T W  (17) 

which leads [2] to the robust form of basic learn- 
ing algorithm 
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W ( t  + 1) = W(t)  + rift) [I - f ly( t ) ]  yT(t )]W(t)  
(18) 

Using a modified form of stochastic gradient 
descent technique 

OD w r  (19) W ( t  + 1) = W(t)  - rift) OW 

we obtain a simple local learning rule 

W ( t  + 1) = W(t)  + ~(t) {I  -ffly(t)]yW(t)} (20) 

o r  

wij(t + 1) = wij(t) + ~q(t) { ~ o - f i [ y M ) ] y f ( t ) }  
(21) 

4.2. Noise Cancellation: Generalised Adaptive 
Delta Rule 

To develop an adaptive learning algorithm for updat- 
ing on-line coefficients h,j(t), we can apply the con- 
cept of the minimisation of the generalised output 
energy of output signals ~(t) = [2i(t),~2(t) . . . . .  2,,(t)] T. 
In other words, we can formulate the following cost 
function (generalised energy): 

J(h)  = L P~(Yi) (22) 
i-1 

where p~(2~) is a suitably chosen loss function, typi- 
cally [13] 

Di(.~i) = ~ log cosh (~Xi) or Di(xi) = Ix,)l 
(23) 

and 

Yi(t) = xi(t) - L hijnR(t - jT) ,  
j=l  

Vi (24) 

Minimisation of this cost function according to 
stochastic gradient descent leads to a learning algor- 
ithm (see Fig. 3) 

. OJ(h) 
h~j(t + 1) = h~j(t) - ~(t)  ~ (25) 

= hij(t) + ~(t)fR[Y~(t)]nR(t - jT )  

where fR(2i(t)) is a suitably chosen nonlinear acti- 
vation (error) function defined as 

Opi(Xi) 
fR(2M))  - (26) 

02i 

Typically, fR(~) = tanh(/32~) or fR(2;) = ~ .  The 
optimal choice of activation function depends on 

the distribution of noise and source signals. For 
Gaussian noise it is optimal to set fR(Yci) = 2~, for 
super-Gaussian signals one can use fe(2i) = tanh(/32~), 
and for sub-Gaussian, fR(2i) = lYcilPsign(Ycl),p = 2,3,4. 

4.3. Learning Rules for Multi-layer Model 

The above-developed on-line adaptive learning rules 
can easily be generalised or extended for the more 
sophisticated models shown in Fig. 4(a,b). It should 
be noted that the synaptic weights hzj can be updated 
according to the general rule (Fig. 5) 

h~)(t + 1) = h~)(t) + ~(t)fR[u}')(t)lnR(t -- jT )  
(27) 

where u}Z)(t)= y}~ for the model of Fig. 4(a), and 
u}Z~(t) = Y~z)(t) for the model shown in Fig. 4(b) 
(l-- 1,2 . . . . .  K). 

The synaptic weights of the separation net are 
updated during the leanring process as 

Wq)(t  + 1) = W(~ + (28) 
~(t) {I-ffky(~ [y(t)(t)][y(Z)(t)]T} 

or in scalar form as 

w~)(t + 1) = w~J)(t) + rift) [&j - fi(y}~ 
(29) 

5. Simulation Results 

We have tested the proposed approach for various 
demixing models and for both image and sound 
sources. Convolutive noises were modelled using 
10th order FIR filters. As we applied large additive 
noise, at first the performance of the proposed learn- 
ing algorithms has been verified by perception of 
output signals, either by observing the output images 
or sound signal waveforms or by listening to them. 
To estimate the separation and noise cancellation 
quality more quantitatively, we assume that we know 
the original sources. Then the quality of results 
obtained is provided in two ways: 

1. Individually for each source i, by estimating the 
best S N R ( Y k ,  Si) (signal to noise ratio) or P S N R  
(peak signal to noise ratio) between some recon- 
structed source Yk and the corresponding original 
source Si 

S N R = -10loglo (M S E) (30) 

P S N R =  101ogre M ~  (31) 

where M S E is the mean square error of separ- 
ated source & 
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Fig. 5. Alternative improved multi-layer neural network models for blind separation with noise cancellation. 

1 T 

M S E = T ~ ( y i ~  - S j k )  2 (32) 
k = l  

A = Sma• -- Stain is the ampli tude interval of  source 
signal, and T is the number  of  samples. 

2. For the whole separated signal set, by calculation 
of  a normalised error index El, which is 
defined as 

E1 = ijl 2 -  1 (33) 
j=i i=l 

The pi ts  are entries of  a normalised matrix P(t) 
= W(t)A ~ R "• Every  non-zero row of  matrix 
P is normalised by its highest value, i.e. maxi~ikl 
= 1, Vi. 

In the overdetermined case, i.e. if  m > n, the 
index EI is evaluated for an n-elementary subset 
of  output signals, containing all reconstructed 
sources. 

5 .1 .  D i r e c t  M e a s u r e m e n t  o f  R e f e r e n c e  N o i s e  

In the first experiment,  four (unknown) natural 
images (or unknown sound sources) were mixed 
by an il l-conditioned mixing matrix m = 4 ,  n = 4  
(Figs 6,8) 
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0.7 0.9 0.6 0.45J 
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Fig. 6. Four original images (assumed to be completely 
unknown). (a) The images, (b) their histograms, (c) exemplary 
I-D source signals after image scanning. 
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Fig. 7. Three exemplary environment noises used m our computer 
experiments for generation of additive convolutive nosises. (a) 
The noise images, (b) their histograms, (c) 1-D noise signals 
after image scanning. 
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Fig. 9. An environment noise signal used in our sound separation 
tests for generation of additive convolutive noises. 

Table 1. Statistical characteristics of normalised images 
and different reference noises used in experiments: m~ - 
mean value, /xz - variance, /z 3 skewness, K4 - noirnal- 
ised kurtosis 

Image m i /d~2 ~U~3 / ( 4  

Face 1 0.00 0.1086 -0.0283 -0.315 
Face 2 0.00 0.2270 -0.0156 -1.473 
Face 3 0.00 0.0619 0.0134 -0.449 
Stripes 0.00 1.000 0.00000 -2.000 

Noise signals: vR 

Noise 1 0.00 0,1688 -0.0004 -0.600 
Noise 2 0.00 0.5040 0.0000 -1.502 
Noise 3 0.00 0.3503 0.0213 -1.291 
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Fig. 8. Four sound sources used in our computer tests (gong, music, laughter, bird chirp). 

In the first exper iment  we  assume the envi ronment  
noise is d i rect ly  avai lable  as the reference noise,  i.e. 
nR = uR and bR = 1. (Figs  7,9). 

Convolu t ive  noises were  mode l l ed  using four 10th 
order  F IR  filters (N=10) ,  where  all o f  them are 
in t roducing large addi t ive  noise.  Their  coefficients 
in vector  form are r andomly  chosen as 

b1=[1.2,1.4,1.1,1.0,0.9,0.8,0.7,0.55,0.40,0.3] 
b2=[1.3,1.2,1.5,1.1,0.95,0.84,0.77,0.65,0.54,0.4] 
b3=[1.1,1.2,1.3,1.15,0.99,0.74,0.87,0.85,0.94,1.0] 
b4=[1.2,1.0,0.8,0.55,0.28,0.14,0.37,0.48,0.64,0.9] 

In the de -mix ing  model ,  the number  M of  delay 
units was chosen to be  equal  to 25. Both the basic 
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Table 2. Source image and noise image correlations (in 
%), i.e. E{sis~} x 100 

Image 
SOUrCeS 

Image sources Noise images vR(t) 

Face Face Stripes Noise 1 Noise 2 Noise 3 
2 3 

Face 1 22.60 0.275 0.709 0.316 0.165 0.195 
Face 2 - 14.05 0.226 0.304 0.040 0.914 
Face 3 - - 0.875 0.323 0 .111  0.158 
Stripes 3 - - - 0.149 0.0002 0.025 

Table 3. Statistical characteristics of sound sources and 
environmental noise used in experiments: rn t - mean value, 
/x2 - variance, /.L 3 skewness, K4 - normalised kurtosis 

Sound m~ ],Z 2 /d, 3 K 4 

Gong (S1) 0.00 0.0211 0.0000 5.514 
Music ($2) 0.00 0.0590 0.0012 1.198 
Laughter ($3) 0.00 0.0277 -0.0004 1.952 
Chirp 0.00 0.0397 0.0002 4.314 
Noise 0.00 0.4915 0.0071 -1.661 

Table 4. Sound correlations (in %), i.e. E{sjsj} x 100 

Sound Sound sources Noise 
sources 

Music Laughter Chirp 

Gong Music 0.499 1.330 0.247 0.343 
Laughter - 0.234 0.037 0.362 
Chirp - - 0.193 0.007 

- - - 0.016 

and simplified demixing models of Figs 2 and 3 gave 
very good noise cancellation and source separation 
results. Already after one epoch of signal data, the 
weights in h achieved an equilibrium point, e.g. 
final estimation of the deconvolution matrix H(z) 
for model in Fig. 2 was 

h i = [ 1.2022,1.4011,1.0967,0.9982,0.8962, 
0.7949,0.6999,0.5470,0.3998,0.2989, 

-0.0118,-0.0052,-0.0037,-0.0028, 
0.0017,-0.0014,-0.0009,0.0000, 

-0.0125,-0.0070,-0.0084,-0.0067,-0.0019, 
-0.0016,-0.0022] 

h2-- [1.3016,1.2035,1.4990,1.1013,0.9489, 
0.8345,0.7707,0.6486,0.5409,0.4009, 

-0.0112,-0.0036,-0.0020,-0.0033,0-0021, 
-0.0006,-0.0010,0.0016, 

-0.0122,-0.0051 ,-0.0068,-0.0069,-0.0016, 
-0.0019,-0.0034] 

h3 = [1.1017,1.2028,1.2985,1.1510, 
0.9889,0.7351,0.8707,0.8487,0.9413, 

1.0011 ,-0.0104,-0.0035,-0.0022,-0.0028,0.0024, 
-0.0000,-0.0005,0.0014, 

-0.0112,-0.0048,-0.0059,-0.0061, 
-0.0013,-0.0018,-0.0032] 

h 4 = [1.2018,1.0025,0.7986, 
0.5514,0.2799,0.1356,0.3705,0.4789,0.6419, 
0.9018,-0.0096,-0.0032,-0.0020,-0.0024, 
0.0027,0.0003,-0.004,0.0013, 

-0.0103,-0.0043,-0.0049,-0.0058, 
-0.0014,-0.0021,-0.0035] 

From the above data, it is evident that the estimation 
error for each matrix element is below 1%. The 
exemplary results for this simple reference noise 
case are illustrated in Figs 10 and 11. 

The quality factors S N R, P S N R  and the error 
index E1 of separated sources are given in Tables 5 
and 7. 

5.2. Convolut ive  Reference  Noise  

In the next experiments we assume a general refer- 
ence noise measurement model in which bR is some 
non-zero vector, and nR(t) bR(Z)VR(t). We apply 
a 10-order FIR filter be = [1.5,1.3,1.2,0.92,0.75, 
0.70,0.75,0.86,0.94,1.0]. 

It is assumed that these coefficients are completely 
unknown. In the de-mixing model the number M of 
delay units was selected as 100. If compared to 
the previous case of a simplified reference noise 
measurement, the learning process is slower and the 
noise cannot be fully cancelled. Although in the 
pre-processing model of noise cancellation we were 
able to suppress the additive noise in the mixture 
of source signals, in the subsequent source separ- 
ation stage this noise is again amplified to some 
visible form in one of the outputs. Other m -  1 
outputs correspond to ( m - 1 )  estimated sources. 
However, the quality of such separated ( m - 1 )  
sources strongly depends upon the condition number 
of the mixing matrix. In the case of the matrix A1 
only three sources have been extracted with rather 
poor quality. For another mixing matrix A2, due to 
its lower condition number a successful separation 
of three sources (from a total of four) with high 
quality was possible. Illustrative results are given in 
Figs 12(a,b) and 13(a,b), where A2 is 

A2 I 
i.O 0.7 0.6 0.3] 

0.5 0.9 0.7 0.4 

0.2 0.4 0.4 0.8 

0.5 0.8 0.6 0.9 



Blind Source Separation with Convolutive Noise Cancellation 135 

Its condition number is cond(A2) = 38.78. 
To successfully extract all sources under additive 

noise, at least one auxiliary sensor may be useful. 
We have investigated the influence of the number of 
sensors on the perfomance of the proposed learning 
algorithms. For example, the de-mixing process pro- 
vided good results, even if the environment noise 
was not directly available, when applied to mixtures 
obtained from following mixing matrices A 3 A  4 (and 
with additive noise introduced at each sensor) 

-1.0 0.7 0.6 0.3 

0.5 0.9 0.7 0.4 

A3 = 0.2 0.4 0.4 0.8 , c o n t ( A 3 ) =  13.475 

0.5 0.8 0.6 0.9 

0.5 0.6 0.8 0.8 

A 4 = 

-1.0 0.7 0.3 

0.5 0.9 0.4 

0.2 0.4 0.8 

0.5 0.8 0.9 

0.5 0.6 0:8 

, cond(A4) = 7.575 

For illustration of the results obtained, see Figs 12(c- 
d) and 13(c-d). Performance results for convolutive 
reference noise and various mixing matrices by A1- 
A 4 a re  summarized in Tables 6 and 8. 

5.3. Discussion of Results 

It should be emphasised that performance depends 
on learning rates ~?(t), $?(t) - on a proper setting of 
their initial values and decay factors - and on the 
chosen nonlinear activation functions f, fR. The sam- 
ple results show that for a given set of parameter 
values, both models of Figs 2 and 3 performed well, 
and gave similar results. 

The basic demixing model ensures a faster learn- 
ing, i.e. the learning rate for the separation matrix 
can be decreased much faster (by a factor of 10 or 
even more) than in the simple demixing model. 

The pre-processing based noise cancellation 
scheme is able to eliminate or almost completely 
cancel the additive noise, i.e. if the original environ- 
ment noise is measurable, the noise is fully can- 
celled, but if only a convolufive image of such noise 
is measurable, the additive noise is nearly eliminated 

(a) 
Four  mixed  images of four sources wi th  large addi t ive ,  convolut ive noise 1 

(d) 

Af ter  noise cancel la t ion the  original source mix tu res  are recovered 

(e) 
After  bl ind separa t ion  and  noise cancel la t ion 

Fig. 10. Example of blind source separation and noise cancellation for image mixtures with additive, convolutive noise, if original 
environmental noise is directly available using model of Fig. 2. 
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Fig .  11. E x a m p l e  o f  b l ind  source  separa t ion  and  noise  cance l l a t ion  o f  a sound  mix tu re  wi th  addi t ive ,  convo lu t ive  noise,  if  o r ig ina l  
env i ronmen ta l  no ise  is d i rec t ly  avai lable .  
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Table 5. Quality factors of image separation with noise cancellation in the direct 
reference noise case 

Noise E1 SNR, PSNR [dB] 

Face 1 Face 2 Face 3 Stripes 

Separation of a noise-free mixture 

none 0.063 8.42, 22.23 28.13, 39.88 10.74, 25.04 42.83, 48.85 

Simple model 

large 1 0.063 8.50, 22.31 26.95, 38.70 10.35, 24.66 32.93, 38.95 

Simultaneous model 

large 1 0.105 8.52, 22.33 17.96, 29.72 6.63, 20.94 33.33, 39.36 
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Table 6, Quality factors of image separation with noise cancellation in the direct 
reference noise case 

Noise E1 SNR, PSNR [dB] 

Face 1 Face 2 Face 3 Stripes 

For difficult mixture mixed by A~ 

B, hR 0.975 6.51, 20.32 6.63, 18.38 -0.79, 10.96 4.13, 10.15 

For mixture mixed by A2 

B, hR 0.321 8.90, 22.71 10.78, 22.53 -0.39, 13.91 13.81, 19.83 

For over-determined mixture mixed by A3 

B, hR 0.155 5.64, 19.45 20.25, 32.01 9.50, 23.81 15.18, 21.20 

For over-determined mixture mixed by A 4 

B, he 0.023 10.57, 24.38 21.39, 33.15 - , -  19.77, 25.79 

in this stage. In the subsequent blind separation 
stage, in the first case the sources are very well 
separated, whereas in the second case the noise is 
amplified and appears in one of the outputs, so one 
source signal is usually lost. If  the mixing matrix 
is very ill-conditioned, the noise can also appear on 
other outputs, corrupting the ( m - 1 )  separated 
sources. The same behaviour has been observed 
in the case of simultaneous separation and noise 
cancellation (see Fig. 2). In practice, for this basic 

approach the appropriate decay of the learning rates 
may be more difficult to establish, i.e. without care- 
ful study of this problem the separation results will 
usually be slightly worse than the results of the 
simplified approach. 

If  only the convolutive image of the environment 
noise is available, an overdetermined sensor case is 
required. Usually, one or two additional sensors are 
sufficient for successful extraction of all sources. 

Summarising the separation ability of our 
approach, we conclude that: 
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Table 7. Quality factors of sound separation with noise cancellation in the direct reference 
noise case 

Noise E1 SNR, PSNR [dB] 

Gong 1 Music 2 Laughter 3 Chirp 4 

Separation of a noise-free mixture 

none 0.00081 38.27, 60.79 28.85, 47.13 36.34, 57.45 48.18, 67.99 

Simple model 

large 1 0.0060 19.90, 42.43 27.11, 45,39 25.31, 46.42 25.22, 45.03 

Simultaneous model 

large 1 0.0095 18.22, 36.20 17.10, 25.65 16.24, 32.42 24.54, 42.96 

(a) 

(b) 

(c) 

(d) 
Fig. 12. Results of image separation with noise cancellation if convolutive reference noise nR only is available. (a) For ill-conditioned 
mixing matrix A~, (b) for mixing matrix Az, (c) for mixing matrix A3 with one auxiliary sensor, (d) for mixing matrix A4 with two 
auxiliary sensors. 
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Fig. 13. Results of sound separation with noise cancellation if convolutive reference noise nR only is available. (a) For ill-conditioned 
mixing matrix A~, (b) for mixing matrix A2, (c) for mixing matrix A3 with one auxiliary sensor, (d) for mixing matrix A4 with two 
auxiliary sensors. 

1. Without additive noise our approach is able to separ- 
ate signals with very ill-conditioned mixing matrices, 
with condition numbers even larger than 106 . 

2. With direct measurable environment noise, the 
mixing matrices can have moderate condition 
numbers of the order 200 or less. 

3. With a convolutive image of environment noise, 
the mixing matrices may have quite low condition 
numbers, less than 50. 

Another promising method is to reconstruct the 
environmental noise from its convolutive observation 
using the known techniques for single channel blind 
equalisation [14]. 

6. C o n c l u s i o n s  

An adaptive approach for the restortion of unknown 
source signals from their signal mixtures distorted 
by additive noise was developed. The approach is 
valid under the assumption that the unknown 
coloured (or Gaussian) noise can be modelled as a 
convolutive noise mixture of known reference 
noises. 

The approach was tested on image sources and 
sound sources, but it is generally applicable to vari- 
ous classes of non-Gaussian signals, and also to 
speech signals and biomedical signals. Computer 
experiments are very promising. 
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Table 8. Quality factors of sound separation with noise cancellation in the case of convolu- 
tire reference 

Noise EI SNR, PSNR [dB] 

Gong 1 Music 2 Laughter 3 Chirp 4 

For difficult mixture mixed by A~ 

B, hR 1.4029 4.77, 28.29 6.08,  24.37 -4.59, 16.52 -0.61, 19.20 

For mixture mixed by A2 

B, hR 0.7118 9.86, 32.38 7.27, 25.56 -3.76, 17.35 10.84, 30.65 

For over-determined mixture mixed by A3 

B, hR 0.1062 10.17, 32.69 14.22, 32.51 10.97, 32.08 11.07, 30.88 

For over-determined mixture mixed by A 4 

B, hR 0.0809 10.22, 32.75 14.49, 32.58 - , -  14.63, 34.44 

The proposed noise model could be extended to 
IIR adaptive filters, gamma filters and other more 
sophisticated nonlinear models of noise, like NAR- 
MAX. However, the open problem is to optimally 
choose the nonlinear model of noise. We hope to 
solve these problems in the future by using nonlinear 
neural filters. An even more challenging task is how 
to proceed if no reference noise or no knowledge 
about noise statistics is available. 
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Nomenclature 

Symbol 
K4 
r~(t), f/(t) 
m 
n 

N,M 
s(t) 

x(t) 

y(t) 

Meaning 
the normalised kurtosis of a signal 
learning rates 
number of sources 
number of sensors 
order of the FIR filters 
m-dimensional vector of (unknown) 
source signals 
n-dimensional vector of mixed signals 
(sensors) 
n-dimensional vector of separated output 
signals (estimated sources) 

vR(t) 

nR(t) 
n(t) 

f(-),g(.) 
fR(') 

A = [aij]mxn 
B = [bij]nxN 
t1(0 = [h iA~  
W(O = [w0]o• 

(unknown) primary environment noise 
signal 
secondary reference noise signal 
n-dimensional vector of additive noise 
signals 
activation functions in separation rule 
activation function in noise cancellation 
rule 
(unknown) mixing matrix 
additive noise generation matrix 
noise cancellation matrix 
global de-mixing matrix 


