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Abstract 

An adaptive object recognition scheme for im- 
age sequences of many object scenes is described. 
The scheme is applied for t r d c  object recognition 
under ego-motion. The recursive estimation of ob- 
ject states is performed by an extended Kalman Fil- 
ter with modified error estimation, which is a neu- 
ral network learning process. This new feature al- 
lows to separate the judgment needed for selection 
of best measurement among competitive image seg- 
ments and the measurement judgment required by 
the recursive estimator. 

1 Introduction 

Road traffic control 161 and driver support (71 is an 
attractive application fi&ld for image skquenie-anal- 
ysis systems. A reliable obstacle detection and clas- 
sification in images of many-object scenes is still 
a challenging problem [8]. The complex nature of 
the subject makes it necessary to apply a dynamic 
model-based image analysis scheme, constraining 
the classes of recognized objects 131. Usually such 
scheme employs a Kalman filter (KF) for recursive 
estimation of hypotheses. But even the tracking 
of many hypotheses is not sufficient for a complete 
scene recognition, as tracking works in an object- 
centered manner. One selects these image features 
only which support the concrete hypothesis. This 
does not include the explanation of other features. 

We describe an adaptive recognition scheme, 
which deals with many object scenes and provides 
mechanisms for selection of best subsets of tracked 
hypotheses. We also identify image measurement 
problems caused by the use of a Kalman Filter. The 
KF requires that individual measurements are sta- 
tistically independent. This is often not the case in 
vision tracking systems, where one usually selects 
these segments which best fits the hypothesis ex- 
pectations. Furthermore, KF does not require judg- 
ments of each single measurement, assuming every 
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measurement in given channel to be equal proba- 
ble. This does not allow to track highly nonsta- 
tionary signals, i.e. to  follow abrupt changes of the 
tracked signal. We propose a necessary modifica- 
tion of the recursive estimator, that follow the idea 
of self-adaptation of learning rates in unsupervised 
learning of neural networks [I], [2]. 

2 The adaptive approach 

2.1 The recognition scheme 

The proposed adaptive recognition scheme is 
summarized in Figure 1. The value, token (or ob- 
ject) to be recognized in the image is modeled as a 
dynamic system. Only the projections of this object 
can be observed in the image (so called measure- 
ments) but the inherited state of the object is un- 
known. A parallel tracking of many competitive (up 
to n)  hypotheses is performed. Each tracking pro- 
cess is supported by the recursive estimation mech- 
anism. The selection of inconsistency free solutions 
takes place as soon as a robust selection among the 
hypotheses is possible. A selected and tracked hy- 
pothesis is shifted to the recognized state, if its sta- 
bilization satisfies a given criterion. 

The general adaptive recognition scheme has been 
implemented on three different data abstraction lev- 
els of an image sequence analysis system for traffic 
scenes under a moving observer [5] .  

In this paper we concentrate on the design of the 
measurement process and the recursive estimator, as 
required for 3-D object recognition [4]. 

2.2 Filtering a dynamic system 

Let s( t)  be the unknown state (parameter) vector 
at  time t and let m( t )  be an associated observable 
measurement vector. The dynamic behavior of both 
vectors may be modeled by the following non-linear 
dynamic system in discrete time: 

s(k + 1) = f (s(k)) + v(k), (1) 

m(k)  = h(s(k)) + w(k). (2) 

where f [s(t )], h[s(t)] are vectors of nonlinear func- 
tions, v(k) denotes the system noise and w(k) means 
the measurement noise. 



Figure 1: The adaptive recognition scheme. 

1. Initialization: Application-dependent compu- 
tation of initial estimation s*(ko) and covariance 
matrix P*(ko) of estimation error. Go to step 6. 
FOR every next image k > ko 

2. Detection of new measurement m(k).  The 
covariance matrix of the system noise Q(k)  is also 
available. 
3. Estimation of Kalman gain K (see section 2.5). 
4. State modification (innovation): 
s*(k) = s+(k)  + K(k){m(k) - H(k)s+(k))  
5. Modification of matrix P (section 2.5). 
6. Prediction of next state: 
s+(k  + 1) = F(k )  s*(k)  
7. Prediction of next matrix P: 
~ + ( k  + 1) = ~ ( k ) ~ * ( k ) ~ ~ ( k )  + ~ ( k )  
8. k + k + l  

Figure 2: The recursive object state estimator. 

The goal of the filtering task is to make consecu- 
tive state estimations s*( t )  on the basis of measure- 
ments m ( t )  only. Unfortunately straightforward we 
can only calculate the measurements given the state 
vector, but not vice versa. For the filtering task of 
above system usually the so called extended Kalman 
Filter (EKF) is applied 191. EKF works with in- 
stantaneous gradient values of above nonlinear func- 
tions. The state transition function f (.) is linearized 
around the estimated state with its Jacobi matrix 
F ( k )  and the projection function h(.) is linearized 
around the predicted state with its Jacobi matrix 
H(k) :  

We apply a recursive estimator, which is similar 
to an EKF filter Figure 2. From the state modifi- 
cation it is evident that a crucial role in the mini- 
mization of the estimation error plays an appropriate 
design of the K ( t )  matrix. But originally the gain 
matrix depended on the estimation error covariance 
matrix and on noise covariances only. There are two 
steps which we have modified with respect to our 

application. At first, the Kalman gain in EKF is 
estimated as (index k is omitted): 

where R(k)  is the covariance matrix of the measure- 
ment. At second, the original modification equation 
of the error covariance matrix P is: 

Our main concern was, that both steps were in- 
dependent from current tracking error m ( k )  - 
H(k)s+(k) .  Otherwise, it would be not trivial to 
set properly all the n x m parameters Kjj(t) E K ( t )  
for all t by default. Hence, we need either a scheme 
for measurement judgment or a direct inclusion of 
the tracking error in the gain estimation equation. 

2.3 The measurement step 

During the measurement step a t  first it is impor- 
tant to detect and to select the current measurement 
vector m ( k )  itself. It is clear that various image 
segments may have different certainty factors asso- 
ciated with them. The criteria for selection of the 
best one should be most independent from current 
tracked object hypothesis as possible. The search 
area in the image for new measurement may be re- 
lated to the area explained by given object hypothe- 
sis. But other selection criteria should follow model 
specific assumptions and not the current hypothesis. 

The quality of state estimation is the result of 
combining the actual estimation error, expressed by 
P*(k), with current R*(k) and the system error, ex- 
pressed by the covariance matrix Q(k)  of v(k). Usu- 
ally the measurement error is assumed to be mod- 
eled by a constant matrix R(k). This assumption 
is not acceptable neither for vision purposes nor for 
nonstationary signals. Due to  the tracking error in- 
dependent design of the Kalman gain, the estimator 
may not be able to follow highly non-stationary sig- 
nals, i.e. to track abrupt changes. After some track- 
ing time the covariance matrix P is relatively sta- 
ble, resulting in low covariance values and from that 
moment the state estimation is only little affected 
by next measurements. But some non-stationarity 
must be expected in our application as both rapid 
movement changes of objects may appear and wrong 
individual measurements may occur. 

2.4 Designing the recursive estimator 

For recursive estimation of the gain and the state 
covariance matrix a scheme is proposed, that is sim- 
ilar to the self-adaptation of learning rates in neural 
network learning, first proposed in [I]. 

Let us consider a neural network described in ma- 
trix form as: y(t) = W(t)x( t ) ,  where y(t)  is the 
output vector, W = [wij] E RnXn  is the synaptic 
weight matrix, x ( t )  is the measurement vector. A 



learning rule means the minimization of expected 
error, i.e. 

dwij(t) 
dt = - ~ i j ( t ) f i j ( W ,  Y,x), (6) 

where pij(t) > 0 is a local adaptive learning rate, Figure 3: Adaptation of the measured segments and 
and fij is some loss function. the object hypothesis onto the real shape in consecu- 

In a recent paper [2], it was proposed that each tive images (the outer double box denotes the image 
synaptic weight wij has its own (local) learning rate search area, the smaller one the object prediction 
pii(t) and that this rate is adjusted during the learn- and the bright one comes from the measured data). 
ing process according to a set of differential equa- 
tions. These rules can be written in discrete time 
form as: 

where 6, 61 and a are some positive scalars. 6 and 
61 control the stabilization speed of the expected er- 
ror v(t) and learning rate rl(t) matrices, whereas a 
controls the influence of expected error in one iter- 
ation and is normalized by the maximum expected 
error. 

In our estimator, for measurement judgment we 
use the current tracking error e(k)  = m(k) - 
H(k)s+kk) with its covariance matrix R.(k) = 
E{e(k)e (k)). To assure a minimum error threshold 
the default matrix R(t),  corresponding to measure- 
ment noise is also added. Thus the estimation of 
matrix P*(k)  is given as: 

and the estimation of a single gain element is: 

3 The object recognition application 

The processing structure of model based vehicle 
recognition in images of traffic scenes consists of ob- 
ject initialization, recursive object estimation with 
measurement and final object consistency and selec- 
tion tests. 

By the initialization of an object hypothesis we 
mean the detection of a segment group, the detection 
of an object class, and the initialization of an appro- 
priate state vector elements of the object hypothe- 
sis. For example, as seen in Figure 3 there are two 
bounding boxes provided for one contour group: the 
overall box and the included first contour box. The 
combination of these two detected image bounding 
boxes with the model-based restrictions about the 
length-to-width and height-to-width ratios makes 
the direction hypothesis possible. 

During object tracking a recursive estimation of 
each valid hypothesis is performed after a new mea- 
surement m(k)  for it was detected. For tracking 
error detection, a predicted 3-D wire-frame model 
(3-D bounding box or model edges) are projected 
onto the image and they are matched with the new 
image features (groups or edges). 

Figure 4: Examples of selected vehicle hypotheses in 
three image sequences. 

The measurement in our application means the 
use of problem dependent or model based meth- 
ods for the detection of appropriate image features, 
structures, road parameters, or object parameters. 
The matching of model feature with the next im- 
age features can be performed on two ways: the 
measured points are derived from contour groups or 
from line segment groups. In both cases the modifi- 
cation is based on the differences between projected 
model points and significant points of measured data 
group. 

In Figure 3 an example of one projected hypothe- 
sis and measurement of a real vehicle data in the im- 
age sequence is given. The measurement variance is 
nearly independent from the distance of the selected 
segment group from the expected object hypothesis. 
There are many alternative projections of the object 
hypothesis generated in the image, due to a limited 
variability of the state parameters. 

A hypothesis is either in its tracking or in - - 
one of its recognition phases. A tracking phase 
is given if the tracking time of this hypothesis is 
lower than Tmin or its variance is greater than the 
maximum-var. Otherwise the hypothesis is in one 
of its three recognition phases. These phases are 
closely related to the use of object specialization lev- 
els (from Shape over Fine to Type). 

The consistency test takes place between pairs of 
hypotheses. If the tracking times of two competitive 
hypotheses are both larger than Tmin or one of them 
is in the recognition phase (i.e. tracking time > 
Tmin and its variance < maximum-var), then the 
consistency test among them is performed. 

4 Computer simulation results 

We tested the system on several image sequences 
of length 125-250 images, usually containing 3-5 ve- 
hicles (Eigure 4). 

The projection conditions have been determined 
by the use of a camera with the relation of the focal 
length to pixel width of 708 (after sub-sampling) and 
with the height position over road of ca. 1.70[m]. 



Table 1: Qualitative evaluation of vehicle recogni- 
tion in one image sequence. Vzs means the number 
of images in which an object was visible, Gen - im- 
age number when at least one hypothesis for given 
object was generated, Track - the time a hypothesis 
was in the tracking phase, Rec - the time a hypoth- 
esis was in the recognized phase. 

Object 

1 .  car 

20 .. 
0 m a m m l m 1 B  
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Figure 5: The estimated side positions (left) and 
depths (right) of the car and truck. 

Vis 

125 

A qualitative evaluation is based on the hypothe- 
sis visualization in image sequences as shown in Fig- 
ure 4 and on the tracking and recognition rate data 
as given in Table 1. In the first scene six moving 
vehicles are visible, one of them in the half num- 
ber of images only. Four vehicles were detected very 
well and they were tracked in 95-100 % of the im- 
ages. The image projections of these vehicles are 
from the interval of 20 x 20LpzxeZ2] - 50 x 70Lpzxel2]. 
The only partly visible vehicle, whose image size is 
about 10 x 12[pzxe12]., was detected in average in 
every third image only. Similar recognition quality 
was observed for other four sequences. After the 
hypotheses have been tracked successfully for some 
time, they change to the recognition phase. 

The estimated position parameters for the left 
car and the truck in the center in first image se- 
quence are shown in Figure 5.  An acceptable 
depth estimation can be observed for such objects, 
which are at least projected to  image regions of size 
30 x 30[pzxeZ2]. This means for present projection 
conditions a depth of 6 0 [ m ]  only, but by increas- 
ing the image resolution only slightly, much larger 
depths will be estimated properly. 

Gen 

125 

Figure 6 shows the dynamics of the estimation 
variances and gain parameters for the depth and 
side position of two tracked vehicles in first image 
sequence. It can be observed that for truck hypoth- 
esis several times the depth tracking error was rela- 
tively high, but was immediately compensated. This 
speedup was made possible by self-adaptive increase 
of corresponding gain parameter. 
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Figure 6:  Estimation variances and gains corre- 
sponding t o  two tracked hypotheses. 

5 Summary 

T I -  
ack 
125 

Different from tracking single objects, which is 
mainly a stabilization task and a hypothesis-driven 
processing, in presented approach we provide a scene 
oriented explanation and assure real tracking of non- 
stationary measurements. Important aspect is the 
separation of measurement judgment for the pur- 
pose of selection among competitive measurements 
from measurement error, required for gain estima- 
tion. This allowed the design of an recursive esti- 
mation, which very well follows nonstationary mea- 
surement signals. 
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