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Abstract. A model-based object recognition in video and depth images
is proposed for the purpose of semantic map creation in mobile robotics.
Three types of objects are modeled: a human silhouette, a chair/table and
corridor walls. A bi-driven hypothesis generation and verification strat-
egy is outlined. The object model includes a hierarchic semantic nets,
combined with a graph of constraints and a Bayesian network for hy-
pothesis generation and evaluation. For the purpose of model-to-image
matching we define an incomplete constraint satisfaction problem and
solve it. Our CSP-search allows partial assignment solutions and uses a
stochastic inference to provide judgments of such solutions. The verifica-
tion of hypotheses is due to a top-down occlusion propagation process,
that explains why some object parts are hidden or occluded.

Keywords: Bayesian net, constraint satisfaction problem, depth map, object
recognition, semantic map

1 Introduction

Three general paradigms for object classification and recognition in images are
most often distinguished: the stochastic Bayesian approach [1], the neuro-compu–
tational and biological approach [2] and the rule-based approach [3]. Although of
different nature these approaches share the concept of rationality, as the recog-
nition and understanding processes in all paradigms need to satisfy some appro-
priate optimization criteria.

In model-based image analysis fundamental problems are: model representa-
tion language, a control and evaluation of partial model-to-data matches. Here
we shall follow an object-oriented framework build around semantic networks,
and we shall integrate it with another three general-purpose tools: (1) a modi-
fied search for constraint satisfaction problems ([3]), applied as control of partial
model-to-data matches (hypothesis generation), (2) the Bayesian approach to
statistical inference [1] (applied for evaluation of hypotheses), and (3) rules of
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an attributed structure grammar [4] (applied for hypothesis verification). All
these abstract tools parts are of dominating declarative nature and there exists
well-known machine learning approaches for them, e.g. inductive inference for
the concept learning, and ML- or MAP-estimation for the learning of Bayesian
net probability distributions [5].

The object recognition system is applied for labeling of 3D environment maps
in mobile robotics, i.e. the creation of 3D semantic maps [6]. At first a 3D envi-
ronment map need to be reconstructed from measurements that combine laser
scans (if a scan line laser is used) and video images. At first the individual scan
lines are integrated into a cloud of 3D points (e.g. the ICP (iterated closest point)
algorithm [7]. Next, the point set is approximated by triangle faces (e.g. Delau-
nay triangulation) [8] or by fitting superquadrics surfaces patches [9]. The map
texturing steps follow - an addition (or stretching) of the video image content
onto the 3D surfaces [10]. The final map segmentation step is to approximate
the triangle net by larger planar of curved surface patches - using incremental
growth [8] or point elimination-based algorithms [11].

In section 2, the application scenario is outlined and the object recognition
approach is introduced too. The main 3 recognition steps are explained in sec-
tions 3, 4 and 5. Two implementation results in section 6 complete the paper.

2 3D semantic map

We are interested to recognize solid objects, like chair, table and wall, and a
human silhouette in the neighborhood of a service mobile robot. The person can
eventually sit in a chair or stay in front of a wall or behind the table or chair,
i.e. the human is fully or only partially visible.

Fig. 1. The 3D object recognition approach
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Fig. 2. A human
silhouette model
(based on [12])

Fig. 3. A chair and table
model

Fig. 4. The decomposition of a cylin-
der and parallelepiped shell onto faces
and edge loops

2.1 The object recognition approach

The 3D object recognition approach consists of following processes (Fig. 1): hy-
pothesis generation (model-to-data matching), hypothesis evaluation (stochastic
inference), object visibility test, hypothesis verification (occlusion propagation).

To accomplish the overall task we have to define four models: the hierarchic
structure of concepts and graphs of constraints per concept, a Bayesian network
for quality judgement of an instance or modified concept, the mutual object
occlusion relations, and the occlusion propagation rules.

The model-to-data matching is seen as a specific constraint satisfaction prob-
lem [3], that needs to be satisfied only partially. The judgement (score) of in-
stance is estimated by a stochastic inference in the Bayesian net, linked to given
concept.

The hypothesis verification process is a bottom-up explanation of possible
mutual object occlusions and self-occlusions. The hidden parts are added as
evidence and a Bayesian inference for given instance is repeated with additional
evidence variables set to synthesized parts.

3 Object hypotheses generation

3.1 The 3D object model

Common to semantic networks is the explicit structuring of domain knowledge
along two hierarchies: the decomposition (vertical) hierarchy and the specializa-
tion (horizontal) hierarchy of concepts. Starting from the pixel level the vertical
hierarchy expresses increasingly abstract representation levels (”part” or ”con-
crete” links). Simple elements are combined into more complex one, being parts
of objects and scenes. Specialization links (”spec”) represent inheritance rela-
tions between elements at the same abstraction level.



4

Every node (called ”concept”) represents some object category and it con-
tains a parameter vector (called ”attributes”), where every parameter is evalu-
ated by some term, and every concept defines a set of constraints, evaluated by
predicates, among its parts and related concepts.

The generic object types, required for 3D map labeling, take the form of wire-
frame models (Fig. 2, 3). There are default dimensions of object parts provided
- this especially allows to constrain the human object hypotheses.

3.2 Partial CSP

A discrete Constraint Satisfaction Problem is defined in terms of states, actions
and the goal test. A state set S, where a particular state, s = (d1, d2, ..., dn), is
defined by assignments to its variables, X = x1, x2, ..., xn, where each xi, (i =
1, ..., n), can take values from a domain Di. The actions, a ∈ A, mean transitions
between states: ak : si → sj . The goal test checks a set of constraints, C(X),
which induces allowed combinations of assignment values for subsets of state
variables. A solution state is every state that satisfies the goal test. In particular,
in our problem: the variables in X correspond to parts of some model concept,
the values in domain D represent the current data entities (instances) and an
action is assigning a value to some variable in given state. The variables and the
set of constraints, C(X), can be represented as a graph, G(X,C(X)) where nodes
X represent variables and arcs C(X) represent constraints between particular
variables. For example, typical constraints for edges are: A = edges are connected;
B = edges are parallel; D = edges are of similar length.

A modified CSP search is proposed that allows partial solutions (some vari-
ables may have no assigned value). While starting from an empty assignment
the goal is to match (assign) eligible image segments (values) with model entities
(variables). We introduced two modifications to the basic CSP search. The first
modification is due to the definition of a Bayesian network for every problem.
The subfunction Score calculates probability value of a partial solution, that
consists of eligible assignments to variables. This score is due to a stochastic in-
ference process performed in a dedicated Bayesian net, created for current CSP
problem.

The basic algorithm for CSP is a depth-first tree search with a backtrack-
ing step, performed when the path is not consistent with given constraints. The
second modification of a typical CSP is that now partial paths can be potential
solutions. The backtrack step is performed now when currently selected (ex-
tended) path does not satisfy the constraints of given problem or its score is
lower than the score of predecessor path. In our view this is not a general failure
but a situation where the previous state corresponds to a partial solution. The
current path is stored as a possible partial solution only if it has higher score
than the previous best one.
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4 Hypothesis evaluation

4.1 Bayesian network

This is a simple, graphical notation for conditional independence assertions and
hence for compact specification of full joint distributions. Syntax of a BN: 1) a set
of nodes, one per variable; 2) a directed, acyclic graph (link means that ”direct
influence”) - incoming links of given node represent a conditional distribution for
this node given its parents, P (Xi|Parents(Xi)). In the simplest discrete case,
conditional distribution is represented as a conditional probability table (CPT),
giving the distribution over Xi for each combination of parent values.

For an concept of a semantic net model, presented in previous section, the
structure of a corresponding Bayesian model is automatically generated (Fig. 5).

A Bayesian network will here represent
stochastic dependencies between the solid
type ”parallel”, intermediate-level ”views”
and ”faces”, and low-level ”edges” (that
corresponds to image segments). The ”face”
concepts consist of 4 edges. The constraints
in CSP model now correspond to additional
evidence variables (nodes) in the Bayesian
net. There are evidence nodes that repre-
sent constraints between faces (fA, fB) and
constraints between squares (A, B, D). The
rank, to which a particular constraint is sat-
isfied, can be measured after its ”parents”
(the ”edge” variables) have been assigned
to image segments. Fig. 5. The Bayesian net for a ”paral-

lelepiped” solid

4.2 Score by stochastic inference

The score of a partial solution (assignment in terms of CSP), in which some
variables Xi have already been assigned to image segments lk but not all of
them, is obtained due to stochastic inference in Bayesian net. For example the
computation of posterior probability of a ”cube” instance (that is a cause in
terms of BN) given its parts (that are evidences in BN). For example, if seg-
ments are assigned to X0 and X1 then one need to compute the probability:
P (cube|X0 = l1, X1 = l2).

This leads to a summation of pdf over all domain values for remaining (non-
evidence) variables, X2, ..., Xl. Thus, scores of partial matches or a complete
match, between image segments and model entities, are naturally obtained by
the same evaluation method.
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5 Hypothesis verification

As a result of the hypothesis generation process many competitive object in-
stances exist. In general, to find a best consistent subset one needs a search
procedure. In our test implementation we make a simplifying assumption that
at most one instance per object type can exist. This allows us to make a sys-
tematic check of all the subsets.

The top-down verification process for a selected subset of hypotheses consists
of two steps: the initial generation of occlusion relations (between objects) and
the propagation of occlusion relations from an upper level L to a lower level L−1
(Fig. 6). There are three types of relations used: ”potentially hidden”, ”partially
hidden”, ”hidden”. A set of generic propagation rules is used. In general, when
an instance is ”potentially hidden” then its visibility case has to be resolved at
the lower level, with regard to its parts. As a result of such check the relation
will be canceled, kept or replaced by ”partially hidden” or ”hidden”. The last
two labels induce additional evidence (support) for a hypothesis, as they explain
why a given part has not been matched with image data.

Fig. 6. Illustration of the occlusion propagation and visibility check. The relations
a1 and a2, specified at level L as ”potentially hidden”, are resolved among the parts
of instances I1, I2 and I3. Assume, the visibility check turned some relations into a
”hidden” status (terminate instance I11), some others were rejected (terminal instance
I31 and remaining relations were propagated to level L− 2.

6 Results

The first example demonstrates the color image analysis in the absence of a depth
map. The number of possible objects is limited to at most one per modeled type
(Fig. 7 - 12). An important step is the color-based human skin detection (the
human region detection is based on [12]). Also image regions of small size are
eliminated, whereas large regions are eventually split into convex parts. In order
to detect faces of a solid, sufficiently strong line segments are set in correspon-
dence (geometrical proximity) with the post-processed regions. If sufficient ”face
evidence” is available a solid and object hypotheses are generated. Eventually



7

multiple hypotheses of given type are still allowed at this stage. Finally, subsets
of hypotheses are eventually verified by considering the visibility relations.

Fig. 7. Example of a
room scene

Fig. 8. Region-based im-
age segmentation

Fig. 9. Skin color filtering

Fig. 10. After morpho-
logical filtering

Fig. 11. Regions related
to human instance

Fig. 12. Detected 3 ob-
ject instances.

The second example demonstrates surface generation if corresponding video
image and depth map are both available (Fig. 13 - 18). The depth map and
surface patches follow the work [13]. The laser scanner SICK LMS 200 acted
as the acquisition device. Here, the 3D surface patches are approximated by
planar surfaces. Accordingly, strong ling segments in the video image are defined
at places with large discontinuity of depth information. Now face hypotheses
are generated from four line segments ”enclosing” a planar surface. The next
processing steps are the same as in the first example.

7 Summary

A model-based object recognition in video and depth images waqs proposed
for the purpose of 2D and 3D map labeling in mobile robotics. Four types of
objects were modeled: corridor walls, a human silhouette, a chair and a table.
A bi-driven hypothesis generation and verification strategy was defined. The
object model is expressed by a hierarchic semantic net, where each concept
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Fig. 13. An empty corri-
dor with no obstacles

Fig. 14. Image regions Fig. 15. Edge image

Fig. 16. 3D surface
patches in depth image

Fig. 17. 3D surfaces Fig. 18. Wall detection

is also characterized by a graph of constraints (for matching) and a Bayesian
network (for instance evaluation). The verification stage is modeled as a top-
down propagation of occlusion relations, repeated for every subset of hypotheses.
A successful verification means, that the evidence part set of given instance is
extended by hidden parts, increasing the score of such an instance.
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