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Abstract We propose a blind signal extraction approach to the extraction of binary and
sparse images from their under-determined mixtures, i.e. when the number of
sensors is lower by one than the number of unknown sources. A practically fea-
sible solution is proposed for constrained classes of images, i.e. sparse, binary-
valued and dynamically-constrained sources.
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Introduction
The goal of blind source separation (BSS) is to extract (statistically inde-

pendent) unknown source signals from their linear mixtures without knowing
the mixing coefficients [1, 4, 6]. This blind signal processing technique has so
far main applications in data mining and biomedical signal processing prob-
lems.

A precondition for the application of BSS solutions is that the number of
(statistically independent) source signals is at most equal to the number of
sources, known a priori. Typically it should be equal to the number of sensors
and outputs. However, in practice these assumptions do not often hold. In this
paper we consider the mixing case, where the number of independent sources
is higher than the number of mixtures by one.

1. The blind source extraction problem
Denote by x(t) = [x1(t), . . . , xn(t)]T the n-dimensional t-th data vector

made up of the mixtures at discrete index value (usually time) t. The mixing
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model in blind source separation (BSS) can then be written in the vector form

x(t) = As(t) + n(t) (1)

Here s(t) = [s1(t), . . . , sm(t)]T is the source vector consisting of them source
signals at the index value t. Furthermore, each source signal si(t) is assumed
to be a stationary zero mean stochastic process. n(t) means Gaussian noise.

In standard neural and adaptive source separation approaches, anm×n sep-
arating matrixW is updated so that the m-vector (y(t) = Wx(t)) becomes
an estimate (y(t) = ŝ(t)) of the original independent sources [1, 7].

A standard assumption in BSS is that the number m of the sources should
be known in advance. Like in most neural BSS approaches, we have assumed
up to now that the numberm of the sources and outputs l are equal in the sep-
arating network. Generally, both these assumptions may not hold in practice.

Now, let us consider the difficult case where there are fewer mixtures than
sources: n < m. Then the n ×m mixing matrix A in (1) has more columns
than rows. In this case, complete separation is usually out of the question.
However, some kind of separation may still be achievable in special instances
at least. This is the goal of blind signal extraction (BSE).

The BSE problem has recently gained larger attention. Pajunen [9] has
proposed an algorithm for binary source separation, that separates m binary
sources from two or more mixtures. The restrictive assumptions about sources
are that the mixture vectors must not overlap, and the mixing matrix must have
non–parallel column vectors.

Chen & Donoho [3] have applied a so called Basis Pursuit approach for
spectrum estimation. Basis Pursuit decomposes a signal into an optimal su-
perposition of dictionary elements, where optimal means having the smallest
l1 norm of coefficients among all such decompositions. Their dictionary in-
cludes over-complete cosine and sine bases, and the Dirac basis. Hence this
optimization principle leads to decompositions that can be very sparse.

This topic has been studied theoretically in [2]. The authors show that it
is possible to separate the m sources into n disjoint groups if, and only if, A
has n linearly independent column vectors, and the remaining m − n column
vectors satisfy the special condition that each of them is parallel to one of these
n column vectors.

Recently Li et al. [8] have proposed a multi-stage approach to sparse signal
extraction. In the first stage the observed data is transformed into the time-
frequency domain via wavelets. Next the use of a sophisticated hierarchical
clustering technique allows to identify the mixing matrix. In the last step the
sparse sources are estimated alternatively by linear-, quadratic- or semi-definite
programming optimization. In case of images, their spectral distributions are
very similar to each other, as their spectra are dominated by the first frequency
coefficient. Therefore a different approach is proposed in our paper.
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2. Proposed solution to BSE
In general the vectors s(k) and x(k) are correlated Rxs = E{xsT } 6= 0,

but the noise vector is not correlated with s. Our objective is to find the best
estimation matrix Âbest such that the pair of vectors: n = x −As and s are
no longer correlated with each other:

0 = E{(x−As)sT } = Rxs −ARss. (2)

and
Âbest = RxsR

−1

ss. (3)

Assuming that the sensor signals are available only, our BSE approach con-
sists of two main steps, that are iterated together (until convergence is achieved)
and of a third (optional) final refinement step: (I.a) to estimate Â of the (un-
known) mixing matrixA from mixed (sensor) signal vector x(t); (I.b) to esti-
mate source signals ŝ(t), for given Â and x(t); (II.) a final post-processing for
specific signals (option).

Extraction of sources
After the estimate Â (or Â1) of the mixing matrix A (or combined mixing

matrixA1, respectively) is known, there exist potentially many solutions to the
under-determined source extraction problem. We can solve it in special cases,
at least. When source signals are spiky and sparse signals, in the sense that they
fluctuate mostly around zero and only occasionally have nonzero values, the
problem of estimation of unknown signals can be converted to the extended
linear programming problem, i.e. finding the optimal sequence of estimated
source signals ŝi(k)(i = 1, ..., n, ), which minimize the l1 norm:

∑

k

n∑

i=0

|ŝi(t)|, (4)

subject to the constraints:

Âŝ(t) = x(t), or Â1ŝ(t) = v(t), ∀k. (5)

A very efficient linear programming algorithm that allows one to minimize
the l1 norm is known, called the FOCUSS algorithm [5]. The author has ap-
plied this FOCUSS algorithm with the following iteration rule:

ŝ(k + 1) =D(k + 1)inv[ÂD(k + 1)]x(k + 1), (6)

where the diagonal matrixD is obtained by:

D(k + 1) = diag[|ŝ(k)|1−p/2], (7)
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and inv[.] means the pseudo-inverse operation:

inv[W ] =W T (WW T )−1. (8)

The initial diagonal elements are set to diag[D(0)] = [1, ..., 1]T and the
parameter p = 0.5. During the above iteration process a competition between
the columns of Â appears, which of them should represent the vector x. At
the end some of the columns survive only to represent v.

Mixing matrix estimation
With given source signal estimation ŝ estimate the mixing matrix Â by using

an iterative rule:

Â(k + 1) = Â(k)− η(k)[Â(k)Rŝŝ −Rxŝ − γ(k)Â(k)]. (9)

The forgetting factor γ(k) = tr[Â(k)T (Â(k)Rŝŝ − Rxŝ)] ensures that
the Frobenius norm of the matrix Â is kept approximately constant during the
iteration process, thus enforcing the stability of the algorithm.

Postprocessing for (n-1) sensors to (n) sources
After all the previous steps a proper estimation of the sources is usually

done for all such vector samples, where at least one source sample is equal to
zero. If all sources have non-zero values, then the estimated sample vector is
estimated wrongly. At least in some specific signal cases this error could be
corrected.

Let us assume that (n-1) sensors are available for (n) sources. Then the
crossing section of (n-1) hyperplanes in the n-hyperspace determines a line in
the n-dimensional space. A wrong signal vector corresponds to a point on this
line, whereas the solution point is located somewhere else on this line. Thus the
proper solution can be obtained by a linear shift of the estimated point. The
direction cosine of the solution line is dependent on the known (estimated)
mixing matrix and it is independent of the sources. Thus, if we find the proper
correction value (at a given time sample) for one estimated source, we will be
able properly to correct all the remaining outputs.

Usually there is no need for any post-correction if the sources are spiky sig-
nals, i.e. with high probability in each time sample at least one of the sources
is equal to zero.

The ST constrain
The proposed correction mechanism can be applied to several types of source

signals. The sources may be binary signals or three-valued positive signals.
They may even be of general waveform but subject to our so called ST-constrain,
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i.e. they should fluctuate rather slowly and smoothly in comparison with the
sampling frequency – only one source is allowed to have an amplitude change
for two consecutive pixels at given image position.

3. Test results
In our experiments, natural or synthetic grey-scale images (with 256 grey

levels) are used. Their size is equal to 256 × 384 and 256 × 256. Before
the start of the learning procedure the image signals should be transformed
to zero–mean signals, and for compatibility with the learning rate and initial
weights they are also scaled to the interval [−1.0, 1.0].

The obtained results can be assessed quantitatively by using suitable mathe-
matical measures, like SNR (signal-to-noise ratio) between each reconstructed
source and the corresponding original source.

In the first two experiments the reconstruction of binary images is shown,
i.e. binary edge images (Fig. 1) or binary intensity images (Fig. 2). Obviously
these are non-spiky signals and in some areas, in which all three sources take
non–zero values, the separation fails.

(a) Three binary edge images

(b) Two edge image mixtures

(c) Reconstructed binary edge images

Figure 1. Example of edge image image
extraction - binary edge images.

(a) Three binary source images

(b) Two mixtures

(c) Reconstructed binary sources

Figure 2. Example of a natural face image
reconstruction - binary source images.

We have extended the testing to non-binary sources. If the sources are three-
valued signals or they satisfy the specific ST-constrain, they can also be ex-
tracted from an under-determined mixture, i.e. if for n sources the number
of mixtures is (n-1). In such situations the third post-processing step is ap-
plied. Example of results for 3-valued image sources are shown on Fig. 3. For
a ST-constrained intensity image set the results are shown in Fig. 4. Obvi-
ously, natural image sets usually do not satisfy our ST-constrain. Hence this
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constrain was artificially satisfied by making 2 more copies of each pixel (and
adding them to the image) and left shifting the second and third source by one
or two pixels, respectively. As provided in Fig. 4, the extracted sources are
disturbed by a low frequency error.

(a) Three three-valued source images

(b) Two mixtures

(c) Reconstructed sources

Figure 3. Example of a natural face image
reconstruction - three-valued images.

(a) Three natural images

(b) Two mixtures

(c) Reconstructed sources

Figure 4. Example of a natural face image
reconstruction, subject to the ST-restriction.
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