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Abstract.  
An approach to multi-channel blind deconvolution is developed, which uses an 
adaptive filter that performs blind source separation in the Fourier space. The 
approach keeps (during the learning process) the same permutation and provides 
appropriate scaling of components for all frequency bins in the frequency space. 
Experiments verify a proper blind deconvolution of convolution mixtures of sources. 
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1 INTRODUCTION 

Source signals, like in speech, seismology or medicines get mixed and distorted if 
they are transmitted over disperse environment. The simplest case of a mixing model is an 
instantaneous (linear) mixing of source signals [1, 2, 5], but this is a practically no feasible 
model. In general, the nature of the transmission environment is dynamic and nonlinear. The 
goal of blind source deconvolution is to reconstruct from many distorted signals the estimates 
of original sources [2]. Some ambiguity is inherent, i.e. the permutation order, the scaling and 
delay factors cannot be reliably predicted. 1-D signals are the main application field of blind 
signal processing techniques. But there appear some possible applications in image processing 
as well [2, 4]: (1) the extraction of sparse binary images (e.g. documents), (2) contrast 
strengthening of “smoothed”  images in selected regions, (3) encryption of transmitted images. 

In this paper we solve the source deconvolution problem by repetitive use of blind 
source separation method in the frequency space. It is difficult to combine the independently 
learned weights for all frequency bins into one learning process. In our approach we avoid 
non-compatible output permutations and different component scales for different frequencies. 
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2 THE BSS/MBD PROBLEMS 

The blind source separation task. Assume that there exist m zero-mean source 
signals, s1(t), ... ,sm(t), that are scalar-valued and mutually (spatially) statistically independent 
(or as independent as possible) at each time instant or index value t. The original sources sj (t) 
are unknown to the observer, who has to deal with n possibly noisy but different linear 
mixtures, x1(t) ,..., xn(t), of the sources (usually for n  >= m). The mixing coefficients are 
some unknown constants. The task of blind source separation (BSS) is to find the waveforms 
{sI (t)} of the sources, knowing only the mixtures xj(t) and the number m of sources [1, 2]. 
Denote by x(t)= [x1(t),...,xn(t)]

T the n-dimensional t-th mixture data vector, at discrete index 
value (time) t. The BSS mixing model is equal to: 
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Let us assume further that in the general case the noise signal has a Gaussian 
distribution but none of the sources is Gaussian. In standard neural source separation 
approach, an m×n separating matrix W(t) is updated so that the m-vector,  

y(t) = W(t) x(t),       (2) 

becomes an estimate of the original independent source signals. y(t) is the output vector of the 
network and the matrix W(t) is the total weight matrix between the input and output layers. 
The rank of the mixing matrix must be at least equal to the number of sources and the number 
of outputs is at least equal to the number of independent sources 

Gradient based optimization. A well-known iterative optimization method is the 
stochastic gradient (or gradient descent) search [3]. In this method the basic task is to define 
a criterion J(W(k)), which obtains its minimum for some Wopt  if this Wopt is the expected 
optimum solution. The iterative rule in gradient descent search computes the W(k+1) by 
moving from W(k) along the gradient descent, i.e. –∇∇∇∇J(W(k)): 

W(k+1) = W(k) - η(k) ∇∇∇∇J(W(k)),     (3) 

where η(k) is a positive-valued step-scaling coefficient. For the BSS problem another gradient 
approach was developed recently – the natural gradient descent [1, 2]. It takes the form: 
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There exist different theoretical justifications of the BSS, like the Kullback-Leibler 
divergence minimization, the information maximization and the mutual information 
minimization. All of them lead to the same cost function [2, 6]: 
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where the pi(yi)-s are pdf’s of signals yi respectively, det(W) - the determinant of matrix W. 

Applying the natural gradient approach we may derive the learning rule for BSS: 
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The MBD problem. The multi-channel blind deconvolution problem (MBD) can be 
considered as a natural extension of the instantaneous blind separation problem (BSS). An m-
dimensional vector of sensor signals (in discrete time), x(k) = [x1(k), ... ,xm(k)] T, is assumed to 
originate from an n-dimensional vector of source signals, s(k) = [s1(k), ... , sn(k)] T (m > n), as: 
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where H = { Hp }  is a set of (m× n) matrices of mixing coefficients at lag p, which represents 
the time-domain impulse response of the mixing filter. The BSS feed-forward network can 
now be generalized to a deconvolution filter with the impulse response W = {  Wp } : 
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3 THE BSS-FT METHOD 

Homomorphic filter. A linear filter is useful for noise reduction or signal feature 
extraction if the signal is distorted by additive noise. The homomorphic system is a 
generalization of a linear system. It is more useful to use such a system than a linear filter if 
the signals are combined in a non-additive fashion, like the convolution operation. The 
approach of homomorphic systems consists of following steps: 

1. Transform a non-additive combination into an additive one by applying a transformation 
Tc (e.g. X(ω, κ) = Tc(x(k)) = log [FT [x(k)]] ), called the characteristic transformation. 

2. Perform a linear transformation TL (e.g. some linear filter transform, for example the BSS 
transform) of the transformed signal X (e.g. 

�
(ω, κ) = � (ω) X(ω, κ) ) 

3. Make signal inversion by Tc
-1 (e.g. Tc

-1(
�

) = FT-1[exp[
�

]] ). 

Hence, the sequence of transformations is:  
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Fourier space. The homomorphic filter uses the well-known principle that a 
convoluted mixture in the time domain corresponds to an instantaneous mixture of complex-
valued signals in the frequency domain. We shall use a 2L-point Fast Fourier Transform to 
convert each time domain signal xi(t) into a series of Fourier coefficients  {  Xi (ω, κ) }  in the 
frequency space  
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where w is a window function with 2L nonzero elements and ∆ is a shift interval between 
consecutive window positions. The number of coefficients is equal to 2L and all the 
frequencies ω are multiplies of the basic frequency 2π / 2L.  

The learning (adaptive filtering) process. Let L = 2p be the basic length of samples in 
one block and at the same time the number of time-delayed filter weights in each channel. In 
order to avoid end effects of the Fourier Transform, we shall use a 2L-point FFT, with half of 
the samples padded to zero. The impulse response of some ij-th channel is: 
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The sensor vector data are grouped to blocks, indexed by κ, where each block xB(κ) 
contains L (vector) samples, up to time index k: 

xB(κ) = ( x(k-L+1), … , x(k) ),  xB(κ-1) = ( x(k-2L+1), … , x(k-L) ),  (12) 

The block of output signals, which are computed in the κ-th iteration of the learning 
process, contains the samples indexed by time instants up to k: 
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The output signals in the frequency space are calculated next: 
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where the operation “ .* ”  means that we perform a set of matrix multiplications, one 
multiplication for each single frequency bin ω. Now we could apply the nonlinear function 
(e.g. f(y) = y3 ) to current 

�
(κ) in the frequency space, but this leads to independent learning 

(permutation and scaling) of weights for each frequency bin. The proper way is to transform 
the frequency output to the time domain. Hence, the output signals are calculated next: 
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Finally, the block of transformed output signals in the time domain is transformed 
again into the Fourier space: 
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The BSS learning (update) rule in Fourier space. Now, for each frequency bin ω one 
can apply the BSS update rule in order iteratively to learn the matrix � (ω) and to estimate the 
output signals (in frequency space) 

�
(ω, κ). One of such learning (weight update) rules is 

based on the principle of natural gradient (equation 4) and it takes the form: 
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where the superscript H denotes the Hermitian conjugate. In order to keep the balance 
between signal component energies in particular frequency bandwidths the learning process 
converges to different values Λ(ω), (for all ω), that are put into relation to each other: 
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From above coefficients we form an appropriate set of diagonal matrices: 
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4 EXPERIMENTAL RESULTS 

The approach described in section 3 was implemented in Matlab and it was tested on 
some examples of image sources (Fig. 1). Obviously 1-D signals can also be applied as well, 
but the image data gives better and more impressive illustration of the results. From Fig. 2 it 
can be seen that difficult, convoluted mixtures were computed. The three sensor signals in 
both tests were nearly the same, i.e. the cross-correlation factor of pairs of mixed signals was 
in the range of 95 – 98%.  

The results of the blind source deconvolution process, applied to these mixtures in 
two separate tests, are shown on Fig. 3. The three synthetic sources correspond to step- and 
sinusoidal signals and they are only to some small amount cross-correlated. Hence, for them a 
high quality deconvolution effect was achieved. In opposite, the natural sources are strongly 
cross-correlated, which is against the theory requirements of source independency. The 
deconvolution results in this case are only of average quality, but they show appropriately the 
limitations of the blind processing theory (related to unsupervised learning).  
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Test 1: three synthetic image sources 

   
Test 2: three natural image sources 

Fig. 1: Or iginal sources (assumed to be unknown). 

   
Convoluted mixtures (input signals) 

   

Fig. 2: Examples of sensor  signals. 

   
Deconvolved (output) signals 

   

Fig. 3: Examples of output signals. 


