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Abstract. We apply the technique of independent component analysis
to Fourier power coefficients of speech signal frames for a blind detec-
tion of basic vectors (sources). A subset of sources corresponding to the
noisy influence of basic frequency is identified and its corresponding fea-
tures could be eliminated. The mixing coefficients for such sources are
then determined for every speech sample. We compare our features with
the Mel Frequency Cepstrum Coefficient (MFCC) features, widely used
today for phoneme-based speech recognition.

1 Introduction

It is common in automatic speech recognition systems to apply a frame-based
segmentation of the signal, i.e. to use short-time frames [1], [2] in which a win-
dowed Fourier transform is performed. Although specific features of a single
frame can be detected already in the time-domain (like LPC features), there
are widely used Mel Frequency Cepstrum Coefficients (MFCC) [2], [3] which
are computed in the ”cepstral” space (this needs a homomorphic filtering via
the Fourier space back to the time domain and a post-processing step called
“liftering”).

It was observed, that statistical cues could offer increased power to speaker
recognition systems [4], [5]. In this context the two techniques - PCA and ICA
- can be considered [6], [7]. Different authors derive the principal component
analysis (PCA) or ICA [4] of the power spectra vectors, which are also smoothed
using Mel-scale triangular filters. The authors of [5] assume that the spectra of
sounds generated by a given speaker can be synthesized using a set of speaker
specific basis functions - the unknown source in the ICA model.

In this paper we follow this idea and we expect the Fourier power coefficients
of a single frame to be mixtures of a set of basic, statistically independent vec-
tors. In section 2 the problem of speech feature detection is introduced. The
proposed approach is described in section 3 and simulation results follow in
section 4.
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2 The MFCC Features for Speech

The task of ICA is to find the waveforms si(t) of the sources, knowing only
the mixtures xj(t) and the number m of sources [6]. A well-known iterative
optimization method the stochastic gradient (or gradient descent) search [8] can
be applied in this context. Especially for the ICA problem different gradient
approaches were developed (e.g. the natural gradient descent [9]). An efficient
”batch” approach is the method ”FastICA” [7]. The batch processing allows a
preliminary ”whitening” step for the zero-mean mixture signals, which improves
the convergence speed of the ICA procedure.

2.1 Energy of Speech Samples

As illustrated in Fig. 1 and 2 the energy distribution in time of the same spoken
word significantly differs from sample to sample and from speaker to speaker.
Hence, we need a feature scheme which is rather interested in the ”waveform” or
relative (normalized) energy pattern than in the global energy distribution. In
some applications the possibility to achieve ICA demixing results with respect
to a scaling factor only is a disadvantage of the ICA approach. In case of speech
features no such drawback should appear.

Fig. 1. Energy distribution in time of some polish word ”pusc” (release): 3 (left) and
3 (right drawing) samples with their averages (bold lines) for one speaker

In order to limit the variability of energy distribution among speakers and due
to different emotional attitude of the speaker we make an energy normalization
step before feature detection. As our goal is to extract ICA-based features and to
compare them with the MFCC features only, without performing general word
recognition, we can deal with the necessary time stretching by performing an
interpolation-based resampling in the time domain in advance of the feature
detection step. In this way we assure that the current utterance and the pattern
utterance have both the same number of samples (for every word a different
number of samples is usually required).
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Fig. 2. Energy distribution in time of polish word ”pusc” (release) - the averages for
5 different speakers

2.2 The Standard MFCC Features

The Mel-cepstrum features are the result of the characteristic (homomorphic)
transformation MFCC(h) = FT−1{MFC{FT{h}}} for h = x ⊗ w (a convolu-
tion of x with w).

The short-term power spectrum is computed by applying the discrete Fourier
Transform (DFT) (in fact the FFT) to each windowed signal and taking directly
the magnitudes of Fourier coefficients raised to the power of two. The power
spectrum is usually represented on a log scale.

A MEL scale (empirical result) adopts the frequency bandwidths to the band-
widths recognized by the human auditory system. The set of Fourier features is
reduced by considering bandwidths, centered around some MEL scale frequen-
cies. Usually one uses a set of l triangle filters D(l, t) to compute l so called
Mel-spectral coefficients MFC(k, t) for every signal frame t.

A disadvantage of Fourier coefficients, even after consolidation by triangle
filters, is the joint correlation of neighbor frequency coefficients. Since the vo-
cal tract is smooth, energy levels in adjacent bands tend to be correlated. To
compensate this smoothing of features the inverse DFT (in fact only the cosine
transform as the transformed MFC’s are real-valued) is applied, which converts
the set of logarithm-scaled energies to a set of cepstrum coefficients (for example,
m = 12), which are largely un-correlated:

MFCC(k, t) =
M−1∑

l=0

log[MFC(l, t)] cos
[
k(2l + 1)π

2M

]
, k = 1, ..., 12. (1)

Another disadvantage of this scheme is that noisy oscillations of the human
larynx are overlayed onto the energy of basic frequency and some of its first
harmonic frequencies. To reduce it a so called liftering of the MFCC features
is finally performed [2], [3]. Let cn be the n-th MFCC. Then its liftering is as
follows:

clift
n =

[
1 +

L

2
sin

(πn

L

)]
cn, n = 1, 2, ...,K < L, (2)
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where L is related to the feature index for the basic frequency. Usually the final
number of features L is set by default to the number of triangle filters, as the
on-line computation of this parameter for every consecutive frame is not feasible:
(a) a variable number of features could appear for different frames, (b) although
the basic frequency is related to the individual speaker, it is variable even for
the same speaker, as it depends on the accentuation and emotional standing.

3 The Approach

3.1 Applying ICA for Source Separation

The Fourier coefficients obtained for given frame FC(a, t) constitute a vector
x(t) - a single (mixture) input to the ICA learning procedure (the size of this
vector is N). This vector is expected to be a particular mixture of m < N
independent sources. For every spoken word, that we can detect in the speech
sample, we get a learning set of frames: xi(t)(i = 1, ..., n; t = 1, ..., N).

The basic mixing model in ICA (without noise) is assumed. x(t) is a matrix
of n time-varying vector signals, each of size N . ai is a set of n mixing vectors
(each of size m) combined to a mixing matrix A (every ai is a single row of
matrix A). {si(t)} is a set of m sources - each one consists of N time samples.

After running the ICA method both unknown sources and unknown mixing
coefficients are determined - on base of given sequence of observations (frames)
xi(t) the vector s and weight matrix W are estimated. The sources need to be
normalized and reordered, while the weights are of no importance during learning.

3.2 Matching of Source Sets

During learning we need to establish a correspondence between existing source
set (the reference components) and the newly created source set for current
signal frame. During this comparison a proper permutation index, the scaling
and even the sign of amplitude must be adjusted [10]:

(1) The amplitudes of all components are re-scaled to the interval of < −1, 1 >.
(2) FOR all tested components yi, (i = 1, ..., n) DO:

FOR all reference components sj , (j = 1., ..., n) DO:
compute the mean square error of approximating sj by yi or by −yi:

MSE[yi, sj ] and MSE[−yi, sj ]
and select the better one, i.e. with lower value;

(3) All selected MSE-s are transformed into elements of a new created matrix
P = [ai,j ]n×n, where ai = 1√

MSE[yi,sj ]
.

(4) The error index EI(P) is computed as:

1
n

⎡

⎣
n∑

i=1

n∑

j=1

aij

maxi(aij)
− n

⎤

⎦ +
1
n

⎡

⎣
n∑

j=1

n∑

i=1

aij

maxj(aik)
− n

⎤

⎦ .

The first part of above sum expresses the average error for matching a tested ICA
component with one reference component, whereas the second part is equivalent



ICA-Based Speech Features in the Frequency Domain 613

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
1zero01.wav

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
2zero01.wav

Fig. 3. Waveforms of the word ”zero” pro-
nounced by two speakers (male and fe-
male)
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Fig. 4. The spectrograms (selected
frames with sufficient energy only) for
above words ”zero”

to a penalty score, if a single reference component is matched with more than
one tested component.

3.3 Larynx Noise Detection

Some of the sources correspond to the noisy influence of basic oscillations of
the larynx. In MFCC scheme they are tried to be eliminated by the ”liftering”
processing. In case of our ICA scheme these ”noisy” sources are detected by their
continuously decreasing waveform, with its highest value at the index of 0. The
remaining sources are equipped with one or several local maxima at particular
frequency indices (see Fig. 3 and 5).

3.4 Feature Extraction

For every signal frame we need to determine a feature vector in the previously
established ICA space determined by the selected source set. These features
are equivalent to the unknown mixing coefficients of ICA sources that lead to
the power spectrum vector for current frame. Hence, let us assume the matrix
S, with rows representing the reference ICA sources in frequency space si(ω),
was established during the learning phase. One part of these sources forms the
feature-relevant base SF and the other part - the larynx-related part SL of matrix
S. Then we estimate the unknown mixing coefficients for current window k of
the speech signal as: aT

k = xk(ω)S−1, where xk(ω) is the vector of power spectra
for the k-th window of speech. The final feature vector is a sub-vector of ak

corresponding to the subspace determined by SF.
An illustration of ICA features detected for the source set in Fig. 5 is specified

in Fig.7 and 8. We observe that the coefficients W for different words ”jeden”
and ”dwa” with the same ICA components are quite different, but for the same
word and even different speaker - these coefficients are similar.
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Fig. 5. The detected 31
basic vectors (one column
represents one vector with
32 elements) after ICA
was applied to above two
spectral images

Fig. 6. The main window of our test application:
(1) menu, (2) oscillogram, (3) spectrogram, (4) MFC,
(5) energy, (6) MFCC or ICA, (7) analysis parameters

1zero01.W

20 40 60 80 100 120

5

10

15

20

25

2zero01.W

10 20 30 40 50 60 70

5

10

15

20

25

Fig. 7. The coefficients W (one column
represents one vector of coefficients for
one signal frame) for two speech samples
of word ”zero” from different speakers.
Great similarities appear.
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Fig. 8. The coefficients W for different
words ”jeden” (one) and ”dwa” (two)
from the same speaker. Large differences
appear.

4 Experimental Results

Both the MFCC- and ICA-based approaches for speech frame feature detec-
tion were implemented and tested on speech signal examples, acquired with the
sampling frequency of 22 kHz. Speech samples from 18 persons (both male and
female) were available for testing (Fig. 6).

The MFCC and ICA features are quite stable for different samples of the same
word and speaker (see Fig. 9). For different speakers a larger variability appears
(Fig. 10).

Some experiments of both approaches are summarized in tables 1-2, where the
EI index values were computed while matching the tested sample components
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Fig. 9. MFCC features for speaker 1 and word
”pusc” (release) - 6 different samples

Fig. 10. MFCC features for
speakers 2-4 and word ”pusc”
(release)

Table 1. Comparison of the error index
EI(P) for components - sources - of the
same word (”zero”) but for 4 different
speakers (31 sources with 32 elements)

Reference M1 F1 M2 F2
Tested
Male 1 6.04 4.46 5.15 3.90

Female 1 6.15 4.62 5.85 5.56
Male 2 6.21 4.47 5.13 4.70

Female 2 9.03 8.47 7.45 7.92

Table 2. Comparison of the error in-
dex for components - sources - of differ-
ent words (”zero”, ”jeden”, ”dwa”) but
the same speaker (31 sources with 32 ele-
ments)

Reference ”zero” ”jeden” ”dwa”
Tested
”zero” 3.46 2.50 1.98
”jeden” 2.33 2.82 1.20
”dwa” 2.66 2.94 1.85

Table 3. The classification success rate
for the MFCC- and ICA-based feature
sets (20 classes with 26 learning and 12
verification samples for each class - dif-
ferent speakers)

Feature set MFCC ICA
Word
”zero” 66% 100%

”jeden” (one) 58% 100%
”dwa” (two) 63% 66%

”trzy” (three) 58% 100%
”cztery” (four) 58% 100%

...
”dziewiec” (nine) 83% 100%

”start” 66% 66%
”stop” 92% 83%

”lewo” (left) 66% 91%
”prawo” (right) 66% 66%

”gora” (up) 89% 100%
”do�l” (down) 75% 83%

”pusc” (release) 91% 91%
”z�lap” (catch) 91% 91%

”os” (axis) 83% 91%
”chwytak” (grab) 66% 100%

average 75.6 % 90.55%

with the proper reference components. From Table 1 it is evident, that the
components are quite independent from the speaker. From Table 2 we conclude
that ICA sources, obtained for different words of one speaker, are also similar.
Hence, ICA produces a general base for speech features.
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The last table 3 summarizes a comparison between MFCC features and ICA-
based features. A word reference (class) was represented by an average map of all
the learned feature maps for given word. We applied a simple minimum-distance
classifier for the classification of feature sets, computed in both schemas - MFCC
and ICA. A success was noted if the minimum distance was achieved for the proper
reference word and the distance between current feature map and reference map
was below half of the standard deviation of samples for given class.

5 Conclusion

We have proposed an ICA-based method for speech feature detection in a frame-
based speech recognition system. A subset of sources detected by ICA provides
base vectors of the feature space in the frequency domain, whereas the mixing
coefficients in ICA mixing model constitute the feature vectors. The experiments
show a better quality (in terms of the recognition success rate) of such features
if compared to standard MFCC features.
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