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Abstract. In autonomous indoor navigation some number of localiza-
tions and orientations of the vehicle can be learned in advance. No ar-
tificial landmarks are required to exist. We describe and compare the
detection of several global features of color images (sensor data). This
constitutes the measurement process in a self-localization approach that
is based on Bayes filtering of a Markov environment - the posterior prob-
ability density over possible discrete robot locations (the belief) is recur-
sively computed. The approach was tested to provide robust results under
varying scene brightness conditions and small measurement errors.

1 Introduction

The localization process of an autonomous robot takes as input a previously
acquired map, an estimate of the robot’s current pose, and a set of sensor data
acquired in current pose, and it produces as output a new estimate of the robot’s
pose [1,5,7]. Obviously, any input data for the localization process may be in-
complete and distorted by noise or errors. In generally, pose means the position
and orientation of the robot in the world coordinates or global map.

The vision data is acquired by a passive sensor, i.e. a camera does not in-
fluences the environment by its measurement process. This kind of sensor is
especially applicable for indoor navigation in environments, that are populated
by humans, i.e. offices, hospitals, museums, etc. [3]. Additionally, image pro-
cessing methods can rely on natural landmarks, whereas this case for the active
sensor devices has started to be studied only recently [2]. The use of image anal-
ysis methods in robot navigation has been intensively studied over the past 30
years [8,9,10]. In this paper we focus on general image features, that could be
relatively insensitive to changing lighting conditions, but at the same time, can
be relatively easy computed, to be obtained in real-time by a simple processing
unit.

In theoretical terms the localization process is equivalent to a Bayes filtering
of a finite environment satisfying the Markov condition, i.e. past and future
data are conditionally independent if one knows the current state. During the
localization process the posterior probability density over possible discrete robot
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locations (the belief) is recursively computed. We describe a detailed algorithm
for the discrete self-localization scheme and we propose and test different global
features of monochromatic images (if the brightness of observed scene is constant
or it can be compensated) and another (more robust) set of image features, based
on color information and localization ques.

2 The Self-localization Algorithm

A typical state recursive estimation can be performed in terms of a Kalman
Filter [11]. It can be shown that a normal distribution of the measurement error
induces a Gaussian distribution of the state’s pdf provided by the Kalman Filter.
This is a unimodal distribution and as a direct consequence there is always one
best state estimated. Hence KF is suitable for tracking a single hypothesis but
not many possibly competitive hypotheses, unless we use many instances of the
filter.

2.1 The Method of State Condensation

The general discrete self-localization scheme [13], based on Bayes filtering of a
Markovian environment, is also called state condensation or particle filtering [6],
[7]. It assumes, that the number of states can be limited to a finite number. Only
then it is computationally feasible to estimate the probability distribution over
states.

By belief we denote the pdf of states upon the condition of a sequence of
observations (measurements mt):

∀sk : Belt(sk) = p(sk
t |mt,mt−1, . . . ,mt−n) (1)

In the learning phase the system should acquire two a priori pdf’s:

1. The a priori conditional pdf of measurement upon state, i.e. for each discrete
state s ∈ S and possible measurement vector m to determine the pdf:
p(m|s);

2. The a priori pdf of state transition

p(sk
t+1|sl

t, . . . , s
i
0) = p(sk|sl) (2)

where sl
t, . . . , s

i
0 is the history of past best belief states. In autonomous

navigation the action performed by the vehicle or camera are usually known,
due to the odometry. Hence, this knowledge can be incorporated into the
state condensation scheme - for each pair of states sk, sj and each possible
action a to determine the pdf of state transition with respect to action:
p(sk|sj ,a).

The discrete self-localization algorithm consists of the initialization step and
a main iterative belief ”refinement” step with sub-steps of : belief prediction,
stochastic diffusion, measurement and modification of belief (the reaction onto
the measurement) [13].
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2.2 The Algorithm of the Self–localization Process

1. Get the goal state.
2. Initialization of a default belief state at t = 0 (for example by a uniformly

distributed pdf) Bel0(sk) = p(sk
0 |H0).

3. REPEAT until the goal state is not reached:
(a) t = t + 1;
(b) find the current best state: s∗t−1 = arg max p(st−1|Ht−1), where

Ht−1 = (st−1, mt−1, st−2, mt−2, . . . , s0, m0)
is the history of past belief states and measurements;

(c) determine and perform the next action resulting from minimization of
the distance between current best state and the goal state;

(d) as the current action at and the a priori pdf p(st|st−1, at) are known the
predicted belief state at time t can be computed
̂Belt(sk) =

∑

s[p(sk
t |st−1, at)p(st−1|Ht−1)]

(e) acquire the measurement mt at new position.
(f) with the a priori pdf p(mt|st) modify the belief state at time t:

Belt(sk) = p(sk
t |Ht) = ctp(mt|st)̂Belt(s),

where ct is the current normalization coefficient (the sum of belief state
distribution should be equal to 1).

3 Global Image Features

Due to the iterative approach, exhibited by the self-localization procedure, in-
dividual image measurements need not to be unique for all states - they can be
similar for many states. Hence, we expect that easy computable, general-nature
image features that are combined with a Gaussian-like belief state filtering should
already lead to robust navigation. We also expect that changes of the measure-
ments between the learning phase and the active phase of self-navigation (due
to change of scene illumination or inaccurate position of the vehicle) can be
compensated by a longer belief state refinement sequence.

In this section we propose different color feature detection schemas, obtained
in the RGB, HSV and Y CbCr color spaces. A complete feature vector for a single
image consists of features obtained for several sub-images. In this way we add
some general feature localization information to a state’s measurement vector.

3.1 Image Feature Detection Methods

The following global features are computed for every sub-image:

1. MeanVar6 - the three mean and three standard deviation values of every
color component (i.e. for H, S and V channels of the HSV color space);

m = [m1, m2, m3, std
2
1, std

2
2, std

2
3].
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2. Hist6 - the three dominating color components in the image with their den-
sity values.

m = [Ic1, Ic2, Ic3, den(Ic1), den(Ic2), den(Ic3)].

Ick - the dominating value of the k-th color component, den(Ick) - the number
of pixels with color Ick in relation to the total number of pixels.

3. FFT6x2 - the modules of first 6 components of a Fourier transform of the
image components H(hue) and S(saturation).

m = [|F(0,0)|, |F(0,1)|, |F(1,0)|, |F(0,2)|, |F(1,1)|, |F(2,0)|].
For a square image of size NN, the two-dimensional FFT is given as:

F(k,l) =
1

N2

N−1
∑

i=0

N−1
∑

j=0

I(i, j)e−i2π(ki/N+lj/N) ,

where I(i, j) is the image in the spatial domain; the exponential term is
the basis function - one such function corresponds to one Fourier coefficient
F(k,l). The first coefficient F(0,0) represents the DC-component of the image
and the F(N−1,N−1) represents the highest frequency component.

Obviously above vectors MeanVar6 and Hist6 are sensitive to scene illu-
mination changes. For the HSV and Y CbCr schemas we perform a Y-driven
normalization of the color (and we can omit the Y-components from further
consideration). The RGB color scheme requires an other intensity normalization
scheme - in this caase we scale the color components in such a way, that the sum
of intensities of all pixels is equal to some fixed reference value.

3.2 Learning the a Priori Pdf

The a priori pdf p(m|s) should be computed during the learning phase. But the
number of possible measurement vectors is infinite, usually there are continuous-
valued components of m. In practice this pdf can be made explicit only during
the active work. In the learning phase we compute and store the feature vectors
associated with each discrete state.

During the active work the feature vector of current view is detected (assum-
ing a previous normalization of the scene illumination or camera contrast).

The a priori pdf p(mk+1|s) is implicitly defined, as we can compute for each
state sk the value of a Gaussian distributed pdf, with mid point equal to zero, for
the distance of w|mk+1 −m(sk)|2 (where w is a weighting vector that adjusts
the intervals of particular components to some common interval).

The a priori pdf p(mk+1|s) is defined according to the difference of both
measurement vectors: the current measurement mk+1 at time k+1 and the stored
measurement ms for ∀s ∈ s. The conditional probability density is modelled by
a 1–D Gaussian normal distribution, with its mid point corresponding to the zero
value of a weighted difference

∑N×p
i=1 wi|mi

k+1 − mi
s|2 (where w is a weighting

vector that scales the expected ranges of particular feature elements to some
common level).
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3.3 Test Scenes

In our experiments the camera was mounted on a mobile platform [14] (Fig. 1).
The on-board processor with clock frequency of 900 MHz was able to process
around 2 images per second. Three degrees of freedom of the vehicle were allowed:
a translation along the X and Z axes by pre-defined unit steps and a rotation
around its Y axis by an angle of ±45o. The ”on-ground” locations of states and
of possible directions in three test scenes are shown in Fig. 2 and 3.

Fig. 1. An image is divided
into 9 sub-images - a sepa-
rate feature vector is com-
puted for every sub-image

Office - Seminar room - Corridor -
112 states. 200 states. 222 states.

Fig. 2. The distribution of mobile platform positions dur-
ing the learning phase for 3 test scenes

(a) (b)

Fig. 3. The possible orientations: (a) for the Office and Seminar room, and (b) for the
Corridor

Three scenes with different illumination conditions, spatial distributions and
different colors were available for testing (Fig. 4). Obviously, we expect that the
camera holds the white color balance properly both during learning and active
localization work. As we measure intensity-normalized color coefficients, some
changes in illumination are not significantly disturbing the data if only the color
balance remains to be constant.
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[9, 1] [9, 3] [9, 5] [9, 7]
The office scene

[23, 1] [23, 3] [23, 5] [23, 7]
The seminar room scene

[4, 13] [4, 15] [4, 1] [4, 3] [4, 5]
The corridor scene

Fig. 4. Examples of images acquired in different states and scenes and states

4 Test Results

4.1 Statistics of Features

An exemplary distribution of features over states is shown in Fig. 5. It is visible
that the particular feature values are very often the same for different states,
i.e. a single use of feature can not fully differentiate between two states. An-
other question is, how much sensitive these features are with respect to errors
in robot’s position/orientation and to scene illumination changes. The p-value
of two distributions expresses the correctness of a hypothesis, that both dis-
tributions are statistically equivalent. If the p-value is equal to zero, then the
above hypothesis is wrong and both features can be treated as being different.
We computed the p-value for all pairs of feature vectors, where the first element
of the pair corresponded to the state of the original scene, and the second ele-
ment - to the compatible state in the real scene. Usually, the compatible views
are displaced by several pixels and their illumination conditions are also slightly
different. The feature set FFT6x2 performed best of all, i.e. the other two sets
were more more sensitive to changes in state positions.

4.2 Test Runs

For every test scene and for each measurement method we have run the self-
localization process 100 times, with randomly chosen start and goal states. A 99-
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Fig. 5. The distribution of 2 measurement features over state from the MeanVar6-set
of HSV color space for the Office scene
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Fig. 6. Illustration of belief-state propagation - the belief state distribution after 1-st,
3-th and 10-th iteration

100 success rate appeared (i.e. the final goal state was reached) if color features
expressed in the HSV and Y CrCb color spaces were used. A particular self-
localization process is illustrated on Fig. 6. At the start point the belief state
distribution is an uniform distribution. After 3-4 steps the appropriate state,
that corresponds to the real position, can already be selected as the belief value
for such state dominates already the beliefs of remaining states. We assume that
obstacles or moving persons in front of the vehicle will be detected by other
sensors than vision. In order to limit their influence onto the measurement data
we expect to ”observe” higher wall sections instead of the floor.

5 Summary

Three different color image feature detection schemas were proposed and their
use as the measurement step in a discrete self–localization process was experi-
mentally verified. It was shown that even for natural scenes with changing illu-
minations and small perturbations of the odometry data, the use of even a small
set of features, expressing only global information of a particular view, allows a
robust and error-free self-localization (according to our test runs).

Acknowledgments

The authors would like to thank the Polish Ministry of Science and Information
Society Technologies for supporting this work by the grant MNiI 4 T11A 003 25.



Global Color Image Features for Discrete Self–localization 627

References

1. J. Borenstein, H. Everett, L. Feng, Navigating Mobile Robots. Wesley, Mass., 1996.
2. R.G. Brown, B.R. Donald, “Mobile Robot Self-Localization without Explicit Land-

marks”, Algorithmica, Springer Publ., vol. 26, pp. 515-559, 2000.
3. W. Burgard, A. Cremers, D. Fox, D. Hahnel, G.Lakemeyer, D. Schulz, W. Steiner,

S. Thrun, “Experiences with an Interactive Museum Tour-Guide Robot”, Artificial
Intelligence, vol. 114, No. 1-2, pp. 3-55, 1999.

4. J. Denzler J., M. Zobel, “Automatische farbbasierte Extraktion naturlicher Land-
marken und 3D-Positionsbestimmung. auf Basis visueller Information in in-
door Umgebungen”, V. Rehrmann (ed.), Vierter Workshop Farbbildverarbeitung,
Fohringer-Vg., Koblenz, pp. 57-62, 1998.

5. D. Fox D., W. Burgard W., S. Thrun, “Markov Localization for Mobile Robots
in Dynamic Environments”, Journal of Artificial Intelligence Research, vol. 11,
pp. 391-427, 1999.

6. D. Fox, S. Thrun, W. Burgard W., F. Dellaert, “Particle Filters for Mobile Robot
Localization”, In: Doucet A., DeFreitas N., Gordon N. (Eds), Sequential Monte
Carlo Methods in Practice, Springer Publ., Berlin, etc., 2000.

7. M. Isard, A. Blake, “CONDENSATION - Conditional Density Propagation for
Visual Tracking”, International Journal on Computer Vision, vol. 29, No. 1, pp. 5-
28, 1998.

8. W. Kasprzak, Adaptive computation methods in image sequence analysis, Prace
Naukowe - Elektronika, No. 127, Warsaw Univ. of Technology Press, 2000.

9. C. Thorpe C. (ed.), Vision and Navigation: The Carnegie Mellon Navlab, Kluwer
Academic Publ., Norwell, Mass., pp. 25-38, 1990.

10. I. Masaki, Vision-based Vehicle Guidance, Springer, New York etc., 1992.
11. Y. Bar-Shalom, T.E. Fortmann, Tracking and Data Association. Academic Press,

1988.
12. B. Heigl, J. Denzler, H. Niemann, “Combining Computer Graphics and Com-

puter Vision for Probabilistic Visual Robot Navigation”, Proceedings of SPIE’s
14th Annual International Symposium on Aerospace/Defense Sensing, Simulation
and Controls, Orlando, Florida, April 2000.

13. W. Kasprzak, W. Szynkiewicz, “Using color image features in discrete self-
localization of a mobile robot”, 9th IEEE International Conference on Methods
and Models in Automation and Robotics (August 2003, Miedzyzdroje, Poland),
IEEE conference 8780, pp. 1101 - 1106, 2003.

14. B. Siemiatkowska, R. Chojecki, “Mobile Robot Navigation Based on Omnidirec-
tional Sensor”, Proc. 1st European Conference on Mobile Robots ECMR’03, EU-
RON Conference, Radziejowice, Poland, September 2003, pp. 101-106, 2003.


	Introduction
	The Self-localization Algorithm
	The Method of State Condensation
	The Algorithm of the Self--localization Process

	Global Image Features
	Image Feature Detection Methods
	Learning the a Priori Pdf
	Test Scenes

	Test Results
	Statistics of Features
	Test Runs

	Summary


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


