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Abstract. A stable and accurate estimation of the fundamental frequency (pitch, F0) is an important requirement in speech and music

signal analysis, in tasks like automatic speech recognition and extraction of target signal in noisy environment. In this paper, we propose

a pitch-related spectrogram normalization scheme to improve the speaker – independency of standard speech features. A very accurate

estimation of the fundamental frequency is a must. Hence, we develop a non-parametric recursive estimation method of F0 and its 2nd and

3d harmonic frequencies in noisy circumstances. The proposed method is different from typical Kalman and particle filter methods in the

way that no particular sum of sinusoidal model is used. Also we tend to estimate F0 and its lower harmonics by using novel likelihood

function. Through experiments under various noise levels, the proposed method is proved to be more accurate than other conventional

methods. The spectrogram normalization scheme makes a mapping of real harmonic structure to a normalized structure. Results obtained for

voiced phonemes show an increase in stability of the standard speech features – the average within-phoneme distance of the MFCC features

for voiced phonemes can be decreased by several percent.
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1. Introduction

The fundamental frequency (F0) plays an important role in

human speech generation [1, 2]. But the information about

F0 has only rarely been used in the past to improve automatic

speech recognition systems [3, 4]. Instead, initially the interest

concentrated here on formants, i.e. the resonances of the vocal

tract, which appear on spectrograms as regions of high energy

[5]. They efficiently describe essential aspects of speech using

a very limited set of parameters. Variability of formant loca-

tions for different speakers are explained by different lengths

of the vocal tract. Formant estimation corresponds to the LPC

(linear predictive coding) approach to speech representation.

Since the mid-1980s the most popular representation in speech

recognition has become the mel-frequency cepstral coeffi-

cients (MFCC) [6]. A more recent approach is called LPCC

(linear predictive cepstral coefficients) [6] and it is related to

the two-tube and three-tube models of the vocal tract [5].

Here, we want to utilize the advantage of detecting har-

monic frequencies of the pitch for a spectrogram normaliza-

tion step, that improves the speaker-independence of MFCC

features. Thus, a reliable estimation of the pitch and a pitch-

related normalization of the speech signal is the scope of this

paper.

A reliable pitch detection (which is F0) is generally

a main step in speech and music signal analysis, dedicated

to the extraction of target signal in noisy environment. Most

F0 estimation methods are based on autocorrelation, the am-

plitude magnitude difference function (AMDF), the cepstrum

analysis or linear prediction (LP or PARCOR) [7–11]. They

are very effective for a noiseless target speech. For real en-

vironments, robust techniques, less sensitive to background

noise and reverberation, have been developed, like comb-filter

approach [12], instantaneous amplitude (IA) and frequency

(IF) approaches [13–15]. Another type of F0 estimation ap-

proach is to use the recursive state estimation scheme such as

Kalman filter and particle filter [16–19].

In this paper we propose a method for a stable and accu-

rate estimation of the fundamental frequency (F ), and con-

sider it as an important requirement for a speech spectrogram

normalization approach. The proposed method makes a non-

parametric recursive estimation of F0 and its 2nd and 3rd

harmonic frequencies in noisy circumstances. Therefore, our

method is different from standard Kalman and particle filter

methods in the way that no particular sum of a sinusoidal

model is used, like proposed in [20]. Also we tend to esti-

mate F0 and its lower harmonics by using a novel likelihood

function. Its goal is to estimate F0 by reflecting the spectrum

at 2F0. Then, the individual likelihood functions associated

with estimating 2nd and 3rd harmonics are proposed.

The common approach to make speech features speaker-

independent is to perform a linear or piecewise linear warping

of the frequency axis. The warping function for an individual

speaker is estimated by a maximum-likelihood (ML) approach

[21–22]. Obviously, this requires a large training material to

be collected for a speaker in advance. In contrast to ML-based

approaches there exist very few on-line approaches to speaker-

independent feature normalization. They usually explore the

locations of main spectral formants [23–24] as it is known

that they correspond to specific features of the speaker’s vo-

cal tract.
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In the frequency domain voiced speech signal frames have

spectral peaks at or near integer multiplies of the fundamental

frequency. Most simply the pitch modification can be achieved

by multiplying the frequency representation by a sinusoidal

wave [25]. However, this will result in the strengthening of

side lobs and noise – making the voice very unnatural. Anoth-

er approach is to make formant-corrected pitch shift [3]. The

spectral envelope must be preserved in the modification stage

so as to preserve the formant structure of the vocal tract. Thus

the amplitudes at the new harmonic frequencies are achieved

by sampling the spectral envelope of the original signal at its

harmonic frequencies, whereas at remaining – non-harmonic

frequencies the amplitudes being interpolations of original

non-harmonic frequencies are set.

The paper is organized into 4 more sections. Section 2

introduces the spectrogram normalization approach and the

recursive estimation method, that is based on a particle filter.

In Sec. 3, the new estimation and tracking method is proposed

and especially, likelihood functions are introduced. Several ex-

perimental results of F0 estimation and spectrogram normal-

ization are described in Sec. 4. Through experiments under

various SNR, the proposed F0 estimation method is proved to

be more accurate than conventional methods [26-30] Finally

conclusions are drawn in Sec. 5.

2. Problem

Let us explain the motivation for spectrogram normalization

on base of the following example. In Fig. 1 there are shown

two different Fourier magnitude distributions in a single sig-

nal frame, that contains the same vowel /e/. Two observations

can be made. It is clearly visible that the magnitude peaks are

shifted w.r.t. each other. The “green” voice has a higher F0

then the “blue” voice, but a lower formant F1, again a high-

er formant F2, and in turn a lower formant F3. The second

observation is, that the “green” curve is smoother than the

other one. This is due to a lower number of harmonic fre-

quencies contained in given interval of frequencies (because

of higher F0). We want to generalize these observations and

to propose a normalization scheme in which: 1) the funda-

mental frequency will be set to a default average frequency,

2) at default harmonic frequencies the magnitudes of Fourier

coefficients will be approximated by magnitudes of “nearest”

real harmonic frequencies, and 3) the approximation weights

express the required orientation of the shift.

Fig. 1. Example of two distributions of the magnitude of Fourier

coefficients for vowel /e/ The differences in formant locations are

marked by red and blue lines

2.1. F 0-based spectrogram normalization. The spectro-

gram normalization procedure consists of three steps:

1) On-line estimation of current F0.

The non-parametric approach to F0 estimation, based on

particle filtering, is described in Sec. 3.

2) Determining current phoneme type.

At first, we need to determine the frames containing

speech. A simple voice activity detector (VAD) is applied, that

uses an energy-based adaptive threshold (see Subsec. 2.4) in

the decision rule. The discrimination between voiced and un-

voiced phonemes can be done in different way, in time or fre-

quency domain. Our approach is to use conditions posed onto

auxiliary speech features: the low-pass ratio and the maximum

autocorrelation factor, computed for a single signal frame.

The low-pass ratio is defined as the relation of the sum

of magnitudes of Fourier coefficients Xk, given in the low-

frequency band of 60–1000 Hz and in the entire band of

60–6000 Hz:

ρ
(m)
LP =

k≤1000/fs∑
k≥60/fs

|X(m)
k |

k≤6000/fs∑
k≥60/fs

|X(m)
k |

. (1)

The maximum of a normalized autocorrelation coefficient

for a frame of signal samples [xτ ,. . . , xτ+N−1] starting at

sample τ :

ρ(τ)
max r = max

k=2,...,N/4
r
(τ)
k =

τ+N−k−1∑
n=τ

xnxn+k

|[xn]||[xn+k]| . (2)

The voiced/unvoiced discrimination rule:

ζ(ρ
(m)
LP , ρ

(τ)
max r) =





1

(ρ
(m)
LP ≥ 0.4) ∧ (ρ

(τ)
max r ≥ 0.8)

or (ρ
(m)
LP + ρ

(τ)
max r) ≥ 1.3

0 otherwise

(3)

3) Normalization of the FC coefficients.

The mapping of the magnitude of Fourier coefficients

(FC) from the original vector spanned over the harmonics

of the pitch frequency, [F0, 2F0, 3F0 , . . . ], to the new vec-

tor spanned over the harmonics of the normalized pitch fre-

quency, [FN , 2FN , 3FN , . . . ], is described as follows (for

illustration see Fig. 2):

a) The original vector of Fourier coefficient magnitudes is

given (e.g. the frequency domain is sampled at multiple

frequencies of 40 Hz). Assume that the current pitch fre-

quency is: F0 = 162 Hz. From the envelope line it is

visible that the first two formants are located near the 320

and 1120 Hz (in fact according to our pitch assumption

correct values are 324 and 1134 Hz) Fig. 2a.

b) At first in the output distribution, the magnitudes of Fouri-

er coefficients are approximated at multiple frequencies of

the normalized frequency (e.g. FN = 120 Hz) – computed

from the original magnitude envelope as weighted sums of

original FC located at two nearest harmonic frequencies of

pitch F0 (Fig. 2b).
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c) At second, the remaining Fourier coefficients in the out-

put distribution are set to the average value of original FC

magnitudes for frequencies located between harmonic fre-

quencies of the original pitch (Fig. 2c).

a)

b)

c)

Fig. 2. Illustration of the spectrogram normalization procedure, in-

duced by the change of pitch frequency from 162 Hz to 120 Hz:

(a) Original distribution of Fourier coefficients (FC) (bars located at

multiple of 40 Hz frequencies), the assumed original pitch frequen-

cy at 162 Hz and its harmonics, and the magnitude envelope line;

(b) Approximation of FC magnitudes at harmonic frequencies of the

normalized pitch of 120 Hz taken from the magnitude envelope of

the original distribution; (c) Approximation of FC magnitudes at fre-

quencies located between new harmonic frequencies, and the final

magnitude envelope

2.2. The F 0 estimation problem. The robustness of recur-

sive estimation schemes against non-stationary noise is due

to the fact that the estimated states in previous frames are

recursively used for the state estimation in current frame of

the signal. Usually a parametric model is applied, which as-

sumes a sum of lower harmonic components plus additional

random noise signal. The parameters of such model are F0

and its IA, the IAs of several harmonics, and the number of

harmonics. The state transition and observation equations are

assumed, and then the extended Kalman filter algorithm or

Bayesian parameter estimation scheme is applied for recur-

sive estimation of the time-varying parameters. Recently, a

particle filter has been proposed for recursively estimating lo-

cal peaks of speech spectrum in noisy environment [18]. The

method improves the robustness of conventional peak-picking

methods [29] by novel two-step particle filter approach. The

first step utilizes likelihood of peaks using spectral envelope

of the cepstrum, and the second step determines peaks from

the frequency band taking highest peak presence probability.

Time series filtering. Modeling of dynamic system and ob-

servation is an important concept in time series filtering us-

ing regressive algorithm. If the state transition is modeled by

Markov property, observed vectors yt and state space vectors

xt can be expressed as follows.

System model : xt+1 = ft(xt) + wt, (4)

Observation model : yt = ht(xt) + vt. (5)

ft(xt) is the state transition function from time tto t+1, ht(xt)
is the observation function which expresses the relation be-

tween states and observed values, wt, vt are white noises.

The state estimation problem results in the estimation of

posterior probability distribution of xt which is expressed as

p(xt|Yt) with the set of observation series Yt = {y1 . . . yt}.

On the contrary, it is difficult to estimate p(xt|Yt) directly

from Yt. Therefore, this problem is solved by converting it to

sequential estimation using Bayes’ theorem and Markov prop-

erty of the state space. Based on Bayes’ theorem, p(xt|Yt)
can be computed by the multiplication of likelihood and prior

probability p(xt|Yt−1) as follows:

p(xt|Yt) =
p(Yt|xt)

p(Yt|Yt−1)
p(xt|Yt−1). (6)

Here, the likelihood p(Yt|xt) expresses the probability to ob-

serve Yt in the certain state. p(Yt|Yt−1) is the normalization

term which makes (
∫
p(xt|Yt)dxt ) equal to 1 and has no

relation with xt. p(xt|Yt−1) is the prior probability of xt at

the time t, and is given by

p(xt|Yt−1) =

∫
p(xt, xt−1|Yt−1)dxt−1

=

∫
p(xt|xt−1Yt−1)p(xt1|Yt−1)dxt−1

=

∫
p(xt|xt−1)p(xt−1|Yt−1)dxt−1,

(7)

based on Markov property. Here, p(xt−1|Yt−1) is the poste-

rior probability at the time t−1, and p(xt|xt−1) is the state

transition probability from time t−1 to t, and it is given by

Eq. (4). As just described, the filtering task is to estimate

posterior probability p(xt|Yt) at each time. It is performed by
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the prediction of the state at time tusing observed value up to

time t− 1 and state transition probability.

Particle filter. Except for its extended version, the Kalman

filter poses restrictions on both observing and system models

such as being linear and Gaussian model. In contrast, these

restrictions are not imposed on the particle filter (PF). There-

fore, PF is a valid approach to estimate nonstationary, non-

linear, and nonGaussian state space model. In PF the non-

Gaussian distribution is approximated by particles: St = [s
(1)
t ,

. . . , s
(N)
t ]. Therefore, the pdf-s p(xt|Yt) and p(xt|Yt−1), that

usually appear in the time series filtering are approximated by

using sufficiently many particles. When N particles exist, pri-

or probability and posterior probability are approximated by:

Prior: p(xt|Yt−1) ≈
1

N

N∑

i=1

δ(xt − s
(i)
t|t−1), (8)

Posterior: p(xt|Yt) ≈
1

N

N∑

i=1

δ(xt − s
(i)
t|t) (9)

Here we have two particle sets St|t−1={s
(1)
t|t−1,. . . s

(N)
t|t−1} and

St|t={s
(1)
t|t ,. . . s

(N)
t|t }. St|t is the posterior distribution of parti-

cles which are wiped out or copied from the prior (predicted)

distribution St|t−1 depending on observation at time t, that

results in weighting (likelihood) of particles

The essence of PF is estimating posterior distribution

p(xt|Yt) by using posterior particle set St|t. The St|t is gener-

ated as a weighted version of prior particles St|t−1 To realize

this, we generate both sets of prior particles St|t−1 and poste-

rior particles St|t at certain time t based on the following steps

known as the sampling importance resampling filter [32].

1) Initialization

Set the initial arrangement of particles St−10. Set t = 1.

2) Prediction of next prior distribution of particles

Add the random noise to each particle s
(i)
t1|t−1 (i =

1, . . . , N ) and scatter them according to the system model,

p(xt|xt−1=s
(i)
t−1|t−1), to produce the prior distribution of par-

ticles as follows:

[2-1] Generate a series of random system noise w
(i)
t−1

[2-2] Generate prior predicted distribution of particles by tran-

sition process of particles at time t−1 based on system model

Eq. (4):

St|t−1 = {f t−1(s
(i)
t−1|t−1w

(i)
t−1) |i = 1, . . . , N}. (10)

3) Weighting of particles due to observation

Calculate the current likelihood p(yt|xt = s
(i)
t|t−1) based

on the observation model, Eq. (5), then update the weights

π
(i)
t|t−1 of i-th prior predicted particle as

π
(i)
t =

p(yt|xt = s
(i)
t|t−1)

N∑
i=1

p(yt|xt = s
(i)
t|t−1)

(11)

to define the set Πt =
{
π

(i)
t |i = 1, ..., N

}

4) Update – posterior distribution of particles

[4-1] Resampling

The set of particles and their weights,
{
s
(i)
t|t−1, π

(t)
i

}
,

is mapped into a consistent set with uniform weights{
s
(i)
t|t , N

−1
}

.

[4-2] The updated particle set approximates the posterior

probability:

p(xt|Yt) ≈
1

N

N∑

i=1

δ(xt − s
(i)
t|t ) (12)

[4-3] The posterior particles t also allow to estimate the state

variable as:

x̂t =
1

N

N∑

i=1

s
(i)
t|t (13)

5) Termination test

If (t < T ) then set t = t+1 and go back to the prediction

step 2) else stop.

3. Proposed F 0 estimation approach

Figure 3 shows the flow of the F0 estimation process per-

formed with the help of a particle filter. In particular we need

to explain the meaning of particles, the measurement process,

the weighting (likelihood) setting for harmonic frequencies

and the update of particles

Fig. 3. Flow of the F0, 2F0, 3F0 estimation

3.1. Problem representation. Consider a discrete-time sig-

nal of finite length:

y[k] = x[k] + n[k], (14)

where x[k] is the source speech signal, n[k] is noise, and k is

the discrete time index. Applying a windowed L-point short
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time Fourier transform (STFT) we get a matrix of observa-

tions in the frequency space – the spectrogram:

Y [f, t] = X [f, t] +N [f, t], (15)

where t = 1, 2, . . . , T ; is the integer index of time frame,

and f indicates the index of frequency bin, where f =
0, 1, . . . , L/2.

A set of particles St|t represents the likelihood of power

distribution in the frequency domain. It is initialized accord-

ing to local power maxima and then, due to different mea-

surement steps for F0, the 2nd and 3d harmonic frequencies,

there are three set of particles St|t iteratively obtained, for

every t = 1, . . . , T . Current estimation of F0, the 2nd and

3d harmonic frequencies is done in sequence, based on the

information of corresponding particle distribution St|t.

In the next iteration the particles are resampled by random

noise wt and due to next measurement step, they are weight-

ed again. This allows again a resampling that concentrates on

particles expressing the currently expected harmonic struc-

ture of the speech signal. Figure 4 illustrates the resampling

steps done for samples aimed to represent the fundamental

frequency F0.

Fig. 4. Resampling of particles (during the prediction and update

steps)

3.2. Likelihood setting (weighting). The most significant

factor in the proposed estimation is likelihood setting. The

likelihood is determined based on power spectrum and its

harmonic structure.

First, our attention is focused on the local maximum pow-

er spectrum at the actual F0. However, the local maximum

power property does not always ensure the real F0, because

observed power spectrum is sensitive to environmental noise.

In addition, power level of 2nd harmonic may happen to be

larger than the power level at F0. To avoid these problem-

atic cases, we need to incorporate harmonic structure. That

is, we may find local maximum power at some integer multi-

plied frequency of F0. This fact is utilized for next likelihood

setting.

(1) Likelihood for F0 determination

The following likelihood is defined as the weighting term

of the i-th prior particle s
(i)
t|t−1 (in F0 estimation we use now

the notation π
(i)
F0

[t] for weight π
(i)
t ):

π
(i)
F0

[t] = αξ
(i)
t + (1 − α)ψ

(i)
t , (16)

ξ
(i)
t =

(∥∥∥Y(s
(i)
t|t−1, t)

∥∥∥ +
∥∥∥Y(2s

(i)
t|t−1, t)

∥∥∥
)2

√
N∑

i=1

(∥∥∥Y(s
(i)
t|t−1, t)

∥∥∥ +
∥∥∥Y(2s

(i)
t|t−1, t)

∥∥∥
)2
. (17)

The term ξ
(i)
t represents the normalized mixed power at the

points of i-th particle located at frequency F and at 2F0.

Due to harmonic structure of voiced speech, when i-th parti-

cle exists at actual F0, the first term of the right hand side

of Eq. (16) takes large value. Because it reflects the power

at twice frequency of particle s
(i)
t|t−1, this likelihood prevents

from misestimating 2nd harmonics as actual F0. The second

term ψ
(i)
t of the right hand side of Eq. (16) is binary num-

ber which indicates whether the estimated point meets the

local peaks properly. Namely, we set ψ
(i)
t = 1 if both of the

following peak conditions are satisfied:

∥∥∥Y(s
(i)
t|t−1, t)

∥∥∥ >
∥∥∥Y(s

(i)
t|t−1 ± ε, t)

∥∥∥ ,
∥∥∥Y(2s

(i)
t|t−1, t)

∥∥∥ >
∥∥∥Y(2s

(i)
t|t−1 ± ε, t)

∥∥∥ .
(18)

Otherwise, ψ
(i)
t = 0. We set α = 0.6 experimentally, and

ε is the frequency unit which corresponds to one frequency

bin width.

(2) Likelihood for 2nd and 3d harmonics

Next step is to establish the likelihood for harmonics. We

define the likelihood for k-th harmonics (k = 2, 3) by

π
(i)
harm[t] = β

(∥∥∥Y(s
(i)
t|t−1, t)

∥∥∥
)2

√
N∑

i=1

(∥∥∥Y(s
(i)
t|t−1, t)

∥∥∥
)2

+
1 − β

σ
√

2π
exp



−
(s

(i)
t|t−1 − kF̂0)

2

2σ2



 .

(19)

As the order of harmonics increases, its power tends to de-

crease. From this observation, it is not proper to take the

power value of harmonic itself as the likelihood. In the pro-

posed method, the elements selected as the likelihood are the

power of the points where particles exist. For the former, we

set the first term of the right side of Eq. (19) which takes

higher value when i-th particle exists at actual harmonics.

The second term of the right side means the current proba-

bility of harmonics. It is based on normal distribution whose

mean is k(= 2, 3) times the value of the estimated fundamen-

tal frequency F0, and the standard deviation σ is determined

experimentally. In later experiment we set it the value which

corresponds to width of 8 frequency bins.

3.3. F 0, 2nd, 3rd harmonics estimation. Due to manag-

ing nonlinear, nonGaussian model in PF, the estimated F0 is
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obtained by the average of particles, namely the arithmetic

weighted mean of the posterior N particles given by:

F̂0[t] =
1

N

N∑

i=1

s
(i)
t|t =

1

N

N∑

i=1

π
(i)
F0
s
(i)
t|t−1 (20)

is used based on Eqs. (8), (9). Same weighted average com-

putation is adopted for estimating the 2nd and 3d harmonic

frequencies by using related particles.

3.4. Voice activity detector. One problem in the proposed

method as well as in other recursive estimation schemes is

that F0 is intended to estimate even in unvoiced and silent

frames, what will result in false results. To avoid this, we

need to use a VAD (voice activity detector) and to provide a

voiced/unvoiced discrimination rule We adopt a simple VAD

criterion: if the power at estimated frequency each particle

exists does not attain a specific threshold, namely the condi-

tion

|Y (s
(i)
t|t , t)|2 < χ Max|Y |2 (i = 1, . . . , N) (21)

is satisfied, then no update of samples in current frame is

performed and the estimated value is also not adopted as a

F0. Max|Y |2 is the maximum value of power spectrum of

speech across the time interval. We set χ = 0.03 in the ex-

periments.

As explained in Subsec. 2.1, the unvoiced/voiced discrim-

ination rule is based on two speech parameters computed for

every frame: the low-pass ratio and the maximum value of

auto-correlation coefficient. We run the estimation for both

voiced and unvoiced signal frames but vary the parameter α
for them.

4. Experiments

At first, the proposed method of F0 estimation is applied to

speech signals with two types of additive noise. The first one

is white noise, and the other is a sample of real environment

noise.

At second, the correct estimation of F0 is used to normal-

ize the spectrogram and to compute MFCC features. These

features of selected signal frames are evaluated at the end.

4.1. F 0 estimation under white noise. Evaluation criteria.

In order to compare quantitatively these obtained results with

the results by several conventional methods, we defined two

measures: gross error rate and fine error rate.

Gross error rate (GER) is the ratio of the number of time

frames giving “incorrect” values to the total number of frames.

Value of F0 is called “incorrect” if it falls outside ±10% of

the actual F0 value.

Fine error rate (FER) is the ratio of the number of time

frames giving “correct” values to the total number of frames.

Value of F0 is called “correct” if it falls inside ±5% of the

actual F0 value. We can see the robustness of the estimation

against noise from the GER, and the accuracy of estimation

from the FER.

Robustness of the proposed method against white noise is

confirmed as follows. Four SNR cases, such as 20 dB, 10 dB,

5 dB, and 0 dB are examined. Before the error evaluation

is performed actual F0 and 2nd, 3d harmonics frequencies

are estimated. For comparing the proposed method with oth-

er methods, most rigorous way is to use database with EGG

data as reported in [21]. On the other hand, we determine the

actual F0 and harmonic frequencies manually by observing

the amplitude values in time-frequency plane of the original

(highest SNR) speech signal manually. The accuracy in this

paper means how the estimated frequencies are apart from

these manually determined results.

Comparative results. The proposed method is compared with

following four conventional methods:

1. The auto-correlation method [26, 27] (Auto-correlation

method for period determination),

2. The amplitude magnitude difference function (AMDF) [28]

(Time-lag search for globally maximizing the magnitude of

difference function),

3. The linear prediction (LP) and residual signal method

(PARCOR) [29] (Using the LP source-filter model for de-

tecting glottal characteristics),

4. The cepstrum-based method [30] (Cepstrum or homomor-

phic model for detecting glottal characteristics).

Since these conventional methods usually estimate solely

F0, then, the 2nd and 3d harmonics estimations are set to be

simply the double and triple values of F0. There exist other

methods such as [33] etc., The method [33] for instance was

compared with AMDF in [28]. In addition, [34] reported the

comparative evaluation for several estimation methods.

Additionally, in order to prevent nonessential miss-

estimation when we apply the conventional methods, two

thresholds are set. They prevent from miss-estimations that are

less than the half and more than twice of actual F0. However,

these miss-estimations do not occur in the proposed method.

Experiments were performed for four (2 males & 2 females)

speech signals from the Acoustic Society of Japan (ASJ) con-

tinuous speech corpus for research. We added white Gaussian

noise to the sources.

The results of harmonic frequencies estimation are shown

in Fig. 5. As observed in these results, the proposed method

gives accurate both F0 and 2nd harmonic estimation even in

low SNR cases. On the other hand, 3d harmonic frequency is

occasionally misestimated in lower SNR case. It is due to the

decrease of power at higher harmonic frequency.
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Fig. 5. (a) Actual contour, (b)–(e) estimation results in each SNR,

(b) 20 dB, (c) 10 dB, (d) 5 dB, (e) 0 dB. Estimated F0, 2nd and 3d

harmonics are marked by “∗”, “+”, “o” respectively

This implies the advantage of the proposed method. Fig-

ure 6 shows the estimation results of each method under the

10 dB white noise. In addition, GER results in Fig. 7 show

that the proposed method can estimate F0, 2F0, 3F0 ro-

bustly against noise. PARCOR method can also estimate ro-

bustly, while, we can say that the proposed method gives

more accurate estimations than other methods associated

with FER.

In lower SNR condition, the original shape of speech spec-

trum would be more or less deformed; therefore, the conven-

tional methods based on the periodicity of voiced signals does

not cope with these cases. Meanwhile, the proposed method

comparatively gives accurate results. It is resulted by intro-

ducing proper likelihood which is able to evaluate how the

estimated F0 is appropriate. In addition, it would satisfy tem-

poral continuity.

Fig. 6. Actual harmonic profile and estimated results obtained by im-

proved conventional and the proposed methods (SNR=10 dB white

noise case)

Fig. 7. GER and FER of the conventional and the proposed methods

4.2. Experiments under environmental noise. In order to

confirm robustness of the proposed method against real en-

vironment noise, four speech signals in an office room are

acquired (Fig. 8). Low frequency noises, such as air condi-

tioner noise, exist in real room environment. That makes it

difficult to estimate accurate F0, because F0 also exists in

low frequency band.
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Fig. 8. Estimation results of the proposed method in real environ-

ment noise (in each case: top chart is the spectrogram, bottom chart

– results of F0, 2nd, 3d harmonics estimation)

In addition to low frequency noise, other factors are con-

sidered to cause failure estimation. One of these appears in

Fig. 8b case. In this case, estimated spectrogram of speech

does not always present exact harmonic (overtone) relation-

ship. Figure 8b upper spectrogram at time interval around 4

[s] shows this phenomenon. Nevertheless, we can see at lower

part of Fig. 8b that the proposed method can estimate almost

accurate F0. For female speech result as shown in Fig. 8d,

the estimated F0 is relatively accurate. This is because fe-

male F0 is usually higher than male F0, therefore, it is less

degraded by lower frequency noise.

4.3. Speech feature evaluation. In the following experiments

we evaluate the F0-based spectrogram normalization method,

proposed in Sec. 2. The set of speech samples contained 200

spoken words and word sequences, coming from 4 speakers

(2 male and 2 female speakers) [35]. The goal of experi-

ments was to evaluate the similarity (we could also say: sta-

bility) of MFCC feature sets for every individual phoneme

category, before and after the F0-based spectrogram normal-

ization.

Voiced/unvoiced discrimination. Non-voiced parts are de-

tected, when low-pass ratio is approximately below 0.4 and

normalized autocorrelation is below 0.5. Silence is detected

according to a power rule. Voiced parts are given when ap-

proximately the low-pass ratio is over 0.4 and the normalized

auto-correlation is over 0.8 (see Figs. 9–11).

Fig. 9. The polish utterance: “oś dwa dół start stop”

Fig. 10. Illustration of the measurement of F0 in time (top draw-

ing), the corresponding low-pass ratio distribution (middle drawing)

and the normalized auto-correlation distribution (bottom drawing).

The vertical lines illustrate the detected borders between voiced and

unvoiced phonemes in the signal – they also provide time synchro-

nization of all the drawings)
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Fig. 11. Illustration of the estimated F0. The dotted line represents

the estimated F0 distribution, whereas the continuous line represents

the measurements of F0 in time

Evaluation criteria. The MFCC features are computed ac-

cording to the standard homeomorphism, i.e. the transforma-

tion [4]:

MFCC(x) = DFT−1(log(MFC(|DFT (x · w)|))),

where x is the signal frame, w is the Hamming window, MFC

is the transformation by a set of triangle band-pass filters lo-

cated according to the Mel scale of frequencies, DFT and

DFT−1 are the Discrete Fourier Transform and the Inverse

DFT.

We managed manually to label them with the appearance

of 12 selected phonemes: the vowels /a/, /e/, /o/; the approxi-

mants /y/, /r/, the nasal /n/, the fricatives /z/,/v/; the affricates

/dZ/, /tS/; and the plosives /t/,/d/.

The stability of features for a single phoneme is expressed

by two error measures. They represent the average square dis-

tance between two sets of feature vectors. Let cN be a set of

N feature vectors with L features each. cN is compared with

itself or with another set CM , that contains M vectors. The

average within phoneme distance is:

ε1(cN ) =
2

N(N − 1)

N−1∑

m=1

N∑

n=m+1

1

L

L∑

l=1

(cnl − cml )2. (22)

The average distance between two sets cN and CM is:

ε2(cN , CM ) =
1

M ·N

M∑

m=1

N∑

n=1

1

L

L∑

l=1

(cnl − Cm
l )2. (23)

Similarity of features before correction. Now, let us ob-

serve the behavior of MFCC features for a given speaker and

in average (Fig. 12, Table 1). For a vowel and a nasal strong

differences between speakers exist, that seem to correspond

to the differences of speaker’s basic frequencies. Contrary, af-

fricates and consonants show good between-speaker similari-

ties. The analysis of results given in Table 1 leads to following

conclusions:

• the best similarity (small within-phoneme distances and

variances, and large between-phoneme distances) is shown

by plosives and unvoiced affricates;

• the between-phoneme distances are sufficiently large if

compared to within-phoneme distances for every single

speaker.

This observation verifies that a normalization procedure

should focus on voiced phonemes.

Fig. 12. Average MFCC feature vectors for vowel /a/ for 4 speakers

Table 1

Comparison of distances between features of phonemes for a single speaker

and in average for all speakers

Speaker
Within-phoneme

distance ε1

Average
distance ε2

to other phonemes

Vowel /a/

Male 1 2.22 19.2

Male 2 2.39 16.5

Female 1 2.42 19.5

Female 2 2.34 21.2

Average 2.28 19.1

Average for all speakers

Vowel /e/ 1.55 15.1

Vowel /o/ 2.62 20.1

Approximant /y/ 3.35 18.5

Approximant /r/ 5.56 19.0

Nasal /n/ 3.85 21.8

Fricative /z/ 7.21 29.4

Fricative /v/ 3.93 14.7

Affricate /dZ/ 8.24 23.1

Affricate /tS/ 3.20 40.5

Plosive /t/ 1.93 14.3

Plosive /d/ 1.82 13.8

Similarity of features after correction. We evaluate the av-

erage fundamental frequency for male utterances of studied

phonemes to be around 12 Hz, whereas for female utterances

this average value is around 200 Hz. In our normalization ex-

periments the male and female utterances have been normal-

ized separately. Firstly, male voices have been normalized to

female average, hence fF0− norm frequency was set to 200 Hz.

Secondly, female voices have been normalized to the average

of men, i.e. 12 Hz. The results of such two experiment series

are summarized in Table 2. The relative change of average

distance of all samples for given phoneme, before and after

the normalization step, is obtained as:

∆ε1(CN+M ) =
ε
(before)
1 − ε

(after)
1

ε
(before)
1

· 100 %. (24)
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Table 2

Total results of correcting female utterances by normalization to

fF0− norm = 120 Hz, and of correcting male utterances by normalization

to fF0− norm = 200 Hz

Phoneme
After female

correction average
∆ε1:

After male
correction average

∆ε1:

Vowels

/a/ 18.0 % 16.9 %

/e/ 15.5 % 6.7 %

/o/ 4.8 % 6.5 %

Approximants

/y/ 15.6 % 17.6%

/r/ 0.9 % −2.8%

Affricates

/tS/ 2.4 % −0.1 %

/dZ/ 4.5 % 12.5 %

Nasal

/n/ −5.6 % −1.0 %

Fricatives

/v/ 1.9 % 3.5 %

/z/ 5.4 % 9.4 %

Plosives

/d/ 4.0 % 6.8 %

/t/ 12.6 % 4.3 %

AVERAGE 5.2 % 6.7 %

Particular results of spectrogram normalization for /y/ (fe-

male voice) and /dZ/ (male voice) are illustrated in Figs. 13

and 14 Our approach allows to improve the stability of MFCC

features generated for vowels (e.g. /a/, /e/, /o/) and voiced

consonants (e.g. /y/). The articulation of these phonemes is

not disturbed and attenuated by the vocal tract. In contrast,

the retroflex /r/ is heavily attenuated and the normalization

scheme offers no improvement for it. A positive influence onto

the feature stability can also be observed for voiced fricatives

and affricates (/z/ and /dZ/), and for plosives (/d/ and /t/). For

nasal /n/, in contrary, there appears a small deterioration.

Fig. 13. Normalizing female speech features (MFCC) for approxi-

mant /y/ by mapping its fundamental frequency to default man’s F0

Fig. 14. Normalizing male speech features (MFCC) for affricate /dZ/

by mapping its fundamental frequency to default female’s F0

5. Conclusions

The paper proposed a non-parametric recursive estimation of

F0 and 2nd and 3rd harmonic frequencies utilizing particle

filter. The F0 and its lower harmonics are estimated by us-

ing different likelihood function from the conventional. Our

method has been compared with other conventional methods

and has been proved to be more robust against background

noise.

The obtained F0 and the 2nd and 3rd frequencies may not

only be useful for speech recognition but can also be addition-

al cues in speaker separation and localization [36, 37], many-

channel speech deconvolution [38] and other speech process-

ing tasks. It is because the direction or delay estimation is not

always accurate especially in lower frequency band containing

F0 and their harmonic frequencies.

To justify the approach, we have proposed an on-line

spectrogram normalization scheme dedicated to improve the

speaker-independency of the standard MFCC speech features.

The approach relies of the highly reliable approach to the

speaker’s instantaneous fundamental frequency (F0) estima-

tion. The advantage of our simple spectrogram normalization

method is that it is computed “on-line” as there is no need

for collecting particular speaker’s samples in advance.

The original MFCC features are relatively stable for un-

voiced and heavily attenuated phonemes, hence for such

phonemes a normalization scheme is not necessary. For open

or voiced phonemes the proposed approach was demonstrated

to decrease the within phoneme average distance by 5–6%
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