

Analiza zniekształceń procesu "print-scan" w metodach steganografii zdjęć drukowanych

Włodzimierz Kasprzak Maciej Stefańczyk

Jan Popiołkiewicz

Stosowanej Politechnika Warszawska

W.Kasprzak@elka.pw.edu.pl

Biometria 2012 Warszawa, 13.12.2012

Treść

- 1. Steganografia zdjęcia tożsamości
- 2. Proces "drukuj-skanuj"
- 3. Metoda Fujitsu
- 4. Metoda DFM
- 5. Metoda BPCS
- 6. Osadzanie w siatce trójkątów
- 7. Wnioski

2. Proces "drukuj-skanuj" w steganografii

Rozpatrywany schemat przetwarzania zdjęcia:

- Wykonujemy zdjęcie twarzy (otrzymujemy obraz cyfrowy bez kompresji) – jest to nośnik
- 2. Wstawiamy stego-obiekt
- **3.** Drukujemy obraz (na papierze lub karcie PVC)
- Skanujemy papierowy wydruk (otrzymujemy obraz cyfrowy)
- Detekcja odczytujemy lub potwierdzamy obecność stego-obiektu

BIO-PKI 4-4

Przykład - skanowanie zdjęcia

Zdjęcie zeskanowane czytnikiem dokumentu tożsamości:

Zdjęcie oryginalne

 a) w świetle białym (widoczne nadruki);

c) wersja OVD
(po wycięciu warstwy nadruku);

b) w podczerwieni IR

d) w ultrafiolecie (UV)

BIO-PKI 4-4

Osadzanie i detekcja

Proces osadzania stego-obiektu:

- 1. Opcjonalna synchronizacja obrazu
- 2. Opcjonalne szyfrowanie informacji ukrywanej
- 3. Osadzanie informacji ukrytej

Proces detekcji stego-obiektu:

- 1. Opcjonalna synchronizacja obrazu
- 2. Dekodowanie informacji ukrytej
- 3. Opcjonalne odszyfrowanie informacji ukrytej

BIO-PKI 4-4

Synchronizacja

Etap synchronizacji obrazu u odbiorcy ma na celu wyeliminowanie wpływu następujących przekształceń obrazu:

przesunięcie, przeskalowanie i obrót,

które zaszły w wyniku procesu "drukuj-skanuj", jakiemu podlegał obraz na dokumencie tożsamości.

Rozpatrujemy trzy przypadki:

- 1) Brak synchronizacji (tzn. nie jest wymagana)
- 2) Dopasowanie ramki obrazu
- Dopasowanie poprzez wykrycie punktów szczególnych obrazu.

Metody steganograficzne

Badamy stosowanie wybranych metod steganograficznych dla zabezpieczania zdjęć tożsamości na dokumencie drukowanym:

1. Metoda Fujitsu – osadzanie w dziedzinie obrazu

2. Metoda DFM – osadzanie w dziedzinie transformaty Fouriera-Mellina

3. Metoda BPCS ("bit plane complexity segmentation") – osadzanie w dziedzinie składowych bitowych obrazu

 Osadzanie w sieci trójkątów obrazu – synchronizacja metodą punktów szczególnych

9

BIO-PKI 4-4

Osadzanie i detekcja

Nasza implementacja:

równomierna zmiana wartości środków bloków (4x4) dla osiągnięcia minimalnej wymaganej odległości zamiast ich zamiany. 70 -20 100 90 Osadzanie bitu: (np. minimum odległości = 32;zmiana +/- 16) 70 110 Detekcja bitu: 100 90 BIO-PKI 4-4 11

Metoda Fujitsu - wyniki

α	2	4	8	16	32
PSNR	46.5	45.5	43.4	39.9	35.6

Miara zakłóceń (PSNR) wprowadzanych przez osadzenie informacji w zależności od siły wstawienia (*a*) (= minimalna wymagana odległość)

zdjęcie oryginalne obrócon

obrócone o 27°,

obrócone (korekcja) o -27°, przycięte

-45° -15 45° Kat -90° -60° -30° 00 15 30° 60 90° obrotu α = 2 90% 86 88 89 90 91 90 89 87 85 90% 95% 94% 93 95 95 96 95 95 94 93 95% $\alpha = 8$ 96 95 96 97 96 96 96 95 95 97% $\alpha = 32$ 97%

Procentowa ilość poprawnie odczytanych bitów stego-obiektu przy dwukrotnym obrocie

Kąt obrotu:	-1°	-0.8°	-0.6°	-0.4°	-0.2°	0°	0.2	0.4°	0.6°	0.8°	1º
α = 2	61%	63	70	78	88	97	90	79	71	63	61%
α = 8	70%	72%	81	87	94	97	94	87	81	72	69%
$\alpha = 32$	76%	80	91	93	96	97	96	93	90	80	75%

Metoda Fujitsu – wyniki (2)

(a) (b) (c) (d) Test skalowania: (a) oryginalne zdjęcie z informacją ukrytą, (b) zdjęcie przeskalowane i dopełnione białym kolorem, (c) zdjęcie przeskalowane i przycięte, (d) zdjęcie przesunięte.

Przeskalo -wanie:	10	30 %	50 %	70 %	90 %	100	110	130 °	150	170	200
$\alpha = 2$	47%	72	87	90	94	96	96	96	96	96	98%
$\alpha = 8$	47%	85%	94	96	97	97	97	97	97	97	97%
α = 32	47%	93	96	96	97	97	97	97	97	97	97%
Pr	ocentow	va ilość	popraw	nie odo	zytany	ch bitów i	nformacji	i przy dw	ukrotnyn	n przeska	lowaniu

-10	-8	-6	-4	-2	0	2	4	6	8	10
51%	51	55	55	70	97	70	52	49	51	51%
50%	51%	55	56	75	97	75	55	49	51	51%
50%	51	51	55	83	97	83	55	48	50	59%
centowa	a ilość po	oprawni	e odczyt piałym ko	anych b	itów info ub przyc	ieciu	rzy prze:	skalowa	niu i dop	ełnieniu
	-10 51% 50% 50%	-10 -8 51% 51 50% 51% 50% 51 ocentowa ilość procentowa 10	-10 -8 -6 51% 51 55 50% 51% 55 50% 51 51 50% 51 51 scentowa ilość poprawni 6	-10 -8 -6 -4 51% 51 55 55 50% 51% 55 56 50% 51 51 55 50% 51 51 55 50% 51 51 55 50% 51 51 55 50% 51 51 55 50% 51 51 55 50 51 51 55 50 51 51 55 50 51 51 55 50 51 51 55 50 51 51 55 50 51 51 55 50 51 51 55 50 51 51 55 50 51 51 55 50 51 51 55	-10 -8 -6 -4 -2 51% 51 55 55 70 50% 51% 55 56 75 50% 51 51 55 83 ocentowa ilość poprawnie odczytanych b białym kolorem lu -4 -2	-10 -8 -6 -4 -2 0 51% 51 55 55 70 97 50% 51% 55 56 75 97 50% 51 51 55 83 97 bcentowa ilość poprawnie odczytanych bitów inforbiałym kolorem lub przyc	-10 -8 -6 -4 -2 0 2 51% 51 55 55 70 97 70 50% 51% 55 56 75 97 75 50% 51 51 55 83 97 83 ocentowa ilość poprawnie odczytanych bitów informacji p białym kolorem lub przycięciu białym kolorem lub przycięciu 10 10	-10 -8 -6 -4 -2 0 2 4 51% 51 55 55 70 97 70 52 50% 51% 55 56 75 97 75 55 50% 51 51 55 83 97 83 55 ocentowa ilość poprawnie odczytanych bitów informacji przy przez białym kolorem lub przycięciu białym kolorem lub przycięciu 55	-10 -8 -6 -4 -2 0 2 4 6 51% 51 55 55 70 97 70 52 49 50% 51% 55 56 75 97 75 55 49 50% 51 51 55 83 97 83 55 48 ocentowa ilość poprawnie odczytanych bitów informacji przy przeskalowar białym kolorem lub przycięciu 97 83 55 48	-10 -8 -6 -4 -2 0 2 4 6 8 51% 51 55 55 70 97 70 52 49 51 50% 51% 55 56 75 97 75 55 49 51 50% 51 51 55 83 97 83 55 48 50 ocentowa ilość poprawnie odczytanych bitów informacji przy przeskalowaniu i dop białym kolorem lub przycięciu 97 50<

Wyniki – proces PS (3)

Synchronizacja 4 znacznikami:

PKI

Przykład (a) wydrukowanego i (b) zeskanowanego zdjęcia

Proces PS: zdjęcie 300x400, drukarka atramentowa lub wywołanie w fotolabie (254 dpi, 3x4cm).

Kąt obrotu:	0 °	10°	20°	30°	40°	50°	60°	70°	80°	90°
α=2	68%	67	66	66	65	64	62	60	59	58
$\alpha = 8$	82%	82%	82	81	79	77	74	71	68	66
$\alpha = 32$	96%	96	96	96	96	95	93	90	89	88

2. Metoda DFM

Metoda DFM to wstawianie stego-obiektu w dziedzinie dyskretnej transformaty Fouriera – Mellina.

Jest to dziedzina niezmiennicza ze względu na przekształcenia afiniczne obrazu (przekształcenia RST – obrót, skalowanie, przesunięcie).

Wstawianie w dziedzinie widma

Stego-obiekt (znak po zakodowaniu) osadzany jest w zakresie średnich częstotliwości widma amplitudowego.

Wstawianie informacji ,,r'': $\mathbf{c}' = \mathbf{c}(1+\alpha r)$

gdzie c to wektor współczynników, r to zakodowana wiadomość a α współczynnik siły wstawienia.

Spektrogram 2D obrazu nośnika

BIO-PKI 4-4

Spektrogram po wstawieniu informacji ukrytej

Spektrogram obrazu po zniekształceniu procesu drukuj-skanuj

17

Transformata Fouriera- Mellina

Obrót i skalowanie powodują jedynie przesunięcie w przestrzeni LogPolar dla widma sygnału:

Transformata Fouriera-Mellina (2)

 Ponowna transformata Fouriera prowadzi do amplitud współczynników niezmienniczych ze względu na obrót i skalowanie.

$$DFT[\ln F_k] = [B_k \cdot e^{-i\rho_k}], k = 0, ..., M-1$$

 $DFT[\ln(e^{-i\alpha}(s \cdot F_k))] = [B_k \cdot e^{-i(\rho_k + \sigma)}], k = 0, ..., M - 1$

BIO-PKI 4-4

dziedziny RST-inwariantnej.

BIO-PKI 4-4

Detekcja w metodzie DFM

Jeżeli podczas detekcji informacji dostępny jest oryginalny obraz-nośnik to należy go odjąć od obrazu ze stego-obiektem.

Jeżeli obraz oryginalny nie jest dostępny to należy zastosować filtr pasmowy – imitując proces odjęcia obrazu-nośnika.

21

BIO-PKI 4-4

Wyniki testów DFM Odporność metody na przekształcenia afiniczne została • potwierdzona – możliwe było odczytanie informacji po przeskalowaniu (nawet 5-krotnym zmniejszeniu) lub obróceniu obrazu. Stwierdzono duża metody wrażliwość błędy na powodowane interpolacją obrazu. **BIO-PKI 4-4** 23

Wyniki testów BPCS

- Wyniki testów nie są zachęcające.
- Stwierdzono dużą wrażliwość metody na błędy powodowane procesem PS – zarówno zmiany geometrii obrazu, jak i zmiany koloru i rozdzielczości reprezentacji.

BIO-PKI 4-4

6. Osadzanie w siatce trójkątów

Proces osadzania stego-obiektu w siatce trójkątów

Osadzanie informacji

BIO-PKI 4-4

Detekcja w siatce trójkątów

Badanie korelacji ukrytej informacji ze znanym wzorcem

BIO-PKI 4-4

Operator Harrisa

Operator Harrisa-Stephensa

Wyznaczane są średnie gradienty I_x , I_y funkcji obrazu w otoczeniu punktu (x, y). Tworzona jest macierz kowariancji gradientów:

 $\mathbf{A}(x, y) = \begin{bmatrix} \sum_{W} (I_x(x_k, y_k))^2 & \sum_{W} I_x(x_k, y_k) I_y(x_k, y_k) \\ \sum_{W} I_x(x_k, y_k) I_y(x_k, y_k) & \sum_{W} (I_y(x_k, y_k))^2 \end{bmatrix}$

Punkt charakterystyczny wykrywany jest wtedy, gdy obie wartości własne macierzy A są porównywalnie duże.

BIO-PKI 4-4

Testy – detekcja punktów

Wyniki działania detektora Harrisa; wielkość bloku = 5, jakość = 0.05; a) obraz odniesienia, b) obraz po dodaniu szumu, c) obraz obrócony

Wyniki działania detektora Shi-Tomasi: wielkość bloku = 5. jakość = 0.05: w porównaniu do detektora Harrisa widoczna większa liczba punktów; a) obraz odniesienia, b) obraz po dodaniu szumu, c) obraz obrócony

Wyniki detekcji punktów i trójkątów

Blok	Blok 2			j	8		
Jakość	akość Punkty Tra		Punkty	Trafne	Punkty	Trafne	
0,01	18,2	53,5	17,7	67,7	17,3	63,8	
0,02	14,6	56,0	14,6	69,1	14,0	75,0	
0,05	10,8	55,4	11,2	79,6	11,3	77,0	
0,08	9,0	60,2	10,4	82,0	10,3	80,5	

Zestawienie wyników dla detektora Shi-Tomasi

Kanal	Sila	Obraz oryg.	Obrót 5°	Caum	Bai	wa	Nasy	cenie	Jasr	ność
ranai	wst.			Szum	-25	+25	-10	+10	-10	+10
RGB- B	0,02	100	82	45	100	100	82	93	92	50
RGB- B	0,05	100	82	77	38 ¹	72	38	85	70 ¹	0
YUV- U	0,02	100	82	54	64 ¹	72	50	85	100 ¹	82
YUV- U	0,05	100	82	20	12 ¹	85 ¹	36 ¹	69	85 ¹	42

¹⁾ Kod staje się widoczny golym okiem

Stosunek ilości trójkątów z wykrytym kodem do wszystkich trójkątów na obrazie przy zastosowaniu różnych zniekształceń na wejściu.

BIO-PKI 4-4

Przykład detekcji - weryfikacji trójkątów

Wynik weryfikacji obecności ustalonego kodu w podanym zdjęciu; wielkość okręgu oznacza współczynnik korelacji (im większy okrąg tym lepiej); a) wysokie współczynniki dla prawidłowego kodu, b) wszystkie współczynniki o bardzo niskiej wartości dla kodu nieprawidłowego.

7. Wnioski

Metoda Fujitsu

- Odporna na przekłamanie koloru w procesie PS (do 90% ukrytej informacji zostało odczytane).
- Wymagana jest synchronizacja obrazu
- Dość duża odporność na utratę informacji w wyniku zmiany rozdzielczości – interpolację.

DFM

- Odporna na przekształcenia afiniczne obrazu (RST).
- Mało odporna na zmiany koloru i rozdzielczości.

Wnioski (2)

BPCS

BIO-PKI 4-4

 Wyniki testów wskazują, że jej zastosowanie w steganografii dokumentów drukowanych nie jest zasadne.

Osadzanie w siatce trójkątów

- Potwierdzono odporność metody na zniekształcenia wszelkiego rodzaju w procesie PS (geometrii i barwy).
- Wymaga znajomości w odbiorniku klucza kodowego przesyłanej informacji.

Literatura

[FU2002] M. S. Fu and O. C. Au, "Data hiding watermarking in halftone images, *IEEE Trans. Image Process.*, vol. 11, no. 4, pp. 477–484, Apr. 2002

[FUJ04] Fujitsu Laboratories' Printable Steganography, http://www.fujitsu.com/global/news/pr/archives/month/2004/20040630-01.html http://jp.fujitsu.com/group/labs/techinfo/techguide/list/steganography.html

[KAN 10] X. Kang, J. Huang, W. Zeng, Efficient general print-scanning resilient data hiding based on uniform log-polar mapping, *IEEE Transactions on Information Forensics Security* vol. 5(1), pp. 1–12, 2010

[PRA08] A. Pramila, A. Keskinarkaus, T. Seppänen, Watermark robustness in the print-cam process, *Proc. IASTED Signal Processing, Pattern Recognition, and Applications*, pp. 60-65, 2008

[ROS2001] J. Rosen and B. Javidi, "Hidden images in halftone pictures," *Appl. Opt.*, vol. 40, no. 20, pp. 3346–3353, Jul. 2001.

[RUA98] J.J.K.O Ruanaidh, T. Pun, Rotation, scale, and translation invariant spread spectrum digital image watermarking, *Signal Processing*, vol. 66, no. 3, pp. 303–318, 1998

[SOL99] V. Solachidis, I. Pitas, Circularly Symmetric Watermark Embedding in 2D DFT Domain, *IEEE Trans. Image Processing*, vol. 10, no.11, pp. 1741–1753, Nov. 2001.

[SOL04] K. Solanki, U. Madhow, B.S. Manjunath, S. Chandrasekaran, Estimating and undoing rotation for print-scan resilient data hiding, *Proceedings IEEE ICIP*, Singapore, 2004.