
Distributed Systems
Distributed File System

[2] Distributed File System

1. Sun Network File System

2. The Coda File System

3. Plan 9: Resources Unified to Files

[3] Network File System (NFS)

NFS, basic idea: each file server provides a standardized view of its local files

system,

History of NFS:

– the 1st version internal to Sun,

– the 2nd version incorporated into SunOS 2.0,

– the 3rd (current) version – now undergoing major revisions.

NFS – not so much a true file system but a collection of protocols.

[4] NFS Architecture (1)

Client Client

File stays
on server

Server Server

Requests from
client to access

remote file

1. File moved to client

3. When client is done,
file is returned to
server

2. Accesses are
done on client

Old file

New file

(a) (b)

a. the remote access model,

b. the upload/download model.



Distributed File System

[5] NFS Architecture (2)

Virtual file system
(VFS) layer

Virtual file system
(VFS) layer

System call layer System call layer

NFS client

RPC client
stub

RPC server
stub

NFS server
Local file

system interface
Local file

system interface

Network

Client Server

The basic NFS architecture for UNIX systems.

[6] NFS Features

– NFS largely independent of local file system,

– supports hard and symbolic links,

– files named, accessed by means of Unix-like file handles,

– version 4

– create used for creating non-regular files,

– regular files created by open,

– server generally maintains state between operations on the same file,

– lookup attempts to resolve the entire name, also if it means crossing

mount points,

– supports compound procedures.

[7] File System Model

2



Distributed File System

An incomplete list of file system operations supported by NFS.

[8] Communication

LOOKUP

READ

LOOKUP
OPEN
READ

Lookup name

Read file data

Open file

Lookup name

Read file data

(a) (b)

Client ClientServer Server

Time Time

a. Reading data from a file in NFS version 3.

b. Reading data using a compound procedure in version 4.

3



Distributed File System

[9] Stateless vs. Stateful Server

– NFS version 3:

– simplicity as the main advantage of the stateless approach,

– locking a file cannot be easily done,

– certain authentication protocols require maintaining state of clients.

– NFS version 4:

– expected to work across wide area network,

– clients can make effective use of caches requiring cache consistency

protocol,

– support for callback procedures by which a server can do an RPC to a

client.

[10] NFS - Naming (1)

Network

Client A Client BServer

vu me

remote workbin bin

mboxmbox mbox

Exported directory
mounted by client

Exported directory
mounted by client

users

steen

Mounting (part of) a remote file system in NFS.

[11] NFS - Naming (2)

4



Distributed File System

Network

Client Server BServer A

Exported directory
contains imported

subdirectory

Client needs to
explicitly import
subdirectory from
server B

Client
imports

directory
from

server A Server A
imports

directory
from

server B

bin

draw draw

install install install

packages

Mounting nested directories from multiple servers in NFS.

[12] Automounting (1)

home

users

alice

alice

Server machine

NFS client Automounter

Local file system interface

1. Lookup "/home/alice"

2. Create subdir "alice"

4. Mount subdir "alice"
from server

3. Mount request

Client machine

A simple automounter for NFS.

[13] Automounting (2)

5



Distributed File System

tmp_mnt

alice

alice

home

home

"/tmp_mnt/home/alice"

Symbolic link

Using symbolic links with automounting.

Whenever command ls -l /home/alice is executed, the NFS server is con-

tacted directly without involvement of the automounter.

[14] File Attributes

6



Distributed File System

Some general mandatory (a) and recommended (b) file attributes in NFS. More-

over one may have named attributes – an array of pairs (attribute, value).

[15] Semantics of File Sharing (1)

7



Distributed File System

Single machine

1. Write "c"

Original file

a

a

a

a

a

a

b

b

b

b

b

b

c

c

Process
A

Process
A

Process
B

Process
B

2. Read gets "abc"

1. Read "ab"2. Write "c"

3. Read gets "ab"

Client machine #1

File server

Client machine #2

(a) (b)

– On a single processor, when a read follows a write, the value returned by the

read is the value just written.

– In a distributed system with caching, obsolete values may be returned.

[16] Semantics of File Sharing (2)

Four ways of dealing with the shared files in a distributed system.

– NFS implements session semantics.

8



Distributed File System

[17] File Locking in NFS

NFS version 4 operations related to file locking.

– v4: file locking integrated into file access protocol,

– lock failed⇒

– error message and polling or

– client can request to be put on a FIFO-ordered list maintained by the

server (and still polling).

[18] Client Caching (1)

Memory
cache

Disk
cache

Client
application

Network

NFS server

Client-side caching in NFS.

[19] Client Caching (2)

9



Distributed File System

Client Server

Old file

Updated file

Local copy

2. Server delegates file

3. Server recalls delegation

4. Client sends returns file

1. Client asks for file

Using the NFS version 4 callback mechanism to recall file delegation.

– open delegation takes place when the client machine is allowed to locally

handle open and close operations from other clients on the same machine,

– recalling delegation requires callback support,

– NFS uses leases on cached attributes, file handles and directories.

[20] RPC Failures

XID = 1234 XID = 1234 XID = 1234

XID = 1234

XID = 1234

XID = 1234

Client Client ClientServer Server Server

Time Time Time

Cache Cache Cache

(a) (b) (c)

process
request

reply

reply is lost

Three situations for handling retransmissions (XID = transaction identifier).

a. the request is still in progress,

b. the reply has just been returned,

10



Distributed File System

c. the reply has been some time ago, but was lost.

[21] File Locking in the Presence of Failures

Server crashes and subsequently recovers, than:

– grace period:

– a client can reclaim locks that were previously granted to it,

– normal lock requests may be refused until the grace period is over.

Notice: leasing requires synchronization of client’s and server’s clocks.

[22] Security

Access
control

NFS client

RPC client
stub

RPC server
stub

NFS server
Local file

system interface
Local file

system interface

Client Server

Access
control

Virtual file system layer Virtual file system layer

Secure channel

The NFS security architecture (version 3).

– system authentication,

– Diffie-Hellman key exchange (a public key cryptosystem), but only 192 bits

in NFS,

– Kerberos.

[23] Secure RPCs

11



Distributed File System

RPCSEC_GSS RPCSEC_GSS

GSS-API GSS-API

K
er

be
ro

s

LI
P

K
E

Y

O
th

er

K
er

be
ro

s

LI
P

K
E

Y

O
th

er

Client machine Server machine

NFS client NFS server

Network

RPC client stub RPC server stub

Secure RPC in NFS version 4 (GSS - general security framework):

– LIPKEY - a public key system,

– clients to be authenticated using passwords,

– servers can be authenticated using a public key.

[24] Access Control

12



Distributed File System

The classification of operations recognized by NFS with respect to access control.

[25] Users/ Processes by Access Control

The various kinds of users and processes distinguished by NFS with respect to

access control.

[26] The Coda File System

– developed at Carnegie Mellon University, main goal: high availability,

– advanced caching allows a client to continue operation despite being discon-

nected from a server,

13



Distributed File System

– descendant of version 2 of the Andrew File System (AFS),

– Vice file servers and Virtue workstations with Venus processes,

– both Vice file server processes and Venus processes run as user-level pro-

cesses,

– a user-lever RPC on top of UDP providing at-most-once semantics,

– trusted Vice machines run authentication servers,

– Coda appears as a traditional UNIX-based file system.

[27] Overview of Coda (1)

Vice file
server

Virtue
client

Transparent access
to a Vice file server

The overall organization of AFS.

[28] Overview of Coda (2)

14



Distributed File System

Virtual file system layerLocal file
system interface

Network

User
process

User
process

Venus
process

RPC client
stub

Local OS

Virtue client machine

The internal organization of a Virtue workstation.

[29] Coda - communication

– RPC2 different to ONC RPC used by NFS,

– offers reliable communication on top of the UDP protocol,

– thread per each RPC request,

– back messages regularly sent by the server to the client,

– support for side effects – mechanisms for communication using an application-

specific protocols,

– support for multicasting, parallel RPC implemented by means of MutliRPC,

fully transparent to callees,

– threads in Coda non-preemptive and entirely in user space,

– separate thread to handle all I/O operations with low-level asynchronous I/O

emulating synchronous I/O without blocking an entire process.

[30] Communication (1)

15



Distributed File System

RPC

RPC client
stub

RPC server
stub

Client
side effect

Server
side effect

Client
application

Server

Application-specific
protocol

RPC protocol

Side effects in Coda’s RPC2 system.

[31] Communication (2)

Invalidate Invalidate

Invalidate Invalidate

Reply Reply

Reply Reply

Time Time

Server Server

Client Client

Client Client

(a) (b)

a. sending an invalidation message one at a time,

b. sending invalidation messages in parallel.

[32] Naming

16



Distributed File System

Network

Client A Client B

afs afslocal

Exported directory
mounted by client

Exported directory
mounted by client

bin

bin

pkg

pkg

Server

Naming inherited from server's name space

Clients in Coda have access to a single shared name space.

[33] Volumes and File Identifiers

– volumes,

– only root nodes can act as mounting points,

– shared name space,

– file identifiers,

– RVID – replicated volume identifier,

– VID – volume identifier,

– volume replication database,

– volume location database,

– 64-bit handle identifying the file within the volume.

[34] File Identifiers

17



Distributed File System

RVID File handle

File handle

File handle

Server

Server

VID1,
VID2

Volume
replication DB

Volume
location DB

File server

File server

Server1

Server2

The implementation and resolution of a Coda file identifier.

[35] Sharing Files in Coda

Time

Server

Client

Client

Open(RD)

Open(WR)

File f

File f
Close

Close
Invalidate

Session S

Session S

A

B

The transactional behavior in sharing files in Coda.

18



Distributed File System

[36] Transactional Semantics

– partition - part of the network isolated from the rest,

– recognition of different types of session (like the store session type),

– usage of versioning scheme,

– update from a client accepted only when the update lead to the next version

of a file,

– when conflict occurs, the updates from the client’s session undone and client

forced to save its local version of a file for manual reconciliation

– cache coherence maintained by means of callbacks,

– callback promise,

– callback break.

[37] Client Caching

Time

Server

Client A

Client B

Open(RD)
Open(RD)

Open(WR)
Open(WR)

File f File f

File f

Close Close

CloseClose

Invalidate
(callback break)

OK (no file transfer)

Session S

Session S Session S

Session SA A

BB

The use of local copies when opening a session in Coda.

[38] Server Replication

– file servers may be replicated,

– Volume Storage Group (VSG),

19



Distributed File System

– client’s Accessible VSG (AVSG),

– if the AVSG is empty, the client is said to be disconnected,

– consistency: Read-One, Write-All (ROWA),

– optimistic strategy for file replication,

– version vectors for conflicts detection.

[39] Server Replication

Server
S1

Server
S2

Server
S3

Client
A

Client
B

Broken
network

Two clients with different AVSG for the same replicated file.

[40] Coda - Hoarding

– hoarding – filling the cache in advance with the appropriate files,

– priority mechanism to ensure caching of useful data:

– user may store paths in hoard database (one per workstation),

– priority for each file based on the hoard database and last references,

– hoard walk invoked once every 10 minutes,

– cache in equilibrium, if:

– no uncached file with a higher priority,

– cache full or no uncached files with nonzero priority,

20



Distributed File System

– each cached file is a copy of the one from client’s AVSG.

– anyway no guarantee.

[41] Disconnected Operation

HOARDING

EMULATION REINTEGRATION

Disconnection Reintegration
completed

Reconnection

Disconnection

The state-transition diagram of a Coda client with respect to a volume.

– http://www.coda.cs.cmu.edu/

[42] Access Control

21



Distributed File System

Classification of file and directory operations recognized by Coda with respect to

access control.

– also: useful support for the listing of negative rights.

[43] Plan 9

– bringing back the idea of having a few centralized servers and numerous

client machines,

– Unix at Bell Labs team,

– file-based distributed system,

– all resources accessed in the same way (as files), including processes and

network interfaces,

– each server offers a hierarchical name space to the resources it controls,

– communication through the protocol 9P, tailored to file-oriented operations,

– for LAN Internet Link (IL) reliable datagram protocol, TCP for WAN.

[44] Plan 9: Resources Unified to Files

File serverGateway

To Internet

Network
interface

Process

CPU Server

ClientClient

NS1 NS2
NS3

NS2

NS2

NS3
NS1

Client has
mounted

NS1 and NS2

22



Distributed File System

General organization of Plan 9.

[45] Communication

Files associated with a single TCP connection in Plan 9.

– opening a telnet connection requires writing a special string to the ctl file

”connect 192.31.231.42!23”.

[46] Processes

WORM

In-memory
cache

Disk
cache

File server machine Only WORM contains
actual file system

The Plan 9 file server.

[47] Resource Management

– let /net/inet denote the network interface,

– if M exports /net, a client can use M as a gateway by locally mounting /net

and subsequently opening /net/inet.

23



Distributed File System

– multiple name spaces can be mounted at the same mount point, leading to

union directory,

– file systems appear to be Boolean or-ed,

– mounting order is important.

– Plan 9 implements UNIX file sharing semantics,

– all update operations always forwarded to the server.

[48] Naming

/home /usr/usr /bin/bin /src/src /lib /lib

/remote

/home

FS FS BA

A union directory in Plan 9.

– http://cm.bell-labs.com/plan9/

– http://www.vitanuova.com/inferno/

24


