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[3] Network File System (NFS)

NFS, basic idea: each file server provides a standardized view of its local files

system,

History of NFS:

– the 1st version internal to Sun,

– the 2nd version incorporated into SunOS 2.0,

– the 3rd (current) version – now undergoing major revisions.

NFS – not so much a true file system but a collection of protocols.

[4] NFS Architecture (1)
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a. the remote access model,

b. the upload/download model.
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[5] NFS Architecture (2)
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The basic NFS architecture for UNIX systems.

[6] NFS Features

– NFS largely independent of local file system,

– supports hard and symbolic links,

– files named, accessed by means of Unix-like file handles,

– version 4

– create used for creating non-regular files,

– regular files created by open,

– server generally maintains state between operations on the same file,

– lookup attempts to resolve the entire name, also if it means crossing

mount points,

– supports compound procedures.

[7] File System Model
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An incomplete list of file system operations supported by NFS.

[8] Communication
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READ

LOOKUP
OPEN
READ
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Read file data

Open file

Lookup name

Read file data

(a) (b)

Client ClientServer Server

Time Time

a. Reading data from a file in NFS version 3.

b. Reading data using a compound procedure in version 4.
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[9] Stateless vs. Stateful Server

– NFS version 3:

– simplicity as the main advantage of the stateless approach,

– locking a file cannot be easily done,

– certain authentication protocols require maintaining state of clients.

– NFS version 4:

– expected to work across wide area network,

– clients can make effective use of caches requiring cache consistency

protocol,

– support for callback procedures by which a server can do an RPC to a

client.

[10] NFS - Naming (1)

Network
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users

steen

Mounting (part of) a remote file system in NFS.

[11] NFS - Naming (2)
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Network
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bin
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Mounting nested directories from multiple servers in NFS.

[12] Automounting (1)

home

users

alice

alice

Server machine

NFS client Automounter

Local file system interface

1. Lookup "/home/alice"

2. Create subdir "alice"

4. Mount subdir "alice"
from server

3. Mount request

Client machine

A simple automounter for NFS.

[13] Automounting (2)
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tmp_mnt

alice

alice

home

home

"/tmp_mnt/home/alice"

Symbolic link

Using symbolic links with automounting.

Whenever command ls -l /home/alice is executed, the NFS server is con-

tacted directly without involvement of the automounter.

[14] File Attributes
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Some general mandatory (a) and recommended (b) file attributes in NFS. More-

over one may have named attributes – an array of pairs (attribute, value).

[15] Semantics of File Sharing (1)
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File server

Client machine #2

(a) (b)

– On a single processor, when a read follows a write, the value returned by the

read is the value just written.

– In a distributed system with caching, obsolete values may be returned.

[16] Semantics of File Sharing (2)

Four ways of dealing with the shared files in a distributed system.

– NFS implements session semantics.
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[17] File Locking in NFS

NFS version 4 operations related to file locking.

– v4: file locking integrated into file access protocol,

– lock failed⇒

– error message and polling or

– client can request to be put on a FIFO-ordered list maintained by the

server (and still polling).

[18] Client Caching (1)

Memory
cache

Disk
cache

Client
application

Network
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Client-side caching in NFS.

[19] Client Caching (2)

9



Distributed File System

Client Server

Old file

Updated file

Local copy

2. Server delegates file

3. Server recalls delegation

4. Client sends returns file

1. Client asks for file

Using the NFS version 4 callback mechanism to recall file delegation.

– open delegation takes place when the client machine is allowed to locally

handle open and close operations from other clients on the same machine,

– recalling delegation requires callback support,

– NFS uses leases on cached attributes, file handles and directories.

[20] RPC Failures

XID = 1234 XID = 1234 XID = 1234

XID = 1234

XID = 1234

XID = 1234

Client Client ClientServer Server Server

Time Time Time

Cache Cache Cache

(a) (b) (c)

process
request

reply

reply is lost

Three situations for handling retransmissions (XID = transaction identifier).

a. the request is still in progress,

b. the reply has just been returned,

10



Distributed File System

c. the reply has been some time ago, but was lost.

[21] File Locking in the Presence of Failures

Server crashes and subsequently recovers, than:

– grace period:

– a client can reclaim locks that were previously granted to it,

– normal lock requests may be refused until the grace period is over.

Notice: leasing requires synchronization of client’s and server’s clocks.

[22] Security

Access
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RPC client
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Local file
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Local file
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Access
control

Virtual file system layer Virtual file system layer

Secure channel

The NFS security architecture (version 3).

– system authentication,

– Diffie-Hellman key exchange (a public key cryptosystem), but only 192 bits

in NFS,

– Kerberos.

[23] Secure RPCs
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RPCSEC_GSS RPCSEC_GSS

GSS-API GSS-API

K
er

be
ro

s

LI
P

K
E

Y

O
th

er

K
er

be
ro

s

LI
P

K
E

Y

O
th

er

Client machine Server machine

NFS client NFS server

Network

RPC client stub RPC server stub

Secure RPC in NFS version 4 (GSS - general security framework):

– LIPKEY - a public key system,

– clients to be authenticated using passwords,

– servers can be authenticated using a public key.

[24] Access Control
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The classification of operations recognized by NFS with respect to access control.

[25] Users/ Processes by Access Control

The various kinds of users and processes distinguished by NFS with respect to

access control.

[26] The Coda File System

– developed at Carnegie Mellon University, main goal: high availability,

– advanced caching allows a client to continue operation despite being discon-

nected from a server,
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– descendant of version 2 of the Andrew File System (AFS),

– Vice file servers and Virtue workstations with Venus processes,

– both Vice file server processes and Venus processes run as user-level pro-

cesses,

– a user-lever RPC on top of UDP providing at-most-once semantics,

– trusted Vice machines run authentication servers,

– Coda appears as a traditional UNIX-based file system.

[27] Overview of Coda (1)

Vice file
server

Virtue
client

Transparent access
to a Vice file server

The overall organization of AFS.

[28] Overview of Coda (2)
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Virtual file system layerLocal file
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Network

User
process

User
process
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process

RPC client
stub

Local OS

Virtue client machine

The internal organization of a Virtue workstation.

[29] Coda - communication

– RPC2 different to ONC RPC used by NFS,

– offers reliable communication on top of the UDP protocol,

– thread per each RPC request,

– back messages regularly sent by the server to the client,

– support for side effects – mechanisms for communication using an application-

specific protocols,

– support for multicasting, parallel RPC implemented by means of MutliRPC,

fully transparent to callees,

– threads in Coda non-preemptive and entirely in user space,

– separate thread to handle all I/O operations with low-level asynchronous I/O

emulating synchronous I/O without blocking an entire process.

[30] Communication (1)
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RPC
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Client
side effect
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Client
application
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protocol

RPC protocol

Side effects in Coda’s RPC2 system.

[31] Communication (2)

Invalidate Invalidate

Invalidate Invalidate

Reply Reply

Reply Reply

Time Time

Server Server

Client Client

Client Client

(a) (b)

a. sending an invalidation message one at a time,

b. sending invalidation messages in parallel.

[32] Naming
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Network

Client A Client B

afs afslocal

Exported directory
mounted by client

Exported directory
mounted by client

bin

bin

pkg

pkg

Server

Naming inherited from server's name space

Clients in Coda have access to a single shared name space.

[33] Volumes and File Identifiers

– volumes,

– only root nodes can act as mounting points,

– shared name space,

– file identifiers,

– RVID – replicated volume identifier,

– VID – volume identifier,

– volume replication database,

– volume location database,

– 64-bit handle identifying the file within the volume.

[34] File Identifiers
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RVID File handle

File handle

File handle
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Volume
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The implementation and resolution of a Coda file identifier.

[35] Sharing Files in Coda
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The transactional behavior in sharing files in Coda.
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[36] Transactional Semantics

– partition - part of the network isolated from the rest,

– recognition of different types of session (like the store session type),

– usage of versioning scheme,

– update from a client accepted only when the update lead to the next version

of a file,

– when conflict occurs, the updates from the client’s session undone and client

forced to save its local version of a file for manual reconciliation

– cache coherence maintained by means of callbacks,

– callback promise,

– callback break.

[37] Client Caching

Time

Server

Client A

Client B

Open(RD)
Open(RD)

Open(WR)
Open(WR)

File f File f

File f

Close Close

CloseClose

Invalidate
(callback break)

OK (no file transfer)

Session S

Session S Session S

Session SA A

BB

The use of local copies when opening a session in Coda.

[38] Server Replication

– file servers may be replicated,

– Volume Storage Group (VSG),
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– client’s Accessible VSG (AVSG),

– if the AVSG is empty, the client is said to be disconnected,

– consistency: Read-One, Write-All (ROWA),

– optimistic strategy for file replication,

– version vectors for conflicts detection.

[39] Server Replication

Server
S1

Server
S2

Server
S3

Client
A

Client
B

Broken
network

Two clients with different AVSG for the same replicated file.

[40] Coda - Hoarding

– hoarding – filling the cache in advance with the appropriate files,

– priority mechanism to ensure caching of useful data:

– user may store paths in hoard database (one per workstation),

– priority for each file based on the hoard database and last references,

– hoard walk invoked once every 10 minutes,

– cache in equilibrium, if:

– no uncached file with a higher priority,

– cache full or no uncached files with nonzero priority,
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– each cached file is a copy of the one from client’s AVSG.

– anyway no guarantee.

[41] Disconnected Operation

HOARDING

EMULATION REINTEGRATION

Disconnection Reintegration
completed

Reconnection

Disconnection

The state-transition diagram of a Coda client with respect to a volume.

– http://www.coda.cs.cmu.edu/

[42] Access Control
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Classification of file and directory operations recognized by Coda with respect to

access control.

– also: useful support for the listing of negative rights.

[43] Plan 9

– bringing back the idea of having a few centralized servers and numerous

client machines,

– Unix at Bell Labs team,

– file-based distributed system,

– all resources accessed in the same way (as files), including processes and

network interfaces,

– each server offers a hierarchical name space to the resources it controls,

– communication through the protocol 9P, tailored to file-oriented operations,

– for LAN Internet Link (IL) reliable datagram protocol, TCP for WAN.

[44] Plan 9: Resources Unified to Files
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General organization of Plan 9.

[45] Communication

Files associated with a single TCP connection in Plan 9.

– opening a telnet connection requires writing a special string to the ctl file

”connect 192.31.231.42!23”.

[46] Processes

WORM

In-memory
cache

Disk
cache

File server machine Only WORM contains
actual file system

The Plan 9 file server.

[47] Resource Management

– let /net/inet denote the network interface,

– if M exports /net, a client can use M as a gateway by locally mounting /net

and subsequently opening /net/inet.
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– multiple name spaces can be mounted at the same mount point, leading to

union directory,

– file systems appear to be Boolean or-ed,

– mounting order is important.

– Plan 9 implements UNIX file sharing semantics,

– all update operations always forwarded to the server.

[48] Naming

/home /usr/usr /bin/bin /src/src /lib /lib

/remote

/home

FS FS BA

A union directory in Plan 9.

– http://cm.bell-labs.com/plan9/

– http://www.vitanuova.com/inferno/
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