
Distributed Systems
Peer-to-Peer Systems

[2] P2P Systems - Goals and Definition

Goal: to enable sharing of data and resources on a very large scale by eliminating

any requirement for separately-managed servers and their associated infrastructure.

Goal: to support useful distributed services and applications using data and com-

puting resources present on the Internet in ever-increasing numbers.

– standard services scalability limited when all the hosts must be owned and

managed by the single service provider,

– administration and fault recovery costs tend to dominate.

Peer-to-peer systems: applications that exploit resources available at the edges of

the Internet - storage, cycles, content, human presence.

[3] P2P Systems - Features

Characteristics shared by the P2P systems:

– design ensures that each user contributes resources to the system,

– all the nodes in a P2P system have the same functional capabilities and re-

sponsibilities, although they may differ in the resources that they contribute,

– correctness of any operation does not depend on the existence of any centrally-

administered systems,

– often designed to offer a limited degree of anonymity to the providers and

users of resources,

– the key issues for P2P systems efficiency:

– algorithms for data placement across many hosts and subsequent access

to it,

– key issues of these algorithms: workload balancing, ensuring availabil-

ity without adding undue overheads.



Peer-to-Peer Systems

[4] P2P Systems - History

Antecedents of P2P systems; distributed algorithms for placement or location of

information; early Internet-based services with multi-server scalable and fault-

tolerant architecture: DNS, Netnews/Usenet, classless inter-domain IP routing.

Potential for the deployment of P2P services emerged when a significant number

of users had acquired always-on, broadband connections (around 1999 in USA).

Three generations of P2P systems:

1. launched by the Napster music exchange service,

2. file-sharing applications offering greater scalability, anonymity and fault

tolerance (Freenet, Gnutella, Kazaa, BitTorrent).

3. P2P middleware layers for application-independent management of dis-

tributed resources (Pastry, Tapestry, CAN, Chord, Kademlia).

[5] P2P Middleware Introduction

Middleware platforms for distributed resources management:

– designed to place resources and to route messages to them on behalf of

clients,

– relieve clients of decisions about placing resources and of holding resources

address information,

– provide guarantee of delivery for requests in a bounded number of network

hops,

– resources identified by globally unique identifiers (GUIDs), usually de-

rived as a secure hash from resource’s state,

– secure hashes make resources ”self certifying”, clients receiving a resource

can check validity of the hash.

– inherently best suited to storage of immutable objects,

– usage for objects with dynamic state more challenging, usually addressed by

addition of trusted servers for session management and identification.

[6] IP and P2P Overlay Routing (1)

2



Peer-to-Peer Systems

– Scale:

IP: IPv4 limited to 232 addressable nodes (in IPv6 to 2128), addresses

hierarchically structured and much of the space preallocated according

to administrative requirements.

OR: The GUID name space very large and flat (>2128), allowing it to be

much more fully occupied.

– Load balancing:

IP: Loads on routers are determined by network topology and associated

traffic patterns.

OR: Object locations can be randomized and hence traffic patterns are di-

vorced from the network topology.

– Network dynamics (addition/deletion of objects/nodes):

IP: IP routing tables are updated asynchronously on a best-efforts basis

with time constants on the order of 1 hour.

OR: Routing tables can be updated synchronously or asynchronously with

fractions of a second delays.

[7] IP and P2P Overlay Routing (2)

– Fault tolerance:

IP: Redundancy is designed into the IP network by its managers, ensur-

ing tolerance of a single router or network connectivity failure. n-fold

replication is costly.

OR: Routes and object references can be replicated n-fold, ensuring toler-

ance of n failures of nodes or connections.

– Target identification:

IP: Each IP address maps to exactly one target node.

OR: Messages can be routed to the nearest replica of a target object.

– Security and anonymity:

IP: Addressing is only secure when all nodes are trusted. Anonymity for

the owners of addresses is not achievable.

3



Peer-to-Peer Systems

OR: Security can be achieved even in environments with limited trust. A

limited degree of anonymity can be provided.

[8] Distributed Computation (1)

– work with the first personal computers at Xerox PARC showed the feasibil-

ity of performing loosely-coupled compute-intensive tasks by running back-

ground processes on about 100 computers linked by a local network,

– Piranha/Linda and adaptive parallelism,

– SETI@home - most widely known project

– part of a wider project Search for Extra-Terrestrial Intelligence,

– stream of data partitioned into 107-second work units, each of about

350KB,

– each work distributed redundantly to 3-4 personal computers,

– distribution and coordination handheld by a single server,

– 3.91 million computers participated by August 2002, resulting in the

processing of 221 million work units,

– on average 27.36 teraflops of computational power,

[9] Distributed Computation (2)

– SETI@home didn’t involved any communication or coordination between

computers while processing the work units,

– although often recognized as P2P they are rather based on client-server ar-

chitecture,

– BOINC – Berkeley Open Infrastructure for Network Computing.

Similar scientific tasks:

– search for large prime numbers,

– attempts at brute-force description,

– climate prediction.

4



Peer-to-Peer Systems

Grid projects - distributed platforms that support data sharing and the coordina-

tion of computation between participating computers on a large scale. Resources

are located in different organizations and are supported by heterogeneous computer

hardware, operating systems, programming languages and applications.

[10] Napster – Music Files P2P (1)

– launched in 1999 became very popular for music exchange,

– architecture: centralized replicated indexes, but users supplied the files

stored and accessed on their personal computers,

– locality – minimizing number of hops between client and server when allo-

cating a server to a client requesting a file,

– taken advantage of special characteristics of the applications:

– music files never updated, no need for consistency management,

– no guarantees required concerning availability of individual files (mu-

sic temporarily unavailable may be downloaded later).

– key to success: large, widely-distributed set of files available to users,

– Napster shut down as a result of legal proceedings instituted against Napster

service operators by the owners of the copyright in some of the material.

[11] Napster – Music Files P2P (2)

Napster server
Index

1. File location request

2. List of peers offering the file 3. File request

4. File
delivered

5. Index update

Napster server
Index

peers

peers ...

...

5



Peer-to-Peer Systems

Napster: P2P file sharing with a centralized, replicated index. In step 5. clients

expected to add their own files to the pool of shared resources.

[12] P2P Middleware Requirements (1)

Function of the P2P middleware: to simplify construction of services imple-

mented across many hosts in a widely distributed network.

Expected functional requirements:

– enabling clients to locate and communicate with any individual resource

made available to a service,

– ability to add new resources and to remove them at will,

– ability to add hosts to the service and to remove them,

– offering simple programming interface independent of types of managed dis-

tributed resources.

[13] P2P Middleware Requirements (1)

Expected non-functional requirements:

– global scalability,

– load balancing - random placement and usage of replicas,

– optimization for local interactions between neighbouring peers,

– accommodating to highly dynamic host availability,

– security of data in an environment with heterogeneous trust,

– anonymity, deniability and resistance to censorship.

[14] Routing Overlays

Routing overlay

A distributed algorithm which takes responsibility for locating nodes and objects

in P2P networks.

Randomly distributed identifiers (GUIDs) used to determine placement of objects

and to retrieve them, thus overlay routing systems sometimes described as dis-

tributed hash tables (DHT).

General tasks of a routing overlay layer:

6



Peer-to-Peer Systems

– having given GUID routing the request,

– having given GUID publishing the resource,

– service of removal request,

– responsibility allocation depending on changing view of peers.

[15] Routing Overlay – Identifiers

GUIDs – opaque identifiers, reveal nothing about locations of objects to which

they refer. Computed with usage of hash function (such as SHA-1) from all or

part of the state of an object, unique. Uniqueness verified by searching for another

object with the same GUID.

Prefix routing - narrowing the search for the next node along the route by applying

a binary mask that selects an increasing number of hexadecimal digits from the

destination GUID after each hop.

[16] Routing Overlay – DHT

put(GUID, data)

The data is stored in replicas at all nodes responsible for the object identified by

GUID.

remove(GUID)

Deletes all references to GUID and the associated data.

value = get(GUID)

The data associated with GUID is retrieved from one of the nodes responsible for

it.

Basic programming interface for a distributed hash table (DHT) as implemented

by the PAST API over Pastry.

[17] Routing Overlay – DOLR

publish(GUID)

GUID can be computed from the object (or some part of it, e.g. its name). This

function makes the node performing a publish operation the host for the object

corresponding to GUID.

7



Peer-to-Peer Systems

unpublish(GUID)

Makes the object corresponding to GUID inaccessible.

sendToObj(msg, GUID, [n])

Following the object-oriented paradigm, an invocation message is sent to an object

in order to access it. This might be a request to open a TCP connection for data

transfer or to return a message containing all or part of the object’s state. The final

optional parameter [n], if present, requests the delivery of the same message to n

replicas of the object.

Basic programming interface for distributed object location and routing (DOLR)

as implemented by Tapestry.

[18] Routing Overlay – Routing and Location

DHT:

– when data submitted to be stored with its GUID DHT layer takes responsi-

bility for choosing a location, storing it (with replicas) and providing access,

– data item with GUID X stored at the node whose GUID numerically closest

to X and moreover at the r hosts with GUIDs numerically closest to it, where

R is a replication factor chosen to ensure high availability.

DOLR:

– locations for the replicas of data objects decided outside the routing layer,

– host address of each replica notified to DOLR using the publish() operation.

[19] Routing Overlay – Prefix Routing

Prefix routing:

– both Pastry and Tapestry employ prefix routing to determine routes,

– prefix routing is based on applying a binary mask that selects increasing

number of hexadecimal digits from the destination GUID after each hop

(similar to CIDR in IP).

Other possible routing schemes:

– based on numerical difference between the GUIDs of the selected node and

the destination node (Chord),

8



Peer-to-Peer Systems

– usage of distance in a d-dimensional hyperspace into which nodes are placed

(CAN),

– usage of the XOR of pairs of GUIDs as a metric for distance between nodes

(Kademlia).

[20] P2P - Human-readable Names

– GUIDs are not human-readable, some form of indexing service using human-

readable names or search requests required,

– weakness of centralized indexes evidenced by Napster,

– example: indices on web pages in BitTorrent. Definitions: seed – peers

with complete copy of the torrent still offering upload; swarm – all peers

including seeds sharing a torrent,

– in BitTorrent a web search index leads to a stub file containing details of

the desired resource. The torrent file contains metadata about all the files

it makes downloadable, including: names, sizes, checksums of all pieces in

the torrent, address of a tracker that coordinates communication between

the peers in the swarm ,

– tracker – server that keeps track of which seeds and peers are in the swarm,

not directly involved in the data transfer, does not have copies of data files.

– clients report information to the tracker periodically and in exchange receive

information about other clients that they can connect to.

[21] Pastry - Introduction

Pastry: message routing infrastructure deployed in several applications including

PAST, an archival (immutable) file storage system implemented as a distributed

hash table with DHT API and in Squirrel, a P2P web caching service.

– 128-bit GUIDs (hash function such as SHA-1) randomly distributed in the

range 0 ÷ 2128
− 1,

– in a network with N participating nodes, Pastry routing algorithm correctly

route a message addressed to any GUID in O(logN) steps,

– if a target node is active, message is delivered, otherwise message delivered

to active node which is numerically closest to it.

9



Peer-to-Peer Systems

– active nodes take responsibility for processing requests addressed to all ob-

jects in their numerical neighbourhood,

– moreover Pastry uses a locality metric based on network distance in the un-

derlying network to select appropriate neighbours,

[22] Pastry - Routing

Routing, simplified approach:

– each active node stores a leaf set – a vector L (of size 2l) containing the

GUIDs and IP addresses of the nodes whose GUIDs are numerically closest

on either side of its own (above and below),

– leave sets maintained by Pastry as nodes join and leave,

– any node A that receives a message M with destination address D routes the

message by comparing D with its own GUID A and with each of the GUIDs

in its leaf set and forwards M to the node amongst them that is numerically

closest to D,

– inefficient, requires about N/2l hops to deliver a message.

[23] Circular Routing

10



Peer-to-Peer Systems

Black color depicts live nodes. The space is considered as circular: node 0 is

adjacent to node (2128
− 1). The diagram illustrates the routing of a message from

node 65A1FC to D46A1C using leaf set information alone, assuming leaf sets of

size 8 (l = 4, in Pastry usually 8). This is a degenerate type of routing that would

scale very poorly; it is not used in practice.

[24] Pastry Routing

– efficient routing due to routing tables,

– each node maintains a tree-structured routing table of nodes spread through-

out the entire address range, with increased density of coverage for GUIDs

numerically close to,

– the routing process at any node uses the information in its routing table and

leaf set to handle each request from an application and each incoming mes-

sage from another node,

11



Peer-to-Peer Systems

– new nodes use a joining protocol and compute suitable GUIDs (typically by

applying the SHA-1 to the node’s public key, then it make contact with a

nearby (in network distance) Pastry node.

[25] Pastry’s Routing Table

First four rows of a Pastry routing table located in a node whose GUID begins with

65A1.

– each ”n” element represents [GUID, IP address] pair specifying next hop to

be taken by messages addressed to GUIDs that match each given prefix.

– grey-shaded entries indicate that the prefix matches the current GUID up to

the given value of p: the next row down or the leaf should be examined to

find a route,

– although there are a maximum of 128 rows in the table, only log16N rows

will be populated on average in a network with N active nodes.

[26] Pastry’s Routing Algorithm

If R[p, i] means the element at column i in the row p of the routing table and L

means leaf set. To handle a message M addressed to a node D:

if (L−l < D < Ll) {

forward M to the element Li of the leaf set with GUID closest to D or

the current node A.

} else {

find p, the length of the longest common prefix of D and A.

find i, the (p + 1)th hexadecimal digit of D.

if (R[p, i] , null) {

12



Peer-to-Peer Systems

forward M to R[p, i],

} else {

forward M to any node in L or R with a common prefix of length

i, but a GUID that is numerically closer.

}

}

[27] Pastry Routing Example

Routing a message from node 65A1FC to D46A1C. With the aid of a well-populated

routing table the message can be delivered in log16(N) hops.

[28] Pastry - Host Failure and Fault Tolerance

13



Peer-to-Peer Systems

– nodes may fail or depart without warning, node considered failed when its

immediate neighbours (in GUID space) can no longer communicate with it,

– to repair leaf set, the node looks for a live node close to the failed one and

requests a copy of its leaf set (one value to replace),

– repairs to routing tables made on a ’when discovered’ basis,

– moreover all nodes send heartbeat messages to neighbouring nodes in their

leaf sets,

– to deal with any remaining failures or malicious nodes, small degree of ran-

domness introduced into the route selection algorithm. Possible usage of a

routing from an earlier row with less optimal but different routing.

[29] Tapestry

– nodes holding resources periodically use the publish(GUID) primitive to

make them known to Tapestry, holders responsible for storing resources,

replicated resources published with the same GUID,

– 160-bit identifiers used to refer both to objects and to nodes that perform

routing actions,

– for any resource with GUID G unique root node with GUID RG numerically

closest to G,

– on each invocation of publish(G) publish message routed towards RG,

– on receipt RG enters mapping between G and the sending host’s IP, (G, IPH)

in its routing table, the same cached along publication path.

[30] Tapestry Routing

14



Peer-to-Peer Systems

Replicas of the file Phil’s Books (G=4378), hosted at nodes 4228 and AA93. Node

4377 is the root node for object 4378. Shown routings are some of the entries in

routing tables. The location mapping (cached while servicing publish messages)

are subsequently used to route messages sent to 4378.

[31] Squirrel Web Cache (1)

– developed by authors of Pastry P2P web caching service for use in local

networks,

Web caching in general:

– browser cache, proxy cache, origin web server,

– metadata stored with an object in a cache: date of last modification T , time-

to-leave t or eTag (hash computed from the object contents),

– conditional GET (cGET) request issued to the next level for validation,

– cGET request types: If-Modified-Since, If-None-Match,

– in response either the entire object or not-modified message.

[32] Squirrel Web Cache (2)

15



Peer-to-Peer Systems

– SHA-1 hash function applied to the URL of each cached object to produce

a 128-bit Pastry GUID, GUID not used to validate content,

– in the simplest implementation: the node whose GUID numerically closest

to the GUID of an object becomes the object’s home node, responsible for

holding any cached copy of the object,

– Squirrel routes a Get or a cGet request via Pastry to the home node.

Evaluation, two real working environments within Microsoft, 105 active clients

(Cambridge), 36000 active clients (Redmond):

– reduction in total external bandwidth: caches 100MB, 37% (Cambridge),

28% (Redmond), hit ratio for centralized servers: 38% and 29% respectively,

– local latency perceived by users for access web objects: neglectable,

– computational and storage load: low and likely to be imperceptible to users.

[33] OceanStore File Store

– OceanStore – unlike Past, supports the storage of mutable files,

– goal: very large scale, scalable persistent storage facility for mutable data

objects with long-term persistence and reliability in changing network and

computing resources environment,

– privacy and integrity achieved through encryption of data and use of a

Byzantine agreement protocol for updates to replicated objects – because

trustworthiness of individual hosts cannot be assumed,

– Pond – OceanStore prototype implemented in Java, uses Tapestry routing

overlay to place blocks of data at distributed nodes and to dispatch requests

to them,

– data stored in a set of blocks, data blocks organized and accessed through a

metadata block called root block,

– each object represented as an ordered sequence of immutable versions

kept for ever, versions share unchanged blocks (copy-on-write technique),

[34] Ocean Store - Storage Organization (1)

16



Peer-to-Peer Systems

– several replicas of each block stored at peer nodes selected accordingly to

locality and storage availability criteria,

– data blocks GUIDs published (with publish()) by each of the nodes that holds

a replica, Tapestry can be used by clients to access the blocks,

– AGUID stored in directories against each file name,

– association between an AGUID and the sequence of versions of the object

recorded in signed certificate stored and replicated by primary copy replica-

tion scheme,

– trust model for P2P requires construction of each new certificate being agreed

amongst small set of hosts called the inner ring.

[35] Ocean Store - Storage Organization (2)

17



Peer-to-Peer Systems

Version i+1 has been updated in blocks d1, d2 and d3. The certificate and the root

blocks include some data not shown. All unlabelled arrows are BGUIDs.

[36] Pond Performance

Times in seconds to run different phases of the Andrew benchmark. (1) recursive

subdirectory creation, (2) source tree copying, (3) status only examining of all the

files in the tree, (4) every data byte examining in all the files, (5) compiling and

linking the files.

[37] Ivy File System

– read/write file system emulating a Sun NFS server,

– stores the state of files as logs of the file update requests issued by Ivy clients,

– log records held in DHash distributed hash-addresses storage service (160-

bit SHA-1),

– version vectors to impose a total order on log entries when reading from

multiple logs,

– potentially very long read time reduced by use of a combination of local

caches and snapshots,

– shared file system seen as a result of merging all the updates performed by

(dynamically selected – views) set of participants,

18



Peer-to-Peer Systems

– possible continuing operations during partitions in the network, conflicting

updates to shared files resolved similar like in Coda file system.

[38] Ivy Architecture

Ivy system architecture.

[39] Ivy – Performance

Each participant maintains a mutable DHash block (called log-head) that points to

a participant’s most recent log record. Mutable blocks are assigned a cryptographic

public key pair by their owner. The contents of the block are signed with the private

key. Any participant that has the public key can retrieve the log-head and use it to

access all the records in the log.

Performance:

– execution times mostly two times (for some operations three times) larger

than for NFS,

– in WAN 10 times slower than in LAN, similar to NFS – still NFS not de-

signed for usage in WAN,

Primary contribution of Ivy: novel approach to the management of security and in-

tegrity in an environment of partial trust (in networks spanning many organizations

and jurisdictions).

[40] P2P – Summary

The benefits of P2P:

19



Peer-to-Peer Systems

– ability to exploit unused resources (storage, processing) in the host comput-

ers,

– ability to support large numbers of clients and hosts with adequate balancing

of the loads on network links and host computer resources,

– self-organizing properties of the middleware platforms lead to to costs largely

independent of the numbers of clients and hosts deployed.

Weaknesses and subjects of research:

– relatively costly as storage solution for mutable data compared to trusted

centralized service solutions,

– still lack of strong guarantees for client and host anonymity.

20


