
Distributed Systems
Synchronization (II)

[2] Distributed Transactions

1. The transaction model

– ACID properties

2. Classification of transactions

– flat transactions,

– nested transactions,

– distributed transactions.

3. Concurrency control

– serializability,

– synchronization techniques

– two-phase locking,

– pessimistic timestamp ordering,

– optimistic timestamp ordering.

[3] The Transaction Model (1)

Computer

New
inventory

Output tape
Input tapes

Previous
inventory

Today's
updates

Synchronization (II)

Updating a master tape is fault tolerant.

[4] The Transaction Model (2)

Examples of primitives for transactions.

[5] The Transaction Model (3)

a. transaction to reserve three flights commits,

b. transaction aborts when third flight is unavailable.

[6] ACID Properties

Transaction

Collection of operations on the state of an object (database, object composition,

etc.) that satisfies the following properties:

Atomicity All operations either succeed, or all of them fail. When the transaction

fails, the state of the object will remain unaffected by the transaction.

Consistency A transaction establishes a valid state transition. This does not ex-

clude the possibility of invalid, intermediate states during the transaction’s

execution.

2

Synchronization (II)

Isolation Concurrent transactions do not interfere with each other. It appears to

each transaction T that other transactions occur either before T, or after T,

but never both.

Durability After the execution of a transaction, its effects are made permanent:

changes to the state survive failures.

[7] Transaction Classification

Flat transactions

The most familiar one: a sequence of operations that satisfies the ACID properties.

Nested transactions

A hierarchy of transactions that allows (1) concurrent processing of subtransac-

tions, and (2) recovery per subtransaction.

Distributed transactions

A (flat) transaction that is executed on distributed data. Often implemented as a

two-level nested transaction with one subtransaction per node.

[8] Flat Transactions – Limitations

– they do not allow partial results to be committed or aborted,

– the strength of the atomicity property of a flat transaction also is partly its

weakness,

– solution: usage of nested transactions,

– difficult scenarios:

– subtransaction committed but the higher-level transaction aborted,

– if a subtransaction commits and a new subtransaction is started, the

second one has to have available results of the first one.

[9] Distributed Transactions

– nested transaction is logically decomposed into a hierarchy of subtransac-

tions,

– distributed transaction is logically flat, indivisible transaction that operates

on distributed data. Separate distributed algorithms required for (1) handling

the locking of data and (2) committing the entire transaction.

3

Synchronization (II)

Airline database Hotel database

Subtransaction SubtransactionSubtransaction Subtransaction

Nested transaction Distributed transaction

Distributed database

Two different (independent)
databases

Two physically separated
parts of the same database

(a) (b)

[10] Transaction Implementation

1. private workspace

– use a private workspace, by which the client gets its own copy of the

(part of the) database. When things go wrong delete copy, otherwise

commit the changes to the original,

– optimization by not getting everything.

2. write-ahead log

– use a writeahead log in which changes are recorded allowing you to

roll back when things go wrong.

[11] TransImpl: Private Workspace

4

Synchronization (II)

1 2

1 1 1

2

33

2 2 2

0 1
0

0

0 0

0

Index
Original
index

Private
workspace

Free blocks

(a) (b) (c)

3
2
3

1
0

1
2

0

a. The file index and disk blocks for a three-block file,

b. The situation after a transaction has modified block 0 and appended block 3,

c. After committing.

[12] TransImpl: Writeahead Log

a. A transaction,

b.-d. The log before each statement is executed.

5

Synchronization (II)

[13] Transactions: Concurrency Control (1)

Transaction
manager

Scheduler

Data
manager

READ/WRITE BEGIN_TRANSACTION
END_TRANSACTION

LOCK/RELEASE
or

Timestamp operations

Execute read/write

Transactions

General organization of managers for handling transactions.

[14] Transactions: Concurrency Control (2)

6

Synchronization (II)

Transaction
manager

Scheduler Scheduler Scheduler

Data
manager

Data
manager

Data
manager

Machine A Machine B Machine C

General organization of managers for handling distributed transactions.

[15] Serializability (1)

a.-c. Three transactions T1, T2, and T3,

d. Possible schedules.

7

Synchronization (II)

[16] Serializability (2)

Consider a collection E of transactions T1, . . . ,Tn. Goal is to conduct a serializable

execution of E:

– transactions in E are possibly concurrently executed according to some sched-

ule S.

– schedule S is equivalent to some totally ordered execution of T1, . . . ,Tn.

Because we are not concerned with the computations of each transaction, a trans-

action can be modeled as a log of read and write operations.

Two operations OPER(Ti, x) and OPER(T j, x) on the same data item x, and from

a set of logs may conflict at a data manager:

read-write conflict (rw) one is a read operation while the other is a write opera-

tion on x,

write-write conflict (ww) both are write operations on x.

[17] Synchronization Techniques

1. Two-phase locking

Before reading or writing a data item, a lock must be obtained. After a lock

is given up, the transaction is not allowed to acquire any more locks.

2. Timestamp ordering

Operations in a transaction are time-stamped, and data managers are forced

to handle operations in timestamp order.

3. Optimistic control

Don’t prevent things from going wrong, but correct the situation if conflicts

actually did happen. Basic assumption: you can pull it off in most cases.

[18] Two-Phase Locking (1)

– clients do only READ and WRITE operations within transactions,

– locks are granted and released only by scheduler,

– locking policy is to avoid conflicts between operations.

8

Synchronization (II)

1. When client submits OPER(Ti, x), scheduler tests whether it conflicts with

an operation OPER(T j, x) from any other client. If no conflict then grant

LOCK(Ti, x), otherwise delay execution of OPER(Ti, x).

– conflicting operations are executed in the same order as that locks are

granted.

2. If LOCK(Ti, x) has been granted, do not release the lock until OPER(Ti, x)

has been executed by data manager.

3. If RELEAS E(Ti, x) has taken place, no more locks for Ti may be granted.

[19] Two-Phase Locking (2)

Growing phase Shrinking phase

Lock point

N
um

be
r

of
 lo

ck
s

Time

Two-phase locking.

[20] Two-Phase Locking (3)

Types of 2PL

Centralized 2PL A single site handles all locks,

Primary 2PL Each data item is assigned a primary site to handle its locks. Data

is not necessarily replicated,

Distributed 2PL Assumes data can be replicated. Each primary is responsible

for handling locks for its data, which may reside at remote data managers.

9

Synchronization (II)

Problems:

– deadlock possible – order of acquiring, deadlock detection, a timeout scheme,

– cascaded aborts – strict two-phase locking.

[21] 2PL: Strict 2PL

Growing phase Shrinking phase

Lock point

Time

N
um

be
r

of
 lo

ck
s

All locks are released
at the same time

Strict two-phase locking.

[22] Pessimistic Timestamp Ordering (1)

– each transaction T has a timestamp ts(T) assigned,

– timestamps are unique (Lamport’s algorithm),

– every operation, part of T , timestamped with ts(T),

– every data item x has a read timestamp tsRD(x) and a write timestamp tsWR(x),

– if operations conflicts, the data manager processes the one with the lowest

timestamp,

– comparing to locking (like 2PL): aborts possible but deadlock free.

[23] Pessimistic Timestamp Ordering (2)

10

Synchronization (II)

WRts (x) WRts (x)

WRts (x) WRts (x)

WRts (x)

WRts (x)

RDts (x)

RDts (x) tentts (x)

tentts (x)

RDts (x)

T1() T1() T2()

ts(T2) ts(T2)

ts(T2) ts(T2)

ts(T2) ts(T2)

Do
tentative
write

Abort Abort

OK

OK

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

ts(T2) ts(T2)

T1() T1() T2()

T2() T3()

T2() T3()

T1() T2()

T1() T1() T2() T1() T3() T2()T1() T() T2()

T2() T3()

T2() T3()

Time Time

Time

Time

Time

Time

Time

Time

(a)-(d) T2 is trying to write an item, (e)-(f) T2 is trying to read an item.

[24] Optimistic Timestamp Ordering

Assumptions:

– conflicts are relatively rare,

– go ahead and do whatever you want, solve conflicts later on,

– keep track of which data items have been read and written (private workspaces,

shadow copies),

– check possible conflicts at the time of committing.

Features:

– deadlock free with maximum parallelism,

– under conditions of heavy load, the probability of failure (and abort) goes

up substantially,

– focused on nondistributed systems,

– hardly implemented in commercial or prototype systems.

[25] MySQL: Transactions (1)

By default, MySQL runs with autocommit mode enabled. This means that as soon

as you execute a statement that updates (modifies) a table, MySQL stores the up-

date on disk.

11

Synchronization (II)

– SET AUTOCOMMIT = {0 | 1}

Start and stop transaction:

– START TRANSACTION | BEGIN [WORK]

– COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

– ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

[26] MySQL: Transactions (2)

– If you issue a ROLLBACK statement after updating a non-transactional ta-

ble within a transaction, warning occurs. Changes to transaction-safe tables

are rolled back, but not changes to non-transaction-safe tables.

– InnoDB – transaction-safe storage engine,

– MySQL uses table-level locking for MyISAM and MEMORY tables, page-

level locking for BDB tables, and row-level locking for InnoDB tables.

– Some statements cannot be rolled back. In general, these include data defi-

nition language (DDL) statements, such as those that create or drop databases,

those that create, drop, or alter tables or stored routines.

– Transactions cannot be nested. This is a consequence of the implicit COM-

MIT performed for any current transaction when you issue a START TRANS-

ACTION statement or one of its synonyms.

[27] MySQL: Savepoints

The savepoints syntax:

– SAVEPOINT identifier

– ROLLBACK [WORK] TO SAVEPOINT identifier

– RELEASE SAVEPOINT identifier

Description:

12

Synchronization (II)

– The ROLLBACK TO SAVEPOINT statement rolls back a transaction to

the named savepoint. Modifications that the current transaction made to

rows after the savepoint was set are undone in the rollback, but InnoDB does

not release the row locks that were stored in memory after the savepoint.

– All savepoints of the current transaction are deleted if you execute a COM-

MIT, or a ROLLBACK that does not name a savepoint.

[28] MySQL: Isolation Levels in InnoDB (1)

Isolation levels:

– SET [SESSION | GLOBAL] TRANSACTION ISOLATION LEVEL

{READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ | SE-

RIALIZABLE}

– SELECT @@global.tx_isolation;

– SELECT @@tx_isolation;

– Suppose that you are running in the default REPEATABLE READ isolation

level. When you issue a consistent read (that is, an ordinary SELECT state-

ment), InnoDB gives your transaction a timepoint according to which your

query sees the database. If another transaction deletes a row and commits

after your timepoint was assigned, you do not see the row as having been

deleted. Inserts and updates are treated similarly.

[29] MySQL: Isolation Levels in InnoDB (2)

READ UNCOMMITTED SELECT statements are performed in a non-locking

fashion, but a possible earlier version of a record might be used. Thus, using

this isolation level, such reads are not consistent. This is also called a dirty

read. Otherwise, this isolation level works like READ COMMITTED.

READ COMMITTED Consistent reads behave as in other databases: Each con-

sistent read, even within the same transaction, sets and reads its own fresh

snapshot.

REPEATABLE READ This is the default isolation level of InnoDB. All con-

sistent reads within the same transaction read the snapshot established by

the first such read in that transaction. You can get a fresher snapshot for

your queries by committing the current transaction and after that issuing

new queries.

13

Synchronization (II)

SERIALIZABLE This level is like REPEATABLE READ, but InnoDB implic-

itly commits all plain SELECT statements to SELECT ... LOCK IN SHARE

MODE.

14

