
Distributed Systems
Synchronization (I)

[2] Synchronization (I)

1. Clock synchronization

2. Logical clocks

3. Global state (distributed snapshot)

4. Election algorithms

5. Mutual exclusion

Synchronization

Setting the time order of the set of events caused by concurrent processes.

[3] Clock Synchronization

Computer on
which compiler
runs

Computer on
which editor
runs

Time according
to local clock

Time according
to local clock

output.o created

output.c created

2144 2145 2146 2147

2142 2143 2144 2145

When each machine has its own clock, an event that occurred after another event

may nevertheless be assigned an earlier time.

[4] Timers

– timer,

– registers associated with each crystal:

– counter,

Synchronization (I)

– holding register;

– interrupt generated when counter gets 0,

– interrupt called every clock tick,

– impossible to guarantee two crystals run at exactly the same frequency,

– after getting out of sync, the difference in time values called clock skew.

[5] The Mean Solar Day

A transit of the sun
occurs when the
sun reaches the
highest point of

the day

Earth's orbit

At the transit of the sun
n days later, the earth

has rotated fewer
than 360o

To distant galaxy

To distant galaxy

Earth on day 0 at the
transit of the sun

Earth on day n at the
transit of the sun

Sun

x

x

Computation of the mean solar day – the period of the earth’s rotation is not con-

stant.

[6] Physical Clocks (1)

Transit of the sun the event of the sun reaching its highest apparent point in the

sky.

Solar day the interval between two consecutive transits of the sun.

Solar second 1/86400th of a solar day.

– mean solar second (300 million days ago a year has about 400 days),

2

Synchronization (I)

[7] Physical Clocks (2)

Sometimes we simply need the exact time, not just an ordering.

Solution: Universal Coordinated Time (UTC):

– based on the number of transitions per second of the cesium 133 atom (pretty

accurate),

– at present, the real time is taken as the average of some 50 cesium-clocks

around the world,

– introduces a leap second from time to time to compensate that days are get-

ting longer.

NIST operates a shortwave radio station with call letters WWV from Fort Collins

in Colorado (a short pulse at the start of each UTC second). UTC is broadcast

through short wave radio and satellite. Satellites can give an accuracy of about

±0.5 ms.

Does this solve all our problems? Don’t we now have some global timing mecha-

nism? This timing is still way too coarse for ordering every event.

[8] Physical Clocks (3)

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10 11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20 21

21

22

22

23

23

24

24

25

25

TAI

Solar
seconds

Leap seconds introduced into UTC to
get it in synch with TAI

TAI seconds are of constant length, unlike solar seconds. Leap seconds are intro-

duced when necessary to keep in phase with the sun.

– TAI – International Atomic Time,

– 86400 TAI seconds is about 3 msec less than a mean solar day,

– UTC – TAI with leap seconds whenever the discrepancy between TAI and

solar time grows to 800 msec.

3

Synchronization (I)

[9] Physical Clocks (4)

Assumption: a distributed system with an UTC-receiver somewhere in it.

Basic principle:

– every machine has a timer that generates an interrupt H times per second,

– there is a clock in machine p that ticks on each timer interrupt. Denote the

value of that clock by Cip(t), where t is UTC time.

– ideally, we have that for each machine p, Cp(t) = t, or, in other words,

dC/dt = 1

– Ideally: dC/dt = 1, in practice: 1 − ρ ≤ dC/dt ≤ 1 + ρ

– in order to protect against difference bigger than δ time units⇒ synchronize

at least every δ/(2ρ) seconds.

[10] Clock Synchronization Algorithms

Fa
st

 c
lo

ck

Per
fe

ct
clo

ck

Slow clock

Clock time, C

dC
dt

> 1
dC
dt

= 1

dC
dt

< 1

UTC, t

The relation between clock time and UTC when clocks tick at different rates.

[11] Clock Synchronization Principles

4

Synchronization (I)

Principle I Every machine asks a time server for the accurate time at least once

every δ/(2ρ) seconds.

– needs an accurate measure of round trip delay, including interrupt han-

dling and processing incoming messages.

Principle II Let the time server scan all machines periodically, calculate an av-

erage, and inform each machine how it should adjust its time relative to its

present time.

– probably gets every machine in sync.

– setting the time back is never allowed, therefore smooth adjustments.

[12] Clock Synchronization Algorithms

Clock synchronization algorithms:

– Cristian’s Algorithm

– The Berkeley Algorithm

– Averaging Algorithms

[13] Cristian’s Algorithm

Client

Request

Time
Time server

CUTC

T0 T1

I, Interrupt handling time

Both T and T are measured with the same clock0 1

Getting the current time from a time server.

5

Synchronization (I)

– (T1 − T0)/2,

– messages with T1− T0 above some threshold discarded as being victims of

network congestion,

– the message that came back fastest is the most accurate one.

[14] The Berkeley Algorithm

Time daemon

3:00 3:00 3:053:00 0 +5

3:00 -10 +15

3:00 +25 -20

3:25 3:25 3:052:50 2:50 3:05

Network

(a) (b) (c)

1. The time daemon asks all the other machines for their clock values.

2. The machines answer.

3. The time daemon tells everyone how to adjust their clock.

[15] Averaging Algorithms

– previous methods highly centralized,

– decentralized algorithms:

– dividing time into fixed-length resynchronization intervals,

– T0 + (i + 1)R, where R is a system parameter,

– machines broadcast the current time according to their clocks,

– another variation: correcting each message by considering propagation

time from the source,

6

Synchronization (I)

– Internet: the Network Time Protocol (NTP), accuracy in the range of 1-50

msec.

[16] Logical Clocks

– often if it is sufficient that all machines agree on the same time,

– internal consistency only matters, not whether they are particularly close to

the real time,

– what usually matters is not that all processes agree on what time is, but rather

that they agree on the order in which events occur,

– Lamport’s algorithm, which synchronizes logical clocks,

– an extension to Lamport’s approach, called vector timestamps.

[17] The Happened-Before Relationship

The happened-before relation on the set of events in a distributed system is the

smallest relation satisfying:

– if a and b are two events in the same process, and a comes before b, then

a→ b.

– if a is the sending of a message, and b is the receipt of that message, then

a→ b.

– if a→ b and b→ c, then a→ c.

This introduces a partial ordering of events in a system with concurrently operat-

ing processes.

Concurrent events

Nothing can be said about when the events happened or which event happened

first.

[18] Logical Clocks (1)

How do we maintain a global view on the system’s behavior that is consistent with

the happened-before relation?

Solution: attach a time-stamp C(e) to each event e, satisfying the following prop-

erties:

7

Synchronization (I)

P1 If a and b are two events in the same process, and a→ b, then we demand that

C(a) < C(b).

P2 If a corresponds to sending a message m, and b to the receipt of that message,

then also C(a) < C(b).

How to attach a time-stamp to an event when there’s no global clock?

Solution: maintain a consistent set of logical clocks, one per process.

[19] Logical Clocks (2)

Each process Pi maintains a local counter Ci and adjusts this counter according

to the following rules:

1. For any two successive events that take place within Pi, Ci is incremented

by 1.

2. Each time a message m is sent by process Pi, the message receives a time-

stamp Tm = Ci.

3. Whenever a message m is received by a process P j, P j adjusts its local

counter C j:

C j := max{C j + 1,Tm + 1}.

– property P1 satisfied by 1.,

– property P2 satisfied by 2. and 3.

[20] Logical Clocks (3)

0

6

12

18

24

30

36

42

48

54

60

0

6

12

18

24

30

36

42

48

70

76

0

8

16

24

32

40

48

56

64

72

80

0

8

16

24

32

40

48

61

69

77

85

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

A A

B B

C C

D D

(a) (b)

8

Synchronization (I)

Lamport’s algorithm example

[21] Total Ordering with Logical Clocks

Still can occur: two events happen at the same time. May be avoided by attaching

a process number to an event:

If: Pi time-stamps event e with Ci(e).i

Then: Ci(a).i before C j(b). j if and only if:

– Ci(a) < C j(a) or

– Ci(a) = C j(b) and i < j.

[22] Example: Totally-Ordered Multicasting

Update 1 Update 2

Update 1 is
performed before

update 2

Update 2 is
performed before

update 1

Replicated database

– this situation requires totally-ordered multicasting - to be implemented with

Lamport timestamps,

– each message is always timestamped with the current logical time of the

sender,

– received message put into a local queue, ordered according to its timestamp,

receiver multicasts an acknowledgement to others,

– a process can deliver a queued message to the application it is running only

when that message is at the head of the queue and has been acknowledged

by each other process.

9

Synchronization (I)

[23] Vector Timestamps (1)

– Lamport timestamps do not guarantee that if C(a) < C(b) that a indeed

happened before b. Vector timestamps are required for that.

– each process Pi has an array Vi[1 . . . n], where Vi[j] denotes the number

of events that process Pi knows have taken place at process P j,

– when Pi sends a message m, it adds 1 to Vi[i], and sends Vi along with

m as vector timestamp vt(m). Upon arrival, each other process knows

Pi’s timestamp.

– timestamp vt of m tells the receiver how many events in other processes have

preceded m, and on which m may causally depend.

[24] Vector Timestamps (2)

– when a process P j receives m from Pi with vt(m), it:

– updates each V j[k] to max{V j[k],V(m)[k]},

– increments V j[j] by 1.

– to support causal delivery of messages, assume you increment your own

component only when sending a message. Then, P j postpones delivery of

m until:

– vt(m)[i] = V j[i] + 1 and

– vt(m)[k] ≤ V j[k] for k , i.

Example

Given V3 = [0, 2, 2], vt(m) = [1, 3, 0]:

What information does P3 have, and what will it do after receiving m (from P1)?

[25] An example of Causal Delivery of Messages (1)

Assumptions:

– messages multicasted by the processes to all other participating in commu-

nication,

– all messages sent by one process received in the same order by each other

process,

10

Synchronization (I)

– reliable message sending mechanism,

– order of messages from different processes not forced.

Actions on the sender side:

1. Sending (multicasting) of the message.

Actions on the receiver side:

1. Receiving of the message by the communication layer.

2. Delivering of the message to the target process.

[26] An example of Causal Delivery of Messages (2)

Let

vtm - vector timestamp of message m,

VP - current vector of process P.

Rules

When message m sent by process P, sent together with vector timestamp vtm built

up in the following way:

1. vtm[P] = VP[P] + 1,

2. vtm[X] = VP[X] for all X different to P.

Received message m from P delivered into the process Q only if the following

conditions are met:

1. vtm[P] = VQ[P] + 1

2. vtm[X] ≤ VQ[X] for all X different to P.

When message m delivered to the process Q:

1. VQ[X] = max{VQ[X], vtm[X]}

[27] An example of Causal Delivery of Messages (3)

Three processes: A, B, C with initial vectors: VA = VB = VC = (0, 0, 0)

General scenario:

11

Synchronization (I)

1. Process A multicasts request m1

2. Process B multicasts reply m2 as a result of obtaining request in message

m1.

Goal:

All processes should have delivered message m2 only after delivering message m1.

If the message m2 is received by the transport layer of some process as the first one,

delivery of the m2 must be postponed until m1 is received and delivered before.

[28] An example of Causal Delivery of Messages (4)

A sends m1(0 + 1, 0, 0) = m1(1, 0, 0),

B receives m1(1, 0, 0) from A,

VB = (0, 0, 0), vtm1 = (1, 0, 0),

m1 delivered at once because:

vtm1[A] = VB[A] + 1,

vtm1[X] <= VB[X] for all X different to A.

after m1 delivery new value of VB set to VB = (1, 0, 0).

B sends m2(1, 0 + 1, 0) = m2(1, 1, 0),

A receives m2(1, 1, 0) from B,

VA = (1, 0, 0), vtm2 = (1, 1, 0),

m2 delivered at once because:

vtm2[B] = VA[B] + 1,

vtm2[X] <= VA[X] for all X different to B.

after m2 delivery new value of VA set to VA = (1, 1, 0).

[29] An example of Causal Delivery of Messages (5)

C receives m2(1, 1, 0) from B,

VC = (0, 0, 0), vtm2 = (1, 1, 0),

m2 delivery postponed because:

vtm2[A] > VC[A] and A is different to B.

12

Synchronization (I)

Comment:

We should not deliver the message m2 sent by B to the process C now because at

the time of sending that message by the process B it knew already some message

received from process A about which we do not know yet.

Perhaps in that message, received before by B and not received by us yet, was

something important what should be received by C before receiving m2. Firstly,

C has to have delivered the previous message, already delivered to B before the

moment of sending by B the message m2.

[30] An example of Causal Delivery of Messages (6)

C receives m1(1, 0, 0) from A

VC = (0, 0, 0), vtm1 = (1, 0, 0),

m1 delivered at once because:

vtm1[A] = VC[A] + 1,

vtm1[X] <= VC[X] for all X different to A.

after m1 delivery new value of VC set to VC = (1, 0, 0),

now on C we check delivery queue,

now m2 may be and is delivered because:

VC = (1, 0, 0), vtm2 = (1, 1, 0),

vtm2[C] = VC[C] + 1,

vtm2[X] ≤ VC[X] for all X different to C.

after m2 delivery new value of VC set to VC = (1, 1, 0).

After two multicasts A → BC and B → AC, current values of vector timestamps

of processes are as follows: VA = VB = VC = (1, 1, 0)

[31] Global State (1)

Sometimes one wants to collect the current state of a distributed computation,

called a distributed snapshot.

It consists of: (1) all local states and (2) messages currently in transit.

13

Synchronization (I)

P1 P1

P2 P2

P3 P3

Consistent cut Inconsistent cut

m3 m3

m2 m2

Time Time

Sender of m2 cannot
be identified with this cut

(a) (b)

m1 m1

A distributed snapshot should reflect a consistent state.

[32] Global State (2)

– collection of processes connected to each other through unidirectional point-

to-point communication channels,

– any process P can initiate taking a distributed snapshot.

1. P starts by recording its own local state,

2. P subsequently sends a marker along each of its outgoing channels,

3. when Q receives a marker through channel C, its action depends on whether

it had already recorded its local state:

– not yet recorded: it records its local state, and sends the marker along

each of its outgoing channels,

– already recorded: the marker on C indicates that the channel’s state

should be recorded: all messages received since the time Q recorded

its own state and before that marker to be recorded as the channel’s

state,

4. Q is finished when it has received a marker along each of its incoming chan-

nels.

[33] Global State (3)

Distributed snapshot, channel state recording:

14

Synchronization (I)

M Q

Marker

Incoming
message

Outgoing
message

Local
filesystem

Process State

M
M

Q QM Q

(a)

(b) (c) (d)

Recorded
state

db

b b

a

a a

c

c c d

1. Process Q receives a marker for the first time and records its local state.

2. Q records all incoming message.

3. Q receives a marker for its incoming channel and finishes recording the state

of the incoming channel.

[34] Election Algorithms

An algorithm requires that some process acts as a coordinator. How to select this

special process dynamically?

– in many systems the coordinator chosen by hand (e.g. file servers). This

leads to centralized solutions⇒ single point of failure.

– if a coordinator chosen dynamically, to what extent one can speak about a

centralized or distributed solution? Having a central coordinator does not

necessarily make an algorithm non-distributed.

– is a fully distributed solution, i.e. one without a coordinator, always more

robust than any centralized/coordinated solution? Fully distributed solutions

not necessarily better.

Example election algorithms:

– the bully algorithm,

– a ring algorithm.

15

Synchronization (I)

[35] The Bully Election Algorithm (1)

Each process has an associated priority (weight). The process with the highest

priority should always be elected as the coordinator.

How to find the heaviest process?

– any process can just start an election by sending an election message to all

other processes (assuming you don’t know the weights of the others).

– if process Pheavy receives an election message from lighter process Plight, it

sends a take-over message to Plight. Plight is out of the race.

– if a process doesn’t get a take-over message back, it wins, and sends a victory

message to all other processes.

[36] The Bully Election Algorithm (2)

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

Election

E
le

ct
io

nElection

Election
OK

OK

Previous coordinator
has crashed

Elec
tio

n

Election

(a) (b) (c)

a. process 4 holds an election,

b. process 5 and 6 respond, telling 4 to stop,

c. now 5 and 6 each hold an election.

[37] The Bully Election Algorithm (3)

16

Synchronization (I)

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

OK
Coordinator

(a) (b) (c)

(d) (e)

d. process 6 tells 5 to stop,

e. process 6 wins and tells everyone.

[38] A Ring Algorithm (1)

Process priority is obtained by organizing processes into a (logical) ring. Process

with the highest priority should be elected as coordinator.

– any process can start an election by sending an election message to its suc-

cessor. If a successor is down, the message is passed on to the next successor.

– if a message is passed on, the sender adds itself to the list. When it gets back

to the initiator, everyone had a chance to make its presence known.

– the initiator sends a coordinator message around the ring containing a list of

all living processes. The one with the highest priority is elected as coordi-

nator.

[39] A Ring Algorithm (2)

17

Synchronization (I)

1

0

5

4

7

6

3

2

[2]

[2,3]

[5,6]

[5,6,0]

[5]

Election message

No response

Previous coordinator
has crashed

[40] Mutual Exclusion

A number of processes in a distributed system want exclusive access to some re-

source.

Standard solutions:

– via a centralized server,

– completely distributed, with no topology imposed,

– completely distributed, making use of a logical ring.

[41] MutEx: A Centralized Algorithm

(a) (b) (c)

0 0 01 1 1

3 3 3

2 2

2

2

Request
Request ReleaseOK

OK

Coordinator

Queue is
empty

No reply

1. Process 1 asks the coordinator for permission to enter a critical region. Per-

mission is granted.

18

Synchronization (I)

2. Process 2 then asks permission to enter the same critical region. The coor-

dinator does not reply.

3. When process 1 exits the critical region, it tells the coordinator, when then

replies to 2.

[42] MutEx: Ricart & Agrawala Algorithm (1)

Ricart & Agrawala algorithm – completely distributed, with no topology imposed.

– the same as Lamport except that acknowledgments aren’t sent. Instead, replies

(i.e. grants) are sent only when:

– the receiving process has no interest in the shared resource or

– the receiving process is waiting for the resource, but has lower priority

(known through comparison of time-stamps).

– in all other cases, reply is deferred, implying some more local administration.

[43] MutEx: Ricart & Agrawala Algorithm (2)

0 0 0

1 1 12 2 2

8

8
8 12

12

12

OK OK

OK

OK

Enters
critical
region

Enters
critical
region

(a) (b) (c)

1. Two processes want to enter the same critical region at the same moment.

2. Process 0 has the lowest timestamp, so it wins.

3. When process 0 is done, it sends an OK also, so 2 can now enter the critical

region.

[44] MutEx: A Token Ring Algorithm

19

Synchronization (I)

1

00

2

3

4

5

6

7

2 4 9 7 1 6 5 8 3

(a) (b)

1. An unordered group of processes on a network.

2. A logical ring constructed in software.

[45] Mutual Exclusion - Comparison

Messages per Delay before entry Potential

Algorithm entry/exit (in message times) problems

Centralized 3 2 Coordinator crash

Distributed 2(n − 1) 2(n − 1) Crash of any process

Token Ring 1 to∞ 0 to n − 1 Lost token, process crash

A comparison of three mutual exclusion algorithms.

20

