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1. Layered Protocols

2. Remote Procedure Call

3. Remote Object Invocation

4. Message-oriented Communication

5. Stream-oriented Communication

[3] Persistence and Synchronicity in Communication (1)

Assumption – communication system organized as follows:

– applications are executed on hosts,

– each host connected to one communication server,

– buffers may be placed either on hosts or in the communication servers of the

underlying network,

– example: an e-mail system.

persistent vs transient communication,

asynchronous communication – sender continues immediately after it has sub-

mitted its message for transmission,

synchronous communication – the sender blocked until its message is stored in

a local buffer at the receiving host or actually delivered to the receiver.

[4] Persistence and Synchronicity in Communication (2)

Client/server computing generally based on a model of synchronous communi-

cation:

– client and server to be active at the time of communication,

– client issues request and blocks until reply received,
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– server essentially waits only for incoming requests and subsequently pro-

cesses them.

Drawbacks of synchronous communication:

– client cannot do any other work while waiting for reply,

– failures to be dealt with immediately (the client is waiting),

– in many cases the model simply not appropriate (mail, news).

[5] Persistence and Synchronicity in Communication (3)
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General organization of a communication system in which hosts are connected

through a network.

– queued messages sent among processes,

– sender not stopped in waiting for immediate reply,

– fault tolerance often ensured by middleware.

[6] Persistence and Synchronicity in Communication (4)

Persistent vs. transient communication

Persistent communication

A message is stored at a communication server as long as it takes to deliver it at

the receiver.

Transient communication

A message is discarded by a communication server as soon as it cannot be delivered

at the next server or at the receiver.

[7] Persistence and Synchronicity in Communication (5)
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Persistent communication of letters back in the days of the Pony Express.

[8] Persistence and Synchronicity in Communication (6)
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Different forms of communication:

a. persistent asynchronous,

b. persistent synchronous,

c. transient asynchronous,

d. receipt-based transient syn-

chronous,

e. delivery-based transient syn-

chronous,

f. response-based transient syn-

chronous,

[9] Message-Oriented Transient Communication

– socket interface introduced in Berkeley UNIX,
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– another transport layer interface: XTI, X/Open Transport Interface, formerly

called the Transport Layer Interface (TLI), developed by AT&T

socket

Communication endpoint to which an application write data that are to be sent over

the underlying network and from which incoming data can be read.

[10] Berkeley Sockets (1)

Socket primitives for TCP/IP.

[11] Berkeley Sockets (2)
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Connection-oriented communication pattern using sockets.

[12] The Message-Passing Interface (MPI) (1)
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MPI

Group of message-oriented primitives that would allow developers to easily write

highly efficient applications.

Sockets insufficient because:

– at the wrong level of abstraction supporting only send and receive primitives,

– designed to communicate using general-purpose protocol stacks such as TCP/IP,

not suitable in high-speed interconnection networks, such as those used in

COWs and MPPs (with different forms of buffering and synchronization).

[13] The Message-Passing Interface (MPI) (2)

MPI assumptions:

– communication within a known group of processes,

– each group with assigned id,

– each process withing a group also with assigned id,

– all serious failures (process crashes, network partitions) assumed as fatal and

without any recovery,

– a (groupID, processID) pair used to identify source and destination of the

message,

– only receipt-based transient synchronous communication (d) not supported,

other supported.

[14] The Message-Passing Interface (3)
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Some of the most intuitive message-passing primitives of MPI.

[15] The Message-Oriented Persistent Communication

Message-queueing systems = Message-Oriented Middleware (MOM)

The essence of MOM systems:

– offer the intermediate-term storage capacity for messages,

– target to support message transfers that are allowed to take minutes instead

of seconds or milliseconds,

– no guarantees about when or even if the message will be actually read,

– the sender and receiver can execute completely independently.

[16] Message-Queuing Model

Basic interface to a queue in a message-queuing system.

Most queuing systems also allow a process to install handlers as callback functions.

[17] Architecture of Message-Queuing Systems (1)
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The relationship between queue-level addressing and network-level addressing.

source queue, destination queue, a database of queue names to network locations

mapping.

[18] Architecture of Message-Queuing Systems (2)
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The general organization of a message-queuing system with routers:

– may grow into overlay network,

– may need dynamic routing schemes.

Queue managers:

– normally interact directly with applications,

– some operate as routers or relays.

[19] Message Brokers
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Queuing
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Broker
program

Database with
conversion rulesSource client Destination client

OS OSOS

Message broker

Network

The general organization of a message broker in a message-queuing system.

Message broker

Acts as an application-level gateway in a message-queuing system. Its main pur-

pose it to convert incoming messages to a format that can be understood by the

destination application. It may provide routing capabilities.

[20] Notes on Message-Queuing Systems

– with message brokers it may be necessary to accept a certain loss of infor-

mation during transformation,

– at the heart of a message broker lies a database of conversion rules,

– general message-queuing systems are not aimed at supporting only end users,

– they are set up to enable persistent communication,

– range of applications:

– e-mail, workflow, groupware, batch processing,

– integration of a collection of databases or database applications.

[21] Example: IBM MQSeries
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General organization of IBM’s MQSeries message-queuing system.

[22] Channels

Some attributes associated with message channel agents.

[23] Message Transfer (1)
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The general organization of an MQSeries queuing network using routing tables

and aliases. By using logical names, in combination with name resolution to local

queues, it is possible to put a message in a remote queue.

[24] Message Transfer (2)

Primitives available in an IBM MQSeries MQI.

[25] Stream-Oriented Communication

– forms of communication in which timing plays a crucial role,

– example:

– an audio stream built up as a sequence of 16-bit samples each repre-

senting the amplitude of the sound wave as it is done through PCM

(Pulse Code Modulation),

– audio stream represents CD quality, i.e. 44100Hz,

– samples to be played at intervals of exactly 1/44100,

– which facilities a distributed system should offer to exchange time-dependent

information such as audio and video streams?

– support for the exchange of time-dependent information = support for

continuous media,

– continuous (representation) media vs. discrete (representation) me-

dia.

[26] Support for Continuous Media

In continuous media :
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– temporal relationships between data items fundamental to correctly inter-

preting the data,

– timing is crucial.

Asynchronous transmission mode

Data items in a stream are transmitted one after the other, but there are no further

timing constraints on when transmission of items should take place.

Synchronous transmission mode

Maximum end-to-end delay defined for each unit in a data stream.

Isochronous transmission mode

It is necessary that data units are transferred on time. Data transfer is subject to

bounded (delay) jitter.

[27] Data Stream (1)
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a. Setting up a stream between two processes across a network,

b. Setting up a stream directly between two devices.

– stream sequence of data units, may be considered as a virtual connection

between a source and a sink,

– simple stream vs. complex stream (consisting of several related sub-streams).
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[28] Data Stream (2)

Source

Intermediate
node, possibly
with filters

SinkStream

Lower bandwidth

An example of multicasting a stream to several receivers.

– problem with receivers having different requirements with respect to the

quality of the stream,

– filters to adjust the quality of an incoming stream, differently for outgoing

streams.

[29] Specifying QoS (1)

A flow specification.

Time-dependent requirements among other Quality of Service (QoS) require-

ments.

[30] Specifying QoS (2)
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Application
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The principle of a token bucket algorithm.

– tokens generated at a constant rate,

– tokens buffered in a bucket which has limited capacity.

[31] Setting Up a Stream
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The basic organization of RSVP (Resource reSerVation Protocol), transport-level

protocol for resource reservation in a distributed system.

[32] Synchronization Mechanisms (1)
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Network
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OS

The principle of explicit synchronization on the level data units.

Given a complex stream, how to keep the different substreams in synch?

[33] Synchronization Mechanisms (2)
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The principle of synchronization as supported by high-level interfaces.

Multiplex of all substreams into a single stream and demultiplexing at the receiver.

Synchronization is handled at multiplexing/demultiplexing point (MPEG).
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