
Distributed Systems
Communication (II)

[2] Communication (II)

1. Layered Protocols

2. Remote Procedure Call

3. Remote Object Invocation

4. Message-oriented Communication

5. Stream-oriented Communication

[3] Persistence and Synchronicity in Communication (1)

Assumption – communication system organized as follows:

– applications are executed on hosts,

– each host connected to one communication server,

– buffers may be placed either on hosts or in the communication servers of the

underlying network,

– example: an e-mail system.

persistent vs transient communication,

asynchronous communication – sender continues immediately after it has sub-

mitted its message for transmission,

synchronous communication – the sender blocked until its message is stored in

a local buffer at the receiving host or actually delivered to the receiver.

[4] Persistence and Synchronicity in Communication (2)

Client/server computing generally based on a model of synchronous communi-

cation:

– client and server to be active at the time of communication,

– client issues request and blocks until reply received,

Communication (II)

– server essentially waits only for incoming requests and subsequently pro-

cesses them.

Drawbacks of synchronous communication:

– client cannot do any other work while waiting for reply,

– failures to be dealt with immediately (the client is waiting),

– in many cases the model simply not appropriate (mail, news).

[5] Persistence and Synchronicity in Communication (3)

InternetworkLocal network

Sending host Receiving hostCommunication server Communication server

Application Application
Routing
program

Routing
program

Messaging interface

OS OSOS OS

Local buffer Local buffer

Buffer independent
of communicating
hosts

To other (remote)
communication
server

Incoming message

General organization of a communication system in which hosts are connected

through a network.

– queued messages sent among processes,

– sender not stopped in waiting for immediate reply,

– fault tolerance often ensured by middleware.

[6] Persistence and Synchronicity in Communication (4)

Persistent vs. transient communication

Persistent communication

A message is stored at a communication server as long as it takes to deliver it at

the receiver.

Transient communication

A message is discarded by a communication server as soon as it cannot be delivered

at the next server or at the receiver.

[7] Persistence and Synchronicity in Communication (5)

2

Communication (II)

Post
office

Post
office

Post
office

Post
officePony and rider

Mail stored and sorted, to
be sent out depending on destination
and when pony and rider available

Persistent communication of letters back in the days of the Pony Express.

[8] Persistence and Synchronicity in Communication (6)

B is not
running

B is not
running

A A

A A

A A

B B

B B

B B

Time Time

Time Time

Time Time

A sends message
and continues

A sends message
and waits until acceptedA stopped

running

A stopped
running

B starts and
receives
message

B starts and
receives
message

A sends message
and continues

Message can be
sent only if B is
running

B receives
message

Send request and wait
until received

Send request and wait until
accepted

Send request
and wait for reply

Process
request

Process
request

Process
request

Running, but doing
something else

Running, but doing
something else

Request
is received

Request
is received

Request
is received

ACK

Accepted
Accepted

(a) (b)

(c) (d)

(f)(e)

Message is stored
at B's location for
later delivery

Accepted

Running, but doing
something else

Different forms of communication:

a. persistent asynchronous,

b. persistent synchronous,

c. transient asynchronous,

d. receipt-based transient syn-

chronous,

e. delivery-based transient syn-

chronous,

f. response-based transient syn-

chronous,

[9] Message-Oriented Transient Communication

– socket interface introduced in Berkeley UNIX,

3

Communication (II)

– another transport layer interface: XTI, X/Open Transport Interface, formerly

called the Transport Layer Interface (TLI), developed by AT&T

socket

Communication endpoint to which an application write data that are to be sent over

the underlying network and from which incoming data can be read.

[10] Berkeley Sockets (1)

Socket primitives for TCP/IP.

[11] Berkeley Sockets (2)

connect

socket

socket

bind listen read

read

write

write

accept close

close

Server

Client

Synchronization point Communication

Connection-oriented communication pattern using sockets.

[12] The Message-Passing Interface (MPI) (1)

4

Communication (II)

MPI

Group of message-oriented primitives that would allow developers to easily write

highly efficient applications.

Sockets insufficient because:

– at the wrong level of abstraction supporting only send and receive primitives,

– designed to communicate using general-purpose protocol stacks such as TCP/IP,

not suitable in high-speed interconnection networks, such as those used in

COWs and MPPs (with different forms of buffering and synchronization).

[13] The Message-Passing Interface (MPI) (2)

MPI assumptions:

– communication within a known group of processes,

– each group with assigned id,

– each process withing a group also with assigned id,

– all serious failures (process crashes, network partitions) assumed as fatal and

without any recovery,

– a (groupID, processID) pair used to identify source and destination of the

message,

– only receipt-based transient synchronous communication (d) not supported,

other supported.

[14] The Message-Passing Interface (3)

5

Communication (II)

Some of the most intuitive message-passing primitives of MPI.

[15] The Message-Oriented Persistent Communication

Message-queueing systems = Message-Oriented Middleware (MOM)

The essence of MOM systems:

– offer the intermediate-term storage capacity for messages,

– target to support message transfers that are allowed to take minutes instead

of seconds or milliseconds,

– no guarantees about when or even if the message will be actually read,

– the sender and receiver can execute completely independently.

[16] Message-Queuing Model

Basic interface to a queue in a message-queuing system.

Most queuing systems also allow a process to install handlers as callback functions.

[17] Architecture of Message-Queuing Systems (1)

Sender

Queue-level
address

Transport-level
address

Receiver

Address look-up
database

Look-up
transport-level
address of queue

Queuing
layer

Queuing
layer

Local OS Local OS

Network

6

Communication (II)

The relationship between queue-level addressing and network-level addressing.

source queue, destination queue, a database of queue names to network locations

mapping.

[18] Architecture of Message-Queuing Systems (2)

Application

Send queue

Application

Application

Application
Router

Message

Sender A

R2

R1

Receiver B

Receive
queue

The general organization of a message-queuing system with routers:

– may grow into overlay network,

– may need dynamic routing schemes.

Queue managers:

– normally interact directly with applications,

– some operate as routers or relays.

[19] Message Brokers

7

Communication (II)

Queuing
layer

Broker
program

Database with
conversion rulesSource client Destination client

OS OSOS

Message broker

Network

The general organization of a message broker in a message-queuing system.

Message broker

Acts as an application-level gateway in a message-queuing system. Its main pur-

pose it to convert incoming messages to a format that can be understood by the

destination application. It may provide routing capabilities.

[20] Notes on Message-Queuing Systems

– with message brokers it may be necessary to accept a certain loss of infor-

mation during transformation,

– at the heart of a message broker lies a database of conversion rules,

– general message-queuing systems are not aimed at supporting only end users,

– they are set up to enable persistent communication,

– range of applications:

– e-mail, workflow, groupware, batch processing,

– integration of a collection of databases or database applications.

[21] Example: IBM MQSeries

8

Communication (II)

MCA MCAMCA MCA

MQ Interface

Stub Stub
Server
stub

Server
stub

Send queue

Program Program
Queue
manager

Queue
manager

Routing table

Internetwork
RPC
(synchronous)

Local network

Message passing
(asynchronous)

To other remote
queue managers

Client's receive
queueSending client Receiving client

General organization of IBM’s MQSeries message-queuing system.

[22] Channels

Some attributes associated with message channel agents.

[23] Message Transfer (1)

SQ1SQ2

SQ1

SQ1
SQ1
SQ2

QMB
QMC
QMD

SQ1

SQ1
SQ1

SQ1

SQ2
SQ1

SQ1

SQ1
SQ1

QMA

QMA QMA

QMC

QMC
QMB

QMD

QMB
QMD

Routing table
Routing table

Routing table Routing table

QMB

QMC

QMA

LA1
LA1

LA1

LA2
LA2

LA2

QMC
QMA

QMA

QMD
QMD

QMC

Alias table
Alias table

Alias table

QMD

SQ1

SQ2

SQ1

9

Communication (II)

The general organization of an MQSeries queuing network using routing tables

and aliases. By using logical names, in combination with name resolution to local

queues, it is possible to put a message in a remote queue.

[24] Message Transfer (2)

Primitives available in an IBM MQSeries MQI.

[25] Stream-Oriented Communication

– forms of communication in which timing plays a crucial role,

– example:

– an audio stream built up as a sequence of 16-bit samples each repre-

senting the amplitude of the sound wave as it is done through PCM

(Pulse Code Modulation),

– audio stream represents CD quality, i.e. 44100Hz,

– samples to be played at intervals of exactly 1/44100,

– which facilities a distributed system should offer to exchange time-dependent

information such as audio and video streams?

– support for the exchange of time-dependent information = support for

continuous media,

– continuous (representation) media vs. discrete (representation) me-

dia.

[26] Support for Continuous Media

In continuous media :

10

Communication (II)

– temporal relationships between data items fundamental to correctly inter-

preting the data,

– timing is crucial.

Asynchronous transmission mode

Data items in a stream are transmitted one after the other, but there are no further

timing constraints on when transmission of items should take place.

Synchronous transmission mode

Maximum end-to-end delay defined for each unit in a data stream.

Isochronous transmission mode

It is necessary that data units are transferred on time. Data transfer is subject to

bounded (delay) jitter.

[27] Data Stream (1)

Camera
Display

Network

Stream

Network

Stream

Sending process

(a)

(b)

Program

Receiving process

OS OS

OSOS

a. Setting up a stream between two processes across a network,

b. Setting up a stream directly between two devices.

– stream sequence of data units, may be considered as a virtual connection

between a source and a sink,

– simple stream vs. complex stream (consisting of several related sub-streams).

11

Communication (II)

[28] Data Stream (2)

Source

Intermediate
node, possibly
with filters

SinkStream

Lower bandwidth

An example of multicasting a stream to several receivers.

– problem with receivers having different requirements with respect to the

quality of the stream,

– filters to adjust the quality of an incoming stream, differently for outgoing

streams.

[29] Specifying QoS (1)

A flow specification.

Time-dependent requirements among other Quality of Service (QoS) require-

ments.

[30] Specifying QoS (2)

12

Communication (II)

One token is added
to the bucket every T∆

Application

Regular stream

Irregular stream
of data units

The principle of a token bucket algorithm.

– tokens generated at a constant rate,

– tokens buffered in a bucket which has limited capacity.

[31] Setting Up a Stream

RSVP process

Admission
control

Policy
control

Data link layer
data stream

Application
data stream

Reservation requests
from other RSVP hosts

RSVP-enabled host

Application

RSVP
program

Local OS

Setup information to
other RSVP hosts

Local network

Sender process

Data link layer

Internetwork

The basic organization of RSVP (Resource reSerVation Protocol), transport-level

protocol for resource reservation in a distributed system.

[32] Synchronization Mechanisms (1)

13

Communication (II)

Network

Incoming stream

Application

Receiver's machine

Procedure that reads
two audio data units for
each video data unit

OS

The principle of explicit synchronization on the level data units.

Given a complex stream, how to keep the different substreams in synch?

[33] Synchronization Mechanisms (2)

Multimedia control
is part of middleware

Application tells
middleware what
to do with incoming
streams

Network

Incoming stream

Application

Receiver's machine

Middleware layer

OS

The principle of synchronization as supported by high-level interfaces.

Multiplex of all substreams into a single stream and demultiplexing at the receiver.

Synchronization is handled at multiplexing/demultiplexing point (MPEG).

14

