
Distributed Systems
Communication (I)

[2] Communication (I)

1. Layered Protocols

2. Remote Procedure Call

3. Remote Object Invocation

4. Message-oriented Communication

5. Stream-oriented Communication

[3] Necessary Agreements

– How many volts should be used to signal a 0-bit, and how many for a 1-bit?

– How does the receiver know which is the last of the message?

– How can it detect if a message has been damaged or lost?

– How long are numbers, strings and other data items?

– How are they represented?

ISO OSI = OSI Model = Open Systems Interconnection Reference Model

Protocols: connection-oriented vs. connectionless.

protocol suite = protocol stack = the collection of protocols used in a particular

system.

[4] Protocols (1)

Example protocol as a discussion:

A: Please, retransmit message n,

B: I already retransmitted it,

Communication (I)

A: No, you did not,

B: Yes, I did,

A: All right, have it your way, but send it again.

[5] Protocols (2)

Protocol

A well-known set of rules and formats to be used for communication between

processes in order to perform a given task.

Two important parts of the definition:

– a specification of the sequence of messages that must be exchanged,

– a specification of the format of the data in the messages.

How to create protocols:

On the Design of Application Protocols, RFC 3117,

http://www.rfc-editor.org/rfc/rfc3117.txt

– Google Protocol Buffers, SOAP, etc.

[6] Protocols (3)

“Designing Painless Protocols”, http://nerdland.net/2009/12/designing-painless-

protocols/.

– do not re-invent the wheel

– prefer determinism

– prefer human readability

– insist on network byte ordering

– make magic numbers meaningful

– design for expansion

– do not be stingy with information

– document your protocol precisely

2

Communication (I)

– follow the robustness principle

– design for security from the start

Be conservative in what you do, be liberal in what you accept from others.

[7] Layered Protocols (1)

Physical

Data link

Network

Transport

Session

Application

Presentation

Application protocol

Presentation protocol

Session protocol

Transport protocol

Network protocol

Data link protocol

Physical protocol

Network

1

2

3

4

5

7

6

Layers, interfaces, and protocols in the OSI model.

– focus on message-passing only,

– often unneeded or unwanted functionality.

[8] Layered Protocols (2)

Data link layer header

Network layer header

Transport layer header
Session layer header

Presentation layer header

Application layer header

Message

Bits that actually appear on the network

Data link
layer trailer

3

Communication (I)

A typical message as it appears on the network.

[9] Layered Protocols (3)

Physical layer

Contains the specification and implementation of bits, and their transmission be-

tween sender and receiver.

Data link layer

Describes the transmission of a series of bits into a frame to allow error and flow

control.

Network layer

Describes how packets in a network of computers are to be routed.

Transport Layer

Provides the actual communication facilities for most distributed systems.

Standard Internet protocols:

– TCP: connection-oriented, reliable, stream-oriented communication,

– UDP: unreliable (best-effort) datagram communication.

[10] Data Link Layer

Data 0

Data 0

Data 0

Data 0

Data 1

Data 1

Data 0

Data 0

Control 0

Control 1

Control 1

Control 0

A sends data message 0

B gets 0, sees bad checksum

A sends data message 1
B complains about the checksum

Both messages arrive correctly

A retransmits data message 0
B says: "I want 0, not 1"

Both messages arrive correctly

A retransmits data message 0 again

B finally gets message 0

0

1

2

3

4

5

6

7

Time A B Event

4

Communication (I)

Discussion between a receiver and a sender in the data link layer.

[11] Network level protocols

Network layer:

– IP packets

– ATM virtual channels (unidirectional connection-oriented protocol),

– collections of virtual channels grouped into virtual paths – predefined routes

between pairs of hosts.

Transport layer:

– TCP, UDP

– RTP - Real-time Transport Protocol

– TP0 – TP4, the official ISO transport protocols,

[12] Client-Server TCP

SYN,request,FIN

SYN,ACK(FIN),answer,FIN

ACK(FIN)

SYN

SYN,ACK(SYN)

ACK(SYN)
request

FIN

ACK(req+FIN)

answer
FIN

ACK(FIN)

Client ClientServer Server

Time Time

1 1

2 2

3 3
4
5

6

7
8

9

(a) (b)

(a) Normal operation of TCP. (b) Transactional TCP.

[13] Networking - review

Networking, keywords, review:

5

Communication (I)

– routing in IP, default gateway,

– hardware: router, bridge, hub, switch, gateway, firewall, repeater,

– domain name resolution,

– CIDR – classless interdomain routing,

– private networks (10.x.y.z, 172.16.x.y, 192.168.x.y),

– NAT.

[14] Above the Transport Layer

Many application protocols are directly implemented on top of transport protocols,

doing a lot of application-independent work.

News FTP WWW

Transfer NNTP FTP HTTP

Naming Newsgroup Host + path URL

Distribution Push Pull Pull

Replication Flooding Caching + DNS tricks Caching + DNS tricks

Security None (PGP) Username + Password Username + Password

[15] Middleware Protocols (1)

Middleware

An application that logically lives in the application layer, but which contains many

general-purpose protocols that warrant their own layers, independent of other,

more specific applications.

Middleware invented to provide common services and protocols that can be used

by many different applications:

Example protocols:

– open communication protocols,

– marshaling and unmarshaling of data, for systems integration,

– naming protocols, for resource sharing,

– security protocols, distributed authentication and authorization,

6

Communication (I)

– scaling mechanisms, support for caching and replication.

[16] Middleware Protocols (2)

Physical

Data link

Network

Transport

Middleware

Application
Application protocol

Middleware protocol

Transport protocol

Network protocol

Data link protocol

Physical protocol

Network

1

2

3

4

5

6

An adapted ISO OSI reference model for networked communication.

[17] High-level Middleware Communication Services

Some of high-level middleware protocol types:

1. remote procedure call,

2. remote object invocation,

3. message queuing services,

4. stream-oriented communication.

[18] Local Procedure Call

local variables local variables
Main program's Main program's

Stack pointer

(a) (b)

bytes
buf
fd
return address
read's local
variables

Parameter passing:

a. the stack before

the call.

b. the stack while

the called proce-

dure is active.

7

Communication (I)

– application developers familiar with simple procedure model,

– procedures as black boxes (isolation),

– no fundamental reason not to execute procedures on separate machine.

[19] Remote Procedure Call

When we try to call procedures located on other machines, some subtle problems

exist:

– different address spaces,

– parameters and results have to be passed,

– both machines may crash.

Standard function call parameters types:

– call-by-value,

– call-by-reference,

– call by copy/restore.

[20] Principle of RPC

Call local procedure
and return results

Call remote
procedure

Return
from call

Client

Request Reply

Server
Time

Wait for result

8

Communication (I)

Principle of RPC between a client and server program.

[21] Passing Value Parameters (1)

Implementation
of add

Client OS Server OS

Client machine Server machine

Client stub

Client process Server process
1. Client call to

procedure

2. Stub builds
message

5. Stub unpacks
message

6. Stub makes
local call to "add"

3. Message is sent
across the network

4. Server OS
hands message
to server stub

Server stub
k = add(i,j) k = add(i,j)

proc: "add"
int: val(i)
int: val(j)

proc: "add"
int: val(i)
int: val(j)

proc: "add"
int: val(i)
int: val(j)

Steps involved in doing remote computation through RPC.

parameter marshaling – packing parameters into a message.

[22] Passing Value Parameters (2)

– IBM mainframes: EBCDIC character code,

– IBM personal computers: ASCII character code.

0 050 000 00

5 5 5
L LLL LLI IIJ JJ

0 0 01 1 12 2 23 3 3

4 4 4

5 50

6 6 67 7 7

(a) (b) (c)

a. Original message on the Pentium

b. The message as being received on the SPARC

c. The message after being inverted. The little numbers in boxes indicate the

address of each byte.

9

Communication (I)

[23] Extended RPC models – Doors

Door

A procedure in the address space of a server process that can be called by process

collocated with the server.

– local IPC to be much more efficient than networking,

– door to be registered to be called (door_create),

– in Solaris each door has a file name (fattach),

– calling doors by door_call (OS makes an upcall),

– result returned to the client through door_return.

– benefit: single mechanism, procedure calls, for effective communication in

a distributed system,

– drawbacks: still the need to distinguish standard procedure calls, calls to

other local processes, calls to remote processes.

[24] Doors - how to use

10

Communication (I)

main()
{

...
fd = open(door_name, ...);
door_call(fd, ...);
...

}

server_door(...)
{

...
door_return(...);

}

main()
{

...
fd = door_create(...);
fattach(fd, door_name, ...);
...

}

Register door

Invoke registered door
at other process Return to calling process

Operating system

Server processClient process

Computer

[25] Asynchronous RPC (1)

Call local procedure

Call remote
procedure

Return
from call

Request Accept request

Wait for acceptance

Call local procedure
and return results

Call remote
procedure

Return
from call

Client Client

Request Reply

Server ServerTime Time

Wait for result

(a) (b)

a. The interconnection between client and server in a traditional RPC.

b. The interaction using asynchronous RPC.

11

Communication (I)

[26] Asynchronous RPC (2)

Call local procedure

Call remote
procedure

Return
from call

Client

Request
Accept
request

Server
Time

Wait for
acceptance

Interrupt client

Return
results Acknowledge

Call client with
one-way RPC

deferred synchronous RPC – asynchronous RPC with second call done by the

server,

one-way RPC – client does not wait for acceptance of the request , problem with

reliability.

[27] Writing a Client and a Server

C compiler

Uuidgen

IDL compiler

C compiler C compiler

Linker Linker

C compiler

Server stub
object file

Server
object file

Runtime
library

Server
binary

Client
binary

Runtime
library

Client stub
object file

Client
object file

Client stubClient code Header Server stub

Interface
definition file

Server code

#include#include

12

Communication (I)

Steps in writing a client and a server in DCE RPC. Let the developer concentrate

only on the client- and server-specific code. Leave the rest for RPC generators and

libraries.

[28] Binding a Client to a Server

Client must locate server machine, and locate the server.

Endpoint
table

Server

DCE
daemon

Client
1. Register endpoint

2. Register service3. Look up server

4. Ask for endpoint

5. Do RPC

Directory
server

Server machineClient machine

Directory machine

Client-to-server binding in DCE – separate daemon for each server machine.

[29] Remote Distributed Objects (1)

The basic idea of remote objects:

– object: state and interface, methods and attributes, invocation and imple-

mentation,

– data and operations encapsulated in an object,

– operations implemented as methods, and accessible through interfaces,

– object offers only its interface to clients,

– object server is responsible for a collection of objects,

– client stub (proxy) implements interface,

– server skeleton handles (un)marshaling and object invocation.

[30] Remote Distributed Objects (2)

13

Communication (I)

Server machine

Object

Client machine

Proxy

Same
interface
as object

Interface

State

MethodClient
invokes
a method

Network

Skeleton
invokes
same method
at object

Marshalled invocation
is passed across network

Client OS Server OS

Server

Skeleton

Client

Common organization of a remote object with client-side proxy.

[31] (Remote) Distributed Objects (3)

Compile-time objects

Language-level objects, from which proxy and skeletons are automatically gener-

ated.

Runtime objects

Can be implemented in any language, but require use of an object adapter that

makes the implementation appear as an object.

Transient object lives only by virtue of a server: if the server exits, so will the

object.

Persistent object lives independently from a server: if a server exits, the object’s

state and code remain (passively) on disk.

[32] Binding a Client to an Object (1)

Having an object reference allows a client to bind to an object:

– reference denotes server, object, and communication protocol,

– client loads associated stub code,

– stub is instantiated and initialized for specific object.

14

Communication (I)

Remote-object references enable passing references as parameters, what was hardly

possible with ordinary RPCs.

Two ways of binding:

Implicit: invoke methods directly on the referenced object.

Explicit: client must first explicitly bind to object before invoking it.

[33] Binding a Client to an Object (2)

a. Example with implicit binding using only global references.

b. Example with explicit binding using global and local references.

[34] RMI - Parameter Passing

Local object
O1

Copy of O1

Remote object
O2

Local
reference L1

New local
reference

Remote
reference R1

Remote
invocation with
L1 and R1 as
parameters

Copy of R1 to O2

Machine A Machine B

Machine C

Client code with
RMI to server at C
(proxy)

Server code
(method implementation)

15

Communication (I)

Objects sometimes passed by reference, but sometimes by value.

– a client running on machine A, a server on machine C,

– the client calls the server with two references as parameters, O1 and O2, to

local and remote objects,

– copying of an object as a possible side effect of invoking a method with an

object reference as a parameter (transparency versus efficiency).

16

