
Real–time Systems
Input/Output

[2] Interrupts Revisited (hardware level)

CPU
Interrupt

controller3. CPU acks

 interrupt

2. Controller

 issues

 interrupt

1. Device is finished

Disk

Keyboard

Printer

Clock

Bus

12

6

9 3
48

57

111
210

• when an I/O device has finished the work given to it, it causes an interrupt by as-
serting a signal on a bus line that it has been assigned,

• signal detected by the interrupt controller chip. If no other interrupts pending, the
interrupt controller processes the interrupt immediately. If another one in progress
or there is a simultaneous request on a higher-priority interrupt request line, con-
tinues to assert until serviced by the CPU.

• the controller puts a number on the address lines and asserts a signal that interrupts
the CPU,

• that number used as an index into a table called the interrupt vector to start a
corresponding interrupt service procedure,

• the service procedure in certain moment acknowledges the interrupt by sending
some value to some controller’s port. That enables the controller to issue other
interrupts.

[3] Direct Memory Access (DMA)

CPU
DMA

controller
Disk

controller
Main

memory
Buffer

1. CPU

programs

the DMA

controller

Interrupt when

done

2. DMA requests

transfer to memory 3. Data transferred

Bus

4. Ack

Address

Count

Control

Drive

• DMA modules control data exchange between main mamory and external

devices,

• usage of free bus time or (usually) delaying of the CPU for a one cycle from

time to time to send a word by bus (cycle stealing and burst mode),

Input/Output

• only one interrupt after the whole transfer, avoidance of context switches,

[4] Input/Output Handling

Division of I/O devices:

• block devices, read/write of each block possible independently,

• character devices, deliver stream of characters without division into blocks,

not addressable, without seek operation,

• communication/network devices sometimes distinguished as a separate group

because of their specificity,

• some devices, like timers, do not fit in to this classification scheme,

[5] Differences in Input/Output Handling

Differencies in I/O handling:

• complexity of service,

• additional hardware support requirement,

• priorization of services,

• throughput unit,

• data representation,

• device response type,

• error handling,

• programming method.

[6] Input/Output Programming Goals

• device independence,

• uniform naming,

• error handling – the closer the hardware the better,

• transfer type – synchronous/ asynchronous,

2

Input/Output

• buffering.

[7] Communication with External Devices (I)

How processor communicates with control registers and how accesses external

devices buffers. Two communication techniques:

1. I/O ports, with each control register some port with established number

associated. Communication with special instructions:

IN REG, PORT

OUT PORT, REG

2. memory-mapped I/O

• driver may be completely written in C, without any assembly code

pieces, because access only via standard read/write calls,

• no need for separate special protection mechanism,

• faster testing of the contents of control registers,

but

• cache must be disabled for mapped region,

• complicates the architecture with different type buses.

[8] Communication with External Devices (II)

Two address One address space Two address spaces

Memory

I/O ports

0xFFFF…

0

(a) (b) (c)

a. separate I/O and memory space,

b. memory-mapped I/O,

3

Input/Output

c. hybrid solution, i.e. Pentium architecture: 640kB - 1MB addresses reserved

for external devices still having I/O ports space 0 – 64K.

[9] Principles of I/O Software

Three ways of I/O communication/ programming:

1. programmed I/O (with polling, busy waiting behaviour),

2. interrupt-driven I/O,

3. I/O using DMA.

[10] Programmed I/O

copy_from_user(buffer, p, count); /* p is the kernel bufer */
for (i = 0; i < count; i++) { /* loop on every character */

while (*printer_status_reg != READY) ; /* loop until ready */

printer_data_register = p[i]; / output one character */
}
return_to_user();

An example of programmed I/O: steps in printing a string.

[11] Interrupt-Driven I/O

copy_from_user(buffer, p, count); if (count == 0) {
enable_interrupts(); unblock_user();
while (*printer_status_reg != READY) ; } else {

*printer_data_register = p[0]; *printer_data_register = p[i];
scheduler(); count = count − 1;

i = i + 1;
}
acknowledge_interrupt();
return_from_interrupt();

(a) (b)

An example of an interrupt-driven I/O: writing a string to the printer.

a. code executed when the print system call is made,

4

Input/Output

b. interrupt service procedure.

[12] I/O Using DMA

copy_from_user(buffer, p, count); acknowledge_interrupt();
set_up_DMA_controller(); unblock_user();
scheduler(); return_from_interrupt();

(a) (b)

An example: of I/O using DMA: printing a string.

a. code executed when the print system call is made,

b. interrupt service procedure.

• advantage: reduction of number of interrupts from one per character to one

per buffer printed,

• not always the best method – aspects of transfer scope size and relative speed

of CPU and DMA controller.

[13] I/O Software Layers

I/O

request

Layer
I/O

reply I/O functions

Make I/O call; format I/O; spooling

Naming, protection, blocking, buffering, allocation

Set up device registers; check status

Wake up driver when I/O completed

Perform I/O operation

User processes

Device-independent

software

Device drivers

Interrupt handlers

Hardware

[14] Device-Independent I/O Software

• uniform interfacing for device drivers,

5

Input/Output

• under Unix: naming devices with usage of major and minor numbers,

• protection against unauthorized access,

• providing a device-independent block size,

• buffering mechanisms (example: double buffering),

• management of accessability of devices,

• handling of allocation and releasing of devices,

• management of resource to user allocation,

• part of errors handling.

[15] Disk Access Performance

• seek time the time ti move the arm to the proper track,

• rotational delay/latency the time for the proper sector to rotate under the

head,

• access time seek time + rotational latency,

• seek time decides about performance,

• important role of the cache memory (replacement algorithms LRU, LFU).

[16] Disk Arm Scheduling Algorithms

Because of requester:

RSS random scheduling,

FIFO the most fair one,

PRI with priorities,

LIFO Last In First Out, locality and resource usage maximization,

Because of service:

SSTF shortest service time first with the smallest move of arm,

6

Input/Output

SCAN elevator algorithm, the arm moves alternately in two directions (up and

down) servicing all requests,

C-SCAN cyclic SCAN, servicing during the move only in one direction with a

fast return to the start position.

[17] Redundancy in Disk Service

RAID Redundant Array of Independent Disks – (formerly: Inexpensive) the

name and classification originating from Berkeley University.

• a technique of creation of virtual disks (with logical volumes), with some

features related to reliability, efficiency and serviceability, from a group of

disks,

• data distributed over the matrix of disks,

• redundancy used to improve fault tolerance, especially tolerance to physical

medium damage.

• RAID as opposed to (before) SLED (Single Large Expensive Disk) or (now)

JBOD (Just a Bunch of Disks).

[18] RAID Solutions (RAID 0)

(a) RAID level 0

Strip 8

Strip 4

Strip 0

Strip 9

Strip 5

Strip 1

Strip 10

Strip 6

Strip 2

Strip 11

Strip 7

Strip 3

• no data redundancy,

• division into concatenation and striping,

• performane and flexibility improvement, low cost solution with lack of fault

tolerance.

[19] RAID Solutions (RAID 1)

7

Input/Output

(b)

Strip 8

Strip 4

Strip 0

Strip 9

Strip 5

Strip 1

Strip 10

Strip 6

Strip 2

Strip 11

Strip 7

Strip 3

Strip 8

Strip 4

Strip 0

Strip 9

Strip 5

Strip 1

Strip 10

Strip 6

Strip 2

Strip 11

Strip 7

Strip 3
RAID

level 1

• mirroring, full data redundancy,

• from the point of fault tolerance the best solution,

• expensive solution.

[20] RAID Solutions (RAID 2)

(c) RAID level 2

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

• correction code computed from data bits,

• usage of correction-detection codes (Hamming’s code),

• expensive solution which requires many disks.

[21] RAID Solutions (RAID 3)

(d)

Bit 1 Bit 2 Bit 3 Bit 4

RAID level 3

Parity

• analogoues to RAID 2, with parity bits instead of correction-detection codes,

• good throuhput in data size per time, poor performance in number of ser-

viced requests in time.

[22] RAID Solutions (RAID 4)

8

Input/Output

(e)

Strip 8

Strip 4

Strip 0

Strip 9

Strip 5

Strip 1

Strip 10

Strip 6

Strip 2

Strip 11

Strip 7

Strip 3

RAID level 4

P8-11

P4-7

P0-3

• RAID 4 – RAID 6, independent access to disks, independent requests may

be serviced in parallel, better performance in number of serviced requests in

time,

• striping with big stripes,

• parity computer on bit basis still requires read of a block.

[23] RAID Solutions (RAID 5)

P16-19 Strip 16 Strip 17 Strip 18

Strip 12 P12-15 Strip 13 Strip 14

(f) Strip 8

Strip 4

Strip 0

Strip 9

Strip 5

Strip 1

P8-11

Strip 6

Strip 2

Strip 10

P4-7

Strip 3

Strip 19

Strip 15

RAID level 5Strip 11

Strip 7

P0-3

• striping with added parity bits,

• economical solution - redundancy costs exactly one disk,

• good read performance, noticable degradation of write performance,

• quality and efficiency of solution determined by the parameters tuning pro-

cess.

[24] RAID - Additional Aspects

• RAID 6, as RAID 5 with two independent parity bits (stripes),

• RAID 10 = 1 + 0

• hardware RAID and software RAID,

9

Input/Output

• in common use RAID: 0, 1, 5, 1+0, 0+1,

• typical server configuration:

– RAID 1 for small critical data (i.e. disks with operating system),

– RAID 5 for huge databases (i.e. disks in some external matrix).

10

