
Real–time Systems
Input/Output

[2] Interrupts Revisited (hardware level)
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• when an I/O device has finished the work given to it, it causes an interrupt by as-
serting a signal on a bus line that it has been assigned,

• signal detected by the interrupt controller chip. If no other interrupts pending, the
interrupt controller processes the interrupt immediately. If another one in progress
or there is a simultaneous request on a higher-priority interrupt request line, con-
tinues to assert until serviced by the CPU.

• the controller puts a number on the address lines and asserts a signal that interrupts
the CPU,

• that number used as an index into a table called the interrupt vector to start a
corresponding interrupt service procedure,

• the service procedure in certain moment acknowledges the interrupt by sending
some value to some controller’s port. That enables the controller to issue other
interrupts.

[3] Direct Memory Access (DMA)
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• DMA modules control data exchange between main mamory and external

devices,

• usage of free bus time or (usually) delaying of the CPU for a one cycle from

time to time to send a word by bus (cycle stealing and burst mode),
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• only one interrupt after the whole transfer, avoidance of context switches,

[4] Input/Output Handling

Division of I/O devices:

• block devices, read/write of each block possible independently,

• character devices, deliver stream of characters without division into blocks,

not addressable, without seek operation,

• communication/network devices sometimes distinguished as a separate group

because of their specificity,

• some devices, like timers, do not fit in to this classification scheme,

[5] Differences in Input/Output Handling

Differencies in I/O handling:

• complexity of service,

• additional hardware support requirement,

• priorization of services,

• throughput unit,

• data representation,

• device response type,

• error handling,

• programming method.

[6] Input/Output Programming Goals

• device independence,

• uniform naming,

• error handling – the closer the hardware the better,

• transfer type – synchronous/ asynchronous,

2



Input/Output

• buffering.

[7] Communication with External Devices (I)

How processor communicates with control registers and how accesses external

devices buffers. Two communication techniques:

1. I/O ports, with each control register some port with established number

associated. Communication with special instructions:

IN REG, PORT

OUT PORT, REG

2. memory-mapped I/O

• driver may be completely written in C, without any assembly code

pieces, because access only via standard read/write calls,

• no need for separate special protection mechanism,

• faster testing of the contents of control registers,

but

• cache must be disabled for mapped region,

• complicates the architecture with different type buses.

[8] Communication with External Devices (II)

Two address One address space Two address spaces
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a. separate I/O and memory space,

b. memory-mapped I/O,
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c. hybrid solution, i.e. Pentium architecture: 640kB - 1MB addresses reserved

for external devices still having I/O ports space 0 – 64K.

[9] Principles of I/O Software

Three ways of I/O communication/ programming:

1. programmed I/O (with polling, busy waiting behaviour),

2. interrupt-driven I/O,

3. I/O using DMA.

[10] Programmed I/O

copy_from_user(buffer, p, count); /* p is the kernel bufer */
for (i = 0; i < count; i++) { /* loop on every character */

while (*printer_status_reg != READY) ; /* loop until ready */

*printer_data_register = p[i]; /* output one character */
}
return_to_user( );

An example of programmed I/O: steps in printing a string.

[11] Interrupt-Driven I/O

copy_from_user(buffer, p, count); if (count == 0) {
enable_interrupts( ); unblock_user( );
while (*printer_status_reg != READY) ; } else {

*printer_data_register = p[0]; *printer_data_register = p[i];
scheduler( ); count = count − 1;

i = i + 1;
}
acknowledge_interrupt( );
return_from_interrupt( );

(a) (b)

An example of an interrupt-driven I/O: writing a string to the printer.

a. code executed when the print system call is made,
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b. interrupt service procedure.

[12] I/O Using DMA

copy_from_user(buffer, p, count); acknowledge_interrupt( );
set_up_DMA_controller( ); unblock_user( );
scheduler( ); return_from_interrupt( );

(a) (b)

An example: of I/O using DMA: printing a string.

a. code executed when the print system call is made,

b. interrupt service procedure.

• advantage: reduction of number of interrupts from one per character to one

per buffer printed,

• not always the best method – aspects of transfer scope size and relative speed

of CPU and DMA controller.

[13] I/O Software Layers
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[14] Device-Independent I/O Software

• uniform interfacing for device drivers,
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• under Unix: naming devices with usage of major and minor numbers,

• protection against unauthorized access,

• providing a device-independent block size,

• buffering mechanisms (example: double buffering),

• management of accessability of devices,

• handling of allocation and releasing of devices,

• management of resource to user allocation,

• part of errors handling.

[15] Disk Access Performance

• seek time the time ti move the arm to the proper track,

• rotational delay/latency the time for the proper sector to rotate under the

head,

• access time seek time + rotational latency,

• seek time decides about performance,

• important role of the cache memory (replacement algorithms LRU, LFU).

[16] Disk Arm Scheduling Algorithms

Because of requester:

RSS random scheduling,

FIFO the most fair one,

PRI with priorities,

LIFO Last In First Out, locality and resource usage maximization,

Because of service:

SSTF shortest service time first with the smallest move of arm,
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SCAN elevator algorithm, the arm moves alternately in two directions (up and

down) servicing all requests,

C-SCAN cyclic SCAN, servicing during the move only in one direction with a

fast return to the start position.

[17] Redundancy in Disk Service

RAID Redundant Array of Independent Disks – (formerly: Inexpensive) the

name and classification originating from Berkeley University.

• a technique of creation of virtual disks (with logical volumes), with some

features related to reliability, efficiency and serviceability, from a group of

disks,

• data distributed over the matrix of disks,

• redundancy used to improve fault tolerance, especially tolerance to physical

medium damage.

• RAID as opposed to (before) SLED (Single Large Expensive Disk) or (now)

JBOD (Just a Bunch of Disks).

[18] RAID Solutions (RAID 0)

(a) RAID level 0
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• no data redundancy,

• division into concatenation and striping,

• performane and flexibility improvement, low cost solution with lack of fault

tolerance.

[19] RAID Solutions (RAID 1)
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(b)
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RAID

level 1

• mirroring, full data redundancy,

• from the point of fault tolerance the best solution,

• expensive solution.

[20] RAID Solutions (RAID 2)

(c) RAID level 2

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

• correction code computed from data bits,

• usage of correction-detection codes (Hamming’s code),

• expensive solution which requires many disks.

[21] RAID Solutions (RAID 3)

(d)

Bit 1 Bit 2 Bit 3 Bit 4

RAID level 3

Parity

• analogoues to RAID 2, with parity bits instead of correction-detection codes,

• good throuhput in data size per time, poor performance in number of ser-

viced requests in time.

[22] RAID Solutions (RAID 4)
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(e)
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• RAID 4 – RAID 6, independent access to disks, independent requests may

be serviced in parallel, better performance in number of serviced requests in

time,

• striping with big stripes,

• parity computer on bit basis still requires read of a block.

[23] RAID Solutions (RAID 5)
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• striping with added parity bits,

• economical solution - redundancy costs exactly one disk,

• good read performance, noticable degradation of write performance,

• quality and efficiency of solution determined by the parameters tuning pro-

cess.

[24] RAID - Additional Aspects

• RAID 6, as RAID 5 with two independent parity bits (stripes),

• RAID 10 = 1 + 0

• hardware RAID and software RAID,
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• in common use RAID: 0, 1, 5, 1+0, 0+1,

• typical server configuration:

– RAID 1 for small critical data (i.e. disks with operating system),

– RAID 5 for huge databases (i.e. disks in some external matrix).
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