Real-time Systems
Input/Output

[2] Interrupts Revisited (hardware level)

Interrupt 1. Device is finished

CPU controller

3. CPU acks
interrupt

&0\

Disk

ﬁ

o Keyboard

Clock

2. Controller
issues
| | interrupt

Printer

Bus

* when an I/O device has finished the work given to it, it causes an interrupt by as-
serting a signal on a bus line that it has been assigned,

* signal detected by the interrupt controller chip. If no other interrupts pending, the
interrupt controller processes the interrupt immediately. If another one in progress
or there is a simultaneous request on a higher-priority interrupt request line, con-
tinues to assert until serviced by the CPU.

* the controller puts a number on the address lines and asserts a signal that interrupts
the CPU,

 that number used as an index into a table called the interrupt vector to start a
corresponding interrupt service procedure,

* the service procedure in certain moment acknowledges the interrupt by sending
some value to some controller’s port. That enables the controller to issue other
interrupts.

[3] Direct Memory Access (DMA)

@ _«— Drive

1.CPU
programs DMA Disk
CPU the DMA controller controller
controller P Buffer
L— ——
7 ™\
4. Ack [
L —

Main
memory

% ~
| | A

Interrupt when 2. DMA requests
done transfer to memory 3. Data transferred

—<—Bus

* DMA modules control data exchange between main mamory and external
devices,

* usage of free bus time or (usually) delaying of the CPU for a one cycle from
time to time to send a word by bus (cycle stealing and burst mode),

Input/Output

* only one interrupt after the whole transfer, avoidance of context switches,

[4] Input/Output Handling

Division of I/O devices:

* block devices, read/write of each block possible independently,

* character devices, deliver stream of characters without division into blocks,
not addressable, without seek operation,

* communication/network devices sometimes distinguished as a separate group
because of their specificity,

¢ some devices, like timers, do not fit in to this classification scheme,

[5] Differences in Input/Output Handling
Differencies in I/O handling:

* complexity of service,

* additional hardware support requirement,
* priorization of services,

* throughput unit,

* data representation,

* device response type,

e error handling,

* programming method.

[6] Input/Output Programming Goals

* device independence,
* uniform naming,
* error handling — the closer the hardware the better,

* transfer type — synchronous/ asynchronous,

Input/Output

* buffering.

[7] Communication with External Devices (I)

How processor communicates with control registers and how accesses external
devices buffers. Two communication techniques:

1. I/O ports, with each control register some port with established number

associated. Communication with special instructions:

IN REG, PORT
OUT PORT, REG

. memory-mapped I/O

* driver may be completely written in C, without any assembly code
pieces, because access only via standard read/write calls,

* no need for separate special protection mechanism,

* faster testing of the contents of control registers,
but

* cache must be disabled for mapped region,

» complicates the architecture with different type buses.

[8] Communication with External Devices (II)

Two address One address space Two address spaces
OXFFFF... Memory
1/0 ports
0 1 1]
(a) (b) (©

a. separate I/0O and memory space,

b. memory-mapped 1/O,

Input/Output

c. hybrid solution, i.e. Pentium architecture: 640kB - 1MB addresses reserved
for external devices still having I/O ports space 0 — 64K.

[9] Principles of I/O Software

Three ways of I/O communication/ programming:

1. programmed I/O (with polling, busy waiting behaviour),
2. interrupt-driven I/O,

3. I/O using DMA.

[10] Programmed 1I/O

copy_from_user(buffer, p, count); I* p is the kernel bufer /

for (i=0; i < count; i++) { /* loop on every character /
while (xprinter_status_reg != READY) ; /*loop until ready */
printer _data_register = p[i]; [output one character %/

}

return_to_user();

An example of programmed I/O: steps in printing a string.

[11] Interrupt-Driven I/O

copy_from_user(buffer, p, count); if (count == 0) {
enable _interrupts(); unblock_user();
while (xprinter_status_reg != READY) ; }else {
*printer _data_ register = p[0]; *printer _data_ register = p[i];
scheduler(); count = count — 1;
i=i+1;

acknowledge _interrupt();
return_from_interrupt();

@ (b)
An example of an interrupt-driven I/O: writing a string to the printer.

a. code executed when the print system call is made,

Input/Output

b. interrupt service procedure.

[12] I/O Using DMA

copy_from_user(buffer, p, count); acknowledge_interrupt();

set_up_DMA_controller(); unblock_user();

scheduler(); return_from_interrupt();
(@) (b)

An example: of I/0O using DMA: printing a string.

a. code executed when the print system call is made,
b. interrupt service procedure.

* advantage: reduction of number of interrupts from one per character to one
per buffer printed,

* not always the best method — aspects of transfer scope size and relative speed
of CPU and DMA controller.

[13] I/O Software Layers

/0
Layer reply I/O functions
110 User processes # Make I/O call; format 1/O; spooling
request 7’# +
Device-independent Naming, protection, blocking, buffering, allocation

| software ?

Device drivers Set up device registers; check status

—

Interrupt handlers Wake up driver when I/O completed

—

Hardware Perform 1/0 operation

[14] Device-Independent I/O Software

* uniform interfacing for device drivers,

Input/Output

* under Unix: naming devices with usage of major and minor numbers,
* protection against unauthorized access,

 providing a device-independent block size,

* buffering mechanisms (example: double buffering),

* management of accessability of devices,

* handling of allocation and releasing of devices,

* management of resource to user allocation,

* part of errors handling.

[15] Disk Access Performance

* seek time the time ti move the arm to the proper track,

* rotational delay/latency the time for the proper sector to rotate under the
head,

* access time seek time + rotational latency,
* seek time decides about performance,

* important role of the cache memory (replacement algorithms LRU, LFU).

[16] Disk Arm Scheduling Algorithms

Because of requester:

RSS random scheduling,

FIFO the most fair one,

PRI with priorities,

LIFO Last In First Out, locality and resource usage maximization,

Because of service:

SSTF shortest service time first with the smallest move of arm,

Input/Output

SCAN elevator algorithm, the arm moves alternately in two directions (up and
down) servicing all requests,

C-SCAN cyclic SCAN, servicing during the move only in one direction with a
fast return to the start position.

[17] Redundancy in Disk Service

RAID Redundant Array of Independent Disks — (formerly: Inexpensive) the
name and classification originating from Berkeley University.

* a technique of creation of virtual disks (with logical volumes), with some
features related to reliability, efficiency and serviceability, from a group of
disks,

¢ data distributed over the matrix of disks,

* redundancy used to improve fault tolerance, especially tolerance to physical
medium damage.

* RAID as opposed to (before) SLED (Single Large Expensive Disk) or (now)
JBOD (Just a Bunch of Disks).

[18] RAID Solutions (RAID 0)

(orvo] [52] (52 [522]
@ (St] |Sips] | Sipe] | Sifp7] ma teelo

* no data redundancy,
* division into concatenation and striping,

* performane and flexibility improvement, low cost solution with lack of fault
tolerance.

[19] RAID Solutions (RAID 1)

Input/Output

(e o] (o] (o] (o) (] () &5
RAID
o] []] e e [] 2

* mirroring, full data redundancy,
* from the point of fault tolerance the best solution,

* expensive solution.

[20] RAID Solutions (RAID 2)

o] o] o] (] (o] (5]
Y e e e L

* correction code computed from data bits,
* usage of correction-detection codes (Hamming’s code),

* expensive solution which requires many disks.

[21] RAID Solutions (RAID 3)

G52 6o (B2
o[T [T [T [oworems

* analogoues to RAID 2, with parity bits instead of correction-detection codes,

* good throuhput in data size per time, poor performance in number of ser-
viced requests in time.

[22] RAID Solutions (RAID 4)

Input/Output

(50 (0] (a2 (s3] (o5
@S| | Sos) | Sipe | S | LRET maieeis

* RAID 4 — RAID 6, independent access to disks, independent requests may
be serviced in parallel, better performance in number of serviced requests in

time,

* striping with big stripes,

* parity computer on bit basis still requires read of a block.

[23] RAID Solutions (RAID 5)

®

Y
R
Strip 0
N
Strip 4
N
Strip 8
N
Strip 12

)
M
Strip 1
N
Strip 5
N
Strip 9
N
P12-15
N

N
P16-19
~

Strip 16
N—

Y
M]
Strip 2
N
Strip 6
N
P8-11
Strip 13

N
Strip 17
N—

o
N
Strip 3
N
P4-7
Strip 10
N

Strip 14

N
Strip 18
N—

striping with added parity bits,

Y
M]
P0-3
Strip 7
N
Strip 11
N

Strip 15

N
Strip 19
N—

RAID level 5

economical solution - redundancy costs exactly one disk,

good read performance, noticable degradation of write performance,

quality and efficiency of solution determined by the parameters tuning pro-

CESS.

[24] RAID - Additional Aspects

* RAID 6, as RAID 5 with two independent parity bits (stripes),

* RAID10=1+0

e hardware RAID and software RAID,

Input/Output

¢ in common use RAID: 0, 1, 5, 1+0, 0+1,

* typical server configuration:

— RAID 1 for small critical data (i.e. disks with operating system),

— RAID 5 for huge databases (i.e. disks in some external matrix).

10

