
Real–time Systems
Shell Programming

[2] Shell Programming

Shell, command interpreter, is a program started up after opening of the user ses-

sion by the login process. The shell is active till the occurence of the <EOT>

character, which signals requests for termination of the execution and for inform-

ing about that fact the operating system kernel.

Each user obtains their own separate instance of the sh. Program shprints out the

monit on the screen showing its readiness to read a next command.

The shell interpreter works based on the following scenario:

1. displays a prompt,

2. waits for entering text from a keyboard,

3. analyses the command line and finds a command,

4. submit to the kernel execution of the command,

5. accepts an answer from the kernel and again waits for user input.

[3] The Shell Initialization

The shell initialization steps:

1. assigned values to environmental variables,

2. system scripts, defining other shell variables, executed,

shell system scripts
1. sh, ksh .profile
2. csh .login, .cshrc

Extended list of system scripts (stratup files) for the bash interpreter:

1. /etc/profile

2. /.bash_profile

3. /.bash_login

4. /.profile

5. /.bashrc

6. /.bash_logout

Shell Programming

[4] Users in the Unix System

Users in the Unix system

• superuser, root,

• others users.

Users in the system, the /etc/passwd file:

• user name,

• password,

• uid, user identification,

• gid, group identification,

• GECOS field, only for informational purpose,

• the user’s $HOME directory,

• the program to run at login.

tnowak:encrypted password:201:50::/usr/tnowak:/bin/sh

[5] The /etc/shadow File

The /etc/shadow file contains the encrypted password information for user’s ac-

counts and optional the password aging information.

• login name

• encrypted password

• days since Jan 1, 1970 that password was last changed

• days before password may be changed

• days after which password must be changed

• days before password is to expire that user is warned

• days after password expires that account is disabled

• days since Jan 1, 1970 that account is disabled

• a reserved field

[6] User Groups

A group in the system, the /etc/group file:

2

Shell Programming

• group name,

• group password,

• group id,

• list of users belonging to the group.

wheel::10:tnowak,tkruk

Other issues:

• access rights to files (-rwxr-xr-x, 0755, the chmod command),

• SUID, SGID bits (-r-s–x–x, ccnp. the passwd command),

[7] The Shell Environment

There may be distinguished the following variables:

• predefined variables,

• positional and special parameters, relating to name and arguments of currently
submitted command.

Exemplary variables of the sh shell:

HOME standard directory for the cd command,

IFS (ang. Internal Field Separators) used for word splitting after expansion and to split
lines into words with the read builtin command

MAIL mailbox file with alerting on the arrival of the new mail,

PATH a colon-separated search path for commands

PS1 (prompt string 1), the primary prompt sting, under the sh shell: $,

PS2 (prompt string 2), the secondary prompt string, under the sh shell: >,

SHELL default program to be run as a subshell,

TERM a terminal type name. Identifies a set of steering sequences appropriate for some
particular terminal (exemplary names: ansi, vt100, xterm),

[8] Commands

Submitting a command

$ [VAR=value ...] command_name [arguments ...]

$ echo $PATH

3

Shell Programming

Built-in commands

$ PATH=$PATH:/usr/local/bin

$ export PATH

• the set built-in without any parameters prints values of all variables,

• the export built-in without any parameters prints values of all exported en-

vironmental variables.

[9] Special Parameters

Special parameters, these parameters may only be referenced, direct assignment to

them is not allowed.

$0 name of the command

$1 first argument of the scipt/ function

$2 second argument of the script/ function

$9 ninth argument of the scipt/ function

$* all positional arguments "$*" = "$1 $2 .."

$@ list of separated all positional arguments "$@" = "$1" "$2" ..

$# the number of arguments of some commands or given to the last set,

$? exit status of the most recently executed foreground command,

$! PID of the most recently started backgruond command.

$$ PID of the current shell,

$0-9 also: may be set by the set command.

[10] Metacharacters

During resolving of file names and grouping commands into bigger sets, special characters
called metacharacters are used.

4

Shell Programming

* string without the "/" character,
? any single character,
[] one character from the given set,
[...-...] like [], with given scope from the first to the last,
[!..-...] any character except those within the given scope,
start of a comment,
\ escape character, preserves the literal value of the following

character,
$ a value of a variable named with the following string,
; commands separator,
‘ ‘ string in accent characters executed as a command with the stdout

of the execution as a result of that quotation,
’ ’ preserves the literal value of each character within the quotes
" " preserves the literal value of all characters within the quotes,

with the exception of $, ‘, and \

[11] Command interpretation

Steps in command interpretation under the sh shell:

1. entering line of characters,

2. division of the line into sequence of words, based on the IFS value,

3. substitution 1: subsitution of ${name} strings with variables’ values,

$ b=/usr/user
$ ls -l prog.* > ${b}3

4. substitution 2: substitution of metacharacters * ? [] into appropriate file names in
the current directory,

5. substitution 3: interpretation of accent quoted strings, ‘ ‘, as commands and their
execution,

[12] Grouping

• special argument --,

• commands may be grouped into brackets:

– round brackets, (commands-sequence;) to group process which are to be run
as a separate sub-process; may be run in background (&),

– curly brackets, { commands-sequence; } just to group commands,

• command end recognized with: <NL> ; &

[13] Input/ output Redirection

After session opening user environment contains the following elements:

5

Shell Programming

• standard input (stdin) - stream 0,

• standard output (stdout) - stream 1,

• standardo error output (stderr) - stream 2.

There are the following redirection operators:
> file redirect stdout to file
>> file append stdout to file
< file redirect stdin from file
<< EOT read input stream directly from the following lines,

till EOT word occurence.
n > file redirect output stream with descriptor n to file,
n >> file append output stream with descriptor n to file,
n>&m redirect output of stream n to input of stream m,
n<&m redirect input of stream n to output of stream m.

[14] Shell Scripts

Commands grouped together in a common text file may be executed by:

$ sh [options] file_with_commands [arg ...]

After giving to the file execute permision by command: chmod, np.:

$ chmod +x plik_z_cmd

one can submit it as a command without giving sh before the text file name.

$ file_with_commands arg ...

[15] Compound Commands

• for steering of the shell script execution there are the following instructions: if, for,
while, until, case

• it is possible to write if in a shorter way:

And-if && (when result equal to 0)
Or-if || (when result different to 0)

$ cp x y && vi y
$ cp x y || cp z y

• Each command execution places in $? variable result of execution. The value ”0”
means that the execution was succesful. Nonzero result means occurence of some
error during command execution.

[16] ’if’ Instruction

6

Shell Programming

• the standard structure of the compound

if if_list

then then_list

[elif elif_list; then then_list] ...

[else else_list]

fi

• the if_list is executed. If its exit status is zero, the then_list is executed.

Otherwise, each elif_list is executed in turn, and if its exit status is zero, the

corresponding then_list is executed and the command completes. Other-

wise, the else_list is executed, if present.

• if cc -c p.c

then

ld p.o

else

echo "compilation error" 1>&2

fi

[17] ’case’ Instruction

• the standard structure of the compound

case word in

pattern1) list1;;

pattern2) list2;;

*) list_default;;

esac

• a case command first expands word, and tries to match it against each pat-

tern in turn, using the same matching rules as for path-name expansion.

• an example

case $# in

0) echo ’usage: man name’ 1>&2; exit 2;;

[18] Loop Instructions

In the sh command interpreter there are three types of loop instructions:

7

Shell Programming

• for name [in word] ; do list ; done

while list; do list; done
until list; do list; done

• for instruction, executed once for each element of the for_list,

• while instruction, with loop executed while the condition returns 0 exit code

(while condition is fulfilled),

• until instruction, with loop executed until the condition finally returns 0 exit

code (loop executed while condition is not fulfilled),

• instructions continue and break may be used inside loops

#!/bin/sh
for i in /tmp /usr/tmp
do

rm -rf $i/*
done

[19] Different examples

• $ cat file.dat | while read x y z
do

echo $x $y $z
done

• #!/bin/sh
i=1
while [$i -le 5]; do

echo $i
i=‘expr $i + 1‘

done

• $ who -r
. ru-level 2 Aug 21 16:58 2 0 S
$ set ‘who -r‘
$ echo $6
16:58

[20] The Real-world Example

8

Shell Programming

#!/usr/bin/zsh
PATH=/usr/bin:/usr/local/bin:/bin
WAIT_TIME=5
. /export/home/oracle/.zshenv
check whether it makes sense to check it
PID=‘ps -ef | grep LISTENER | grep -v grep | awk -e ’{print $2 }’‘
if test -z "$PID"
then

exit 0
fi
check how it works
lsnrctl status >/dev/null 2>&1 &
sleep $WAIT_TIME
kill $! 2>/dev/null
res="$?"
if test "$res" != "1"
then

kill $PID
kill -9 $PID
logger -p user.err Oracle LISTENER ERROR (stunned) - restarted
lsnrctl start

fi

9

