
Operating Systems
Memory Management

[2] Memory Management

What is expected by programmers from the system memory:

• to be huge,

• to be fast,

• to be nonvolatile.

Memory hierarchy:

• small fast expensive memory (e.g. cache),

• average in size, speed and expense memory (e.g. operating memory),

• huge, slow and cheap memory (e.g. disk/tape memory).

Memory Management (MM) type on the level of operating system is dictated by

the computer system architecture.

[3] Memory Management Organization

Memory management depends on:

• structure of address field of instruction arguments,

• position of address field in instruction word,

• hardware capabilities of address field transformation.

Depending on the length of the address field the address space may be the same

in size, smaller or bigger than the scope of operating memory addresses.

[4] Operating System Functions

Functions of the operating systems from the point of view of memory management:

• address space management through address translation mechanisms,

• memory contents protection,

• shared areas access control,

Memory Management

• effective organization of operating memory management.

The size of the operating memory for operating system code is usually fixed, but

the allocation process for user processes is usually much more complicated.

[5] Memory Allocation Methods

Methods of memory allocation to user processes:

1. without division, all the memory allocated to one process. Multiprogram-

ming may be implemented by swapping,

2. memory division, free operating memory divided into blocks allocated to

particular user processes,

3. usage of virtual memory, there exist one or more virtual address spaces

allocated to user processes and without any direct obvious mapping to the

physical address space.

[6] M.A.M. Without Division

(a) (b) (c)

0xFFF …

0 0 0

User
program

User
program

User
program

Operating
system in

RAM

Operating
system in

RAM

Operating
system in

ROM

Device
drivers in ROM

Three simple ways of organizing memory for an operating system with one user

process.

[7] M.A.M. With Division

The goals of the memory division:

• better utilization of hardware elements of the system, mainly processor and

memory,

2

Memory Management

• enabling fast context switching.

The following types of systems with memory division may be distinguished:

• systems with static division - either fixed partitions with different length or

blocks with fixed length called frames.

• systems with dynamic division - implemented by structures describing free

blocks of memory with variable length and by swapping mechanism.

[8] Static Division Based on Constant Size Partitions

(a)

Multiple
input queues

Partition 4

Partition 3

Partition 2

Partition 1

Operating
system

Partition 4

Partition 3

Partition 2

Partition 1

Operating
system

700K

400K

100K

0
(b)

Single
input queue

200K

800K

a. fixed memory partitions with separate input queues for each partition,

b. fixed memory partitions with a single input queue.

[9] Dynamic Division

For implementation of dynamic memory allocation the following hypothetical func-

tions:

• allocate(size, address)

– choosing from the list of free blocks that one which covers demand,

– returning the address of the chosen block and removing allocated block

from the free block lists as a result of allocation,

– malloc(size), calloc(n, size), realloc(ptr, size).

3

Memory Management

• free(address) - adding pointed block to the free block list, e.g. free(ptr),

• msize() - return the size of the biggest currently available free block, msize()

(but: races possible).

[10] MM in Multiprogramming Context

Multiprogramming has introduced two essential problems to be solved:

• relocation service - cannot be sure where program will be loaded in memory,

• mutual memory protection.

Possible solution: use of base and limit values:

• address locations added to base value to map to physical address,

• address locations larger than limit value treated as an error.

[11] Multiprogramming Modelling

50% I/O wait

80% I/O wait

20% I/O wait
100

80

60

40

20

1 2 3 4 5 6 7 8 9 100

Degree of multiprogramming

C
P

U
 u

til
iz

at
io

n
(in

 p
er

ce
nt

)

CPU utilization as a function of number of processes in memory (ignoring oper-

ating system overhead).

[12] Multiprogramming Effectiveness Analisys

4

Memory Management

Job
Arrival
time

CPU
minutes
needed

1
2

3

4

10:00
10:10

10:15

10:20

4
3

2

2

CPU idle

CPU busy

CPU/process

.80

.20

.20

.64

.36

.18

.51

.49

.16

.41

.59

.15

1

2

3

4

0
100 15 20 22 27.6 28.2 31.7

2.0 .9

.9

.8

.8

.8

.3

.3

.3

.3

.9

.9

.9

.1

.1 .7

Job 2 starts

1 2 3 4

Processes

(a)

(c)

(b)

Time (relative to job 1's arrival)

Job 1 finishes

a. arrival and work requirements of 4 jobs,

b. CPU utilization for 1–4 jobs with 80% I/O wait,

c. sequence of events as jobs arrive and finish, numbers show amout of CPU

time jobs get in each interval.

[13] Swapping

(a)

Operating
system

�

��

�

A

(b)

Operating
system

�

��

�

A

B

(c)

Operating
system

�

A

B

C

(d)

Time

Operating
system

�

��

�

�

��

�

B

C

(e)

D

Operating
system

�

��

��

B

C

(f)

D

Operating
system

�

��

�

�

��

�

C

(g)

D

Operating
system

�

A

C

Memory allocation changes as processes come into memory and leave memory.

Shaded regions are unused memory.

[14] Fragmentation

Choosing allocation algorithm the following aspects should be considered:

• effectiveness (speed),

5

Memory Management

• simplicity,

• fragmentation effect.

Internal fragmentation - situation when some pieces of memory although allo-

cated as part of some bigger structure (partition, frame) are not to be used

by user processes.

External fragmentation - situation when some pieces of memory although un-

allocated cannot be allocated for some reason (e.g. are too small) for user

processes.

[15] Allocation Algorithms

The role of the allocation algorithm is to chose appropriate free block in order to

allocate it to some user process.

Some allocation algorithms:

• First Fit algorithm, first which matches from the list,

• Best Fit algorithm, the optimal in size from the list,

• Worst Fit algorithm, the biggest from the list,

• Buddies algorithm, memory (with size 2k) division into two equal in size

blocks; dividing by two till obtaining minimal yet big enough block.

[16] Anti-fragmentation Countermeasure

In the system there may be defined value ∆n as a minimal allowed size of allocated

block, which makes easier management and improves effectiveness but may lead

into fragmentation.

Methods of countermeasure against fragmentation:

• deallocation and merging,

• rellocation and compaction,

• paging mechanism.

[17] Memory Management - Bitmaps and Lists

6

Memory Management

�

�

�

�

�

��

�

(a)

(b) (c)

A B C D E

8 16 24

Hole Starts
at 18

Length
2

Process

P 0 5 H 5 3 P 8 6 P 14 4

H 18 2 P 20 6 P 26 3 H 29 3 X

1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 0 0 0

a. part of memory with 5 processes and 3 holes,

– tick marks show allocation units,

– shaded regions are free,

– the smaller the allocation unit, the larger the bitmap.

b. corresponding bitmap,

c. same information as a list.

[18] Dynamic Allocation Problem

(a) (b)

Operating
system

Room for growth

Room for growth

B-Stack

A-Stack

B-Data

A-Data

B-Program

A-Program�

�

Operating
system

Room for growth

B

A

�

��

�

Actually in use

Room for growth

Actually in use

a. allocating space for growing data segment,

b. allocating space for growing stack and data segment.

7

Memory Management

[19] Virtual Memory

Virtual memory memory system consisting of at least two memory types: small

and fast (e.g. operating memory) and big but slow (e.g. disk memory),

and moreover of additional hardware and software which enable automatic

moving of memory pieces between those memory types.

Virtual memory should be almost as fast as the faster from above-mentioned mem-

ories and almost as huge as the bigger from the above-mentioned memories.

Methods of virtual memory implementation:

• paging,

• segmentation,

• paging with segmentation.

[20] Memory Management Unit Role

CPU
package

CPU

The CPU sends virtual
addresses to the MMU

The MMU sends physical
addresses to the memory

Memory
management

unit

Memory
Disk

controller

Bus

MMU (ang. Memory Management Unit) may be integrated with processor (as it

is common now), but may be independent (as it used to be earlier).

[21] Paging

Paging is based on fixed memory division. Units of division:

• frames for physical memory,

8

Memory Management

• pages for process virtual address space.

Paging mechanism is responsible for:

• mapping virtual address into physical address:

1. locating the page referenced by the address in the program,

2. finding the frame currently used by that page.

• sending - depending on requests - pages from external memory to operating

memory and sending back those pages which are no longer required.

[22] Translation Example

9

Memory Management

Virtual
address

space

Physical
memory
address

60K-64K

56K-60K

52K-56K

48K-52K

44K-48K

40K-44K

36K-40K

32K-36K

28K-32K

24K-28K

20K-24K

16K-20K

12K-16K

8K-12K

4K-8K

0K-4K

28K-32K

24K-28K

20K-24K

16K-20K

12K-16K

8K-12K

4K-8K

 0K-4K

Virtual page

Page frame

X

X

X

X

7

X

5

X

X

X

3

4

0

6

1

2

[23] Paging Implementation

Usage of paging does not require anything specific from the user. Memory al-

location is implemented by the system with usage of page tables and/ or frame

10

Memory Management

tables.

In order to enforce transparency of the solution, the following is required:

• handling system interrupt called page fault, which signals referencing to the

page which is currently absent in the main memory,

• page fault handling has, due to some established page replacement algo-

rithm, allocate a frame and download the required page from the external

memory,

• in order to minimize the cost of multiple memory accesses associative mem-

ory is used for address transalation.

[24] Exemplary Page Table

Internal operation of MMU with 16 4 KB pages.

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

000
000
000
000
111
000
101
000
000
000
011
100
000
110
001
010

0
0
0
0
1
0
1
0
0
0
1
1
1
1
1
1 Present/

absent bit

Page
table

12-bit offset
copied directly
from input
to output

Virtual page = 2 is used
as an index into the
page table Incoming

virtual
address
(8196)

Outgoing
physical
address
(24580)

110

1 1 0 0 0 0 0 0 0 0 0 0 1 0 0

00 1 0 0 0 0 0 0 0 0 0 0 1 0 0

The following aspects should be considered:

• page table may be extremely huge,

11

Memory Management

• translation process should be extremely fast.

[25] Typical Page Table Entry

Caching
disabled Modified Present/absent

Page frame number

Referenced Protection

�

�

[26] Multilevel Page Tables

(a)

(b)

Top-level
page table

Second-level
page tables

To
pages

Page
table for
the top
4M of
memory

6
5
4
3
2
1
0

1023

6
5
4
3
2
1
0

1023

Bits 10 10 12

PT1 PT2 Offset

12

Memory Management

[27] Translation Lookaside Buffer

222
Valid Virtual page Modified Protection Page frame222

1 140 1 RW 31222
1 20 0 R X 38222
1 130 1 RW 29222
1 129 1 RW 622
1 19 0 R X 50222
1 21 0 R X 45222
1 860 1 RW 14222
1 861 1 RW 752221

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

The main goal: to minimize the number of memory references required for suc-

cessful mapping. Aspects related to TLB:

• cost of context switching,

• cost of multilevel page table,

• implemetation: in hardware/ in software.

[28] Inverted Page Tables

Traditional page
table with an entry
for each of the 252
pages

256-MB physical
memory has 216

4-KB page frames Hash table
216 -1

252 -1

216 -1

0 0
Indexed
by virtual

page

0
Indexed

by hash on
virtual page

Virtual
page

Page
frame

Comparison of a traditional page table with an inverted page table.

[29] Optimal Page Table Size

The size of a page influences internal fragmentation level and size of the page table.

Let:

13

Memory Management

s the average process size (in bytes),

p page size,

e size of one item in the page table.

then overhead = s ∗ e/p + p/2

The first derivative with respect to p and equating to 0:

−se/p2
+ 1/2 = 0

Therefore, the optimal page size is equal to p =
√

2se

[30] Page Fault Handling

Page fault handling has the following sequence of events:

1. choosing the frame for required page,

2. freeing pointed frame,

3. the disk operation scheduling to bring the page in the frame,

4. page table updating.

For choosing the frame with page to be evicted is responsible algorithm called page

replacement algorithm. The optimal solution would be to evict the page which will

be never again required or required in the most distant moment in the future.

[31] Page Replacement Algorithms

Some of page replacement algorithms:

• optimal solution,

• NRU algorithm (not recently used) (R and M bits),

• FIFO algorithm,

• the second chance algorithm,

• clock algorithm,

• LRU algorithm (least recently used).

[32] Second Chance Algorithm

14

Memory Management

(a)

Page loaded first
Most recently
loaded page0

A

3

B

7

C

8

D

12

E

14

F

15

G

18

H

(b)

A is treated like a
newly loaded page3

B

7

C

8

D

12

E

14

F

15

G

18

H

20

A

a. pages sorted in FIFO order,

b. new list, after page fault occurrence at time 20 and A had its R bit set.

[33] Clock Page Replacement Algorithm

When a page fault occurs,
the page the hand is
pointing to is inspected.
The action taken depends
on the R bit:
 R = 0: Evict the page
 R = 1: Clear R and advance hand

A
B

C

D

E

F
G

H

I

J

K

L

[34] Hardware LRU Algorithm

(a)

0

0

0

0

0

1

1

0

0

0

2

1

0

0

0

3

1

0

0

0

0

1

2

3

Page

(b)

0

0

1

0

0

1

0

0

0

0

2

1

1

0

0

3

1

1

0

0

Page

(c)

0

0

1

1

0

1

0

0

1

0

2

0

0

0

0

3

1

1

1

0

Page

(d)

0

0

1

1

1

1

0

0

1

1

2

0

0

0

1

3

0

0

0

0

Page

(e)

0

0

1

1

1

1

0

0

1

1

2

0

0

0

0

3

0

0

1

0

(f)

0

1

1

1

0

0

0

0

0

1

0

0

0

1

1

0

(g)

0

0

0

0

1

0

0

0

1

1

0

0

1

1

1

0

(h)

0

0

0

1

1

0

0

1

1

1

0

1

0

0

0

0

(i)

0

0

1

1

1

0

1

1

0

0

0

0

0

0

1

0

(j)

0

0

1

1

1

0

1

1

0

0

0

1

0

0

0

0

Page

15

Memory Management

Pages were referenced in the following order:

0, 1, 2, 3, 2, 1, 0, 3, 2, 3.

[35] Software Simulation of LRU

Page

0

1

2

3

4

5

R bits for
pages 0-5,
clock tick 0

10000000

00000000

10000000

00000000

10000000

10000000

1 0 1 0 1 1

(a)

R bits for
pages 0-5,
clock tick 1

11000000

10000000

01000000

00000000

11000000

01000000

1 1 0 0 1 0

(b)

R bits for
pages 0-5,
clock tick 2

11100000

11000000

00100000

10000000

01100000

10100000

1 1 0 1 0 1

(c)

R bits for
pages 0-5,
clock tick 3

11110000

01100000

00100000

01000000

10110000

01010000

1 0 0 0 1 0

(d)

R bits for
pages 0-5,
clock tick 4

01111000

10110000

10001000

00100000

01011000

00101000

0 1 1 0 0 0

(e)

The aging algorithm simulates LRU in software. Six pages for five clock ticks is

shown. The five clock ticks are represented by (a) to (e).

[36] Working Set

The working set is the set of pages used by the k most recent memory references.

The function w(k, t) is the size of the working set at time t.

w(k,t)

k

[37] Working Set Algorithm

16

Memory Management

Information about
one page 2084

2204 Current virtual time

2003

1980

1213

2014

2020

2032

1620

Page table

1

1

1

0

1

1

1

0

Time of last use

Page referenced
during this tick

Page not referenced
during this tick

R (Referenced) bit

Scan all pages examining R bit:
 if (R == 1)
 set time of last use to current virtual time

 if (R == 0 and age > τ)
 remove this page

 if (R == 0 and age ≤ τ)
 remember the smallest time

[38] Clock Working Set Algorithm

17

Memory Management

2204 Current virtual time

1213 0

2084 1 2032 1

1620 0

2020 12003 1

1980 1 2014 1

Time of
last use

R bit

(a) (b)

(c) (d)

New page

1213 0

2084 1 2032 1

1620 0

2020 12003 1

1980 1 2014 0

1213 0

2084 1 2032 1

1620 0

2020 12003 1

1980 1 2014 0

2204 1

2084 1 2032 1

1620 0

2020 12003 1

1980 1 2014 0

[39] Page Replacement Algorithms Comparison

Algorithm Comment
Optimal not implementable, but useful as a benchmark
NRU very crude
FIFO might throw out important pages
Second chance big improvement over FIFO
Clock realistic
LRU excellent, but difficult to implement exactly
NFU fairly crude approximation to LRU
Aging efficient algorithm that approximates LRU well
Working set somewhat expensive to implement
WSClock good efficient algorithm

18

Memory Management

[40] Belady’s Anomaly

0 1 2 3 0 1 4 4 4 2 3 3

0 1 2 3 0 1 4 0 1 2 3 4

P P P

P PP P P P P PP P

P P P P P P 9 Page faults

0 1 2 3 0 1 1 1 4 2 2

0 1 2 3 0 0 0 1 4 4

(a)

Youngest page

Oldest page

All pages frames initially empty

0 1 2 3 3 3 4 0 1 2 3 4

0 1 2 3 0 1 4 0 1 2 3 4

0 1 2 2 2 3 4 0 1 2 3

0 1 1 1 2 3 4 0 1 2

10 Page faults
0 0 0 1 2 3 4 0 1

(b)

Youngest page

Oldest page

a. FIFO algorithm with three page frames,

b. FIFO algorithm with four page frames,

• more page faults when we have more page frames. The P’s show which page

references cause page faults.

[41] Shared Pages

���

���

���

Program

Process
table

Data 1 Data 2

Page tables

19

Memory Management

[42] Page Fault Handling

MOVE
6

2

1000
1002

1004

Opcode
First operand

Second operand

16 Bits

MOVE.L #6(A1), 2(A0)

}
}
}

• an instruction causing a page fault,

• where to start the reexecution of the instruction?

[43] Swap Organization

0

4

3

6

6

4
3

0

7

5

2
1

Pages

Page
table

Main memory Disk

Swap area

(a)

0

4

3

6

6

4
3

0

5

1

7

2

Pages

Page
table

Main memory Disk

Swap area

(b)

Disk
map

a. paging to a static swap area,

b. backing up pages dynamically.

[44] Policy and Mechanism Separation

Disk
Main memory

External
pager

Fault
handler

User
process

MMU
handler

1. Page
 fault

6. Map
page in

 5. Here
is page

User
space

Kernel
space

2. Needed
page

4. Page
arrives

3. Request page

20

Memory Management

• page fault handling with an external pager.

[45] Single Address Space

Space currently being
used by the parse tree

Free

Virtual address space

Symbol table
Symbol table has
bumped into the
source text table

Address space
allocated to the
parse tree

Parse tree

Source text

Constant table

Call stack

In a one-dimensional address space with growing tables, one table may bump into

another - compiler process as an example.

[46] Segmentation Features

• the goal of segmentation is to organize the memory address space in a way

corresponding to the logical information distribution,

• possibility of usage of many named (by the programmer) segments during

the process of virtual address space organization,

• two-dimensional address space because of address identification by the pair:

segment name + offset,

• address translation organized usually by separate for each process segment

table,

• entries in the segment table called segment descriptors,

21

Memory Management

• each segment descriptor contains at least base address and size (limit) of

the segment.

[47] Segment Size

Symbol
table

Source
text

Constants

Parse
tree

Call
stack

Segment
0

Segment
1

Segment
2

Segment
3

Segment
4

20K

16K

12K

8K

4K

0K

12K

8K

4K

0K 0K

16K

12K

8K

4K

0K

12K

8K

4K

0K

A segmented memory allows each table to grow or shrink independently of the

other tables.

[48] Paging and Segmentation (I)

• the aim of segmentation: logical division of the operating memory, the aim

of paging physical division of the memory,

• paging as a low-level mechanism, transparent to the programmer; segmen-

tation as a high-level mechanism, visible to the programmer,

• size of a page fixed, derived from the system architecture; size of a segment

not fixed, set by the programmer,

• both with paging and segmentation the total address space may be bigger

than available physical memory,

• segmentation enables better protection by opportunity to distinguish differ-

ent segments which logically group process’ elements.

[49] Paging and Segmentation (II)

22

Memory Management

• segmentation enables better management of elements with non-constant size

(like stack or heap),

• segmentation provides sharing of procedures among processes (shared seg-

ments, shared libraries),

• the reason of paging introduction: obtaining more address space without

need to buy more physical memory,

• the reason of segmentation introduction: enabling division and distinction of

programs and data into separate logically independent address spaces with

support for sharing some elements and better protection,

• segmentation - external fragmentation possible,

• paging - internal segmentation possible.

[50] Pure Segmentation Implementation

�

�

�

��

�

�

�

�

��

� �

�

�

�

�

�

(c)(b)(a) (d) (e)

Segment 0
(4K)

Segment 7
(5K)

Segment 2
(5K)

Segment 5
(4K)

(3K)

Segment 3
(8K) Segment 6

(4K)

(3K)

Segment 0
(4K)

Segment 7
(5K)

Segment 2
(5K)

Segment 3
(8K)

(3K)

Segment 2
(5K)

Segment 0
(4K)

Segment 1
(8K)

Segment 4
(7K)

Segment 4
(7K)

Segment 3
(8K)

Segment 0
(4K)

Segment 7
(5K)

Segment 2
(5K)

(3K)

Segment 5
(4K)

(3K)

(4K)

Segment 0
(4K)

Segment 7
(5K)

Segment 2
(5K)

Segment 6
(4K)

Segment 5
(4K)

(10K)

• phenomenon of external fragmentation (checkerboarding),

• (a)-(d) development of checkerboarding,

• (e) removal of the checkerboarding by compaction.

• usage of paging as a countermeasure against external fragmentation.

[51] MULTICS: Segmentation and Paging

• Honeywell 6000 and following models,

23

Memory Management

• 218 segments possible, each segment might have up till 65536 36-bits words,

• paged segments, for each process segment table, the very segment table im-

plemented as a paged segment as well,

• physical addresses 24-bits, pages aligned to 64 (26) bytes, thus 18 bits for

page table address,

• eventual segment address in cache in a separate table used by the page fault

handler.

[52] MULTICS: Virtual Memory

�

(a)

(b)

Main memory address
of the page table

Segment length
(in pages)

18 9 1 1 1 3 3

Page size:
0 = 1024 words
1 = 64 words

0 = segment is paged
1 = segment is not paged

Miscellaneous bits

Protection bits

Segment 6 descriptor

Segment 5 descriptor

Segment 4 descriptor

Segment 3 descriptor

Segment 2 descriptor

Segment 1 descriptor

Segment 0 descriptor

Descriptor segment

36 bits

Page 2 entry

Page 1 entry

Page 0 entry

Page table for segment 1

Page 2 entry

Page 1 entry

Page 0 entry

Page table for segment 3

The MULTICS virtual

memory.

a. the descriptor

segment points to

the page tables,

b. a segment de-

scriptor, the

numbers are the

field lengths.

[53] MULTICS: Physical Address Evaluation

Segment number Page
number

Offset within
the page

18 6 10

Address within
the segment

A 32-bit MULTICS virtual address.

24

Memory Management

Descriptor
segment

Segment
number

Page
number

Page
table

Page

Word

Offset

Descriptor Page frame

Conversion of a two-part MULTICS address into a main memory address. For

simplicity it is omitted that segment of descriptors is itself paged.

[54] MULTICS: TLB Buffers

Segment
number

Virtual
page

Page
frame

Comparison
field

Protection Age

Is this
entry
used?

4

6

12

2

2

1

0

3

1

2

7

2

1

0

12

Read/write

Read only

Read/write

Execute only

Execute only

13

10

2

7

9

1

1

1

0

1

1

A simplified version of the MULTICS TLB. 16 entries for which segment number

and frame number are compared in parallel. The existance of two page sizes makes

the actual TLB more complicated.

[55] Intel Pentium: Segmentation with Paging

• Multics: 256K independent segments, each up to 64K 36-bit words,

• Pentium: 16K independent segments, each up to 1 billion 32-bit words,

• single Global Descriptor Table in the system,

• Local Descriptor Table for each process.

25

Memory Management

[56] Intel Pentium: Selector and Segment Descriptor

A Pentium selector.
Index

0 = GDT/1 = LDT Privilege level (0-3)

Bits 13 1 2

Privilege level (0-3)

Relative
address

0

4

Base 0-15 Limit 0-15

Base 24-31 Base 16-23Limit
16-19G D 0 P DPL Type

0: Li is in bytes
1: Li is in pages

0: 16-Bit segment
1: 32-Bit segment

0: Segment is absent from memory
1: Segment is present in memory

Segment type and protection

S

�

�

0: System
1: Application

32 Bits

Pentium code segment descriptor. Data segments differ slightly.

[57] Intel Pentium: Physical Address Evaluation (I)

Descriptor

Base address

Limit

Other fields

32-Bit linear address

++

Selector Offset

• conversion of a (selector, offset) pair to a linear address.

• if paging is turned off (pure segmentation), obtained address is a physical

one,

• with paging on, obtained address is a logical one,

• usage of TLB buffers.

[58] Intel Pentium: Physical Address Evaluation (II)

26

Memory Management

(a)

(b)

Bits
Linear address

10 10 12

Dir Page Offset

Page directory

Directory entry
points to

page table

Page table
entry points

to word

Page frame

Word
selected

Dir

Page table

Page

1024
Entries

Offset

• 32-bits logical address space, each page has a size 4kB,

• each process contains page directory with 210 elements, each of them points

to page table with 210 elements as well.

• single paged 32-bits address space possible as well.

[59] Intel Pentium: Protection

Kernel

0

1

2

3

Level

Typical uses of
the levels

System calls

Shared libraries

User programs

• four levels of protection, segments from the same and higher levels accessi-

ble for reading/writing,

• to call a procedure from different level, CALL has as an argument not an

address but selector of so called call gate.

27

