Operating Systems IntroductionIntroductiondr. Tomasz Jordan Kruk T.Kruk@ia.pw.edu.plInstitute of Control & Computation Engineeri Warsaw University of Technology	ng	Laboratory tasks 1. 10 p shell programming 2. 5 p processes and signals 3. 5 p scheduling 4. 5 p memory management 5. 5 p synchronization 6. 5 p I/O operations 7. 5 p threads programming	Points from the lectures and lab- oratory are summed up. It is required to achieve at least 15 points from the final test and 35 points together. Grades: 0-34.5 2.0 35-41.5 3.0 42-48.5 3.5 49-55.5 4.0 56-62.5 4.5 63-70.0 5.0 It is possible in special circum- stances to have the grade in- creased by the lecturer.
Faculty of E&IT, Warsaw University of Technology	Operating Systems / Introduction – p. 1/26	Faculty of E&IT, Warsaw University of Technology	Operating Systems / Introduction - p. 3/26

Operating Systems course (I)

- √ lecturer: dr. Tomasz J. Kruk, T.Kruk@ia.pw.edu.pl, p. 530
- \checkmark course divided into lectures and laboratory, marked independently,
- \checkmark grades: 40 points from laboratory and 30 points from the final test (or exam),
- $\checkmark\,$ necessary to achieve at least 20 points from the laboratory tasks to be admitted to the final test,
- $\checkmark\,$ laboratory tasks based on writing some programs in shell, C language and small items in Java language,
- $\checkmark\,$ each laboratory task is marked independently. The grade (number of points) is given by the person in charge of laboratory course and is final,
- \checkmark laboratories are penalized for lateness,

Operating Systems lectures

Operating Systems course (II)

- 1. Introduction
- 2. Shell programming
- 3. Processes and threads
- 4. Interprocess synchronization and communication
- 5. Memory management
- 6. Input/Output system
- 7. File system
- 8. Multimedia operating systems
- 9. Multiprocessor systems and cluster solutions
- 10. Security

Operating System

Def. 1

Operating system is a set of programs and procedures performing two unrelated functions:

- $\sqrt{}$ management of resources by sharing (multiplexing) them in time and in space,
- $\checkmark\,$ presentation to the user the equivalent of an extended machine or virtual machine that is easier to program than the underlying hardware.

Def. 2

As an operating system **resource** each of the system's hardware and software element is considered iff that element may be allocated to some process.

Operating system resources management

Considering operating system as a resource manager it is in charge of:

- √ tracing the usage of system resources,
- $\sqrt{}$ forcing the strategy which contains and describes: a receiver, type of a resource, the moment of allocation and amount of allocated items,
- ✓ allocating resources,
- \checkmark deallocating resources.

Faculty of E&IT, Warsaw University of Technology

Operating Systems / Introduction - p. 5/26

Faculty of E&IT, Warsaw University of Technology

Operating Systems / Introduction - p. 7/26

Operating system resources

As hardware resources one can understand:

- processor time,
- ✓ memory,
- external devices,
- √ other computers available via network.

As software resources one can understand:

- √ files,
- ✓ buffers,
- \checkmark semaphores,
- ✓ system tables.

Resources are managed in time and space.

Virtual machine creation

As an **extended**/ **virtual machine creation** it is understood making to the user system abstraction easier to use and/ or program. The goal is to present the user with the equivalent of an extended machine or virtual machine that is easier to program than the underlying hardware.

- transformation of the real machine into the machine which features required by assumed **processing mode** (destination of the computer system),
- \checkmark exemplary abstractions:
 - ★ "there is a group of named files stored on a disk",
 - ★ "system enables concurrent execution of applications".

Processing modes

- $\sqrt{}$ batch mode, (off-line mode), autonomous usage of the computer without any need of presence of the user,
 - + huge throughput of the computer system,
 - possible long time of waiting for task results, limited scheduling opportunities, inability of current control over execution process
- ✓ interactive mode, (on-line mode), conversational co-operation of the user with the system with usage of computer terminal,
 - + fast system response, ability of current control over execution process,
 - less effective usage of computer system resources.
- $\sqrt{}$ real time mode, a system, which as a user has a technological process with some time constraints/ requirements. Two approaches:
 - ★ system has to react for external events/incidents faster than configured impassable time,
 - ★ system periodically monitors a state of the technological process.

The First Generation (1945-55) (I)

ENIAC - Electronic Numerical Integrator and Computer - built up at the University of Pennsylvania by J. Presper Eckert. and William Mauchley.

- \checkmark built up in years 1943-1946, used till 1955,
- √ 30 tons, 1400 m2, 18 000 vacuum tubes, 140 kW,
- √ 5000 addition operations per second,
- ✓ 20 registers for ten digit decimal numbers,
- $\checkmark\,$ main drawback: programming via setting of relays (switches) and plugging and unplugging of cables.

The first generation characterized by lack of software.

Faculty of E&IT, Warsaw University of Technology

Faculty of E&IT, Warsaw University of Technology

Operating Systems / Introduction - p. 9/26

Operating Systems / Introduction - p. 11/26

The History of the Operating Systems

Charles Babbage (1792-1871) - project of the first true digital (but mechanical) computer. Ada Lovelace hired as the world's first programmer.

Generations of the operating systems:

- 1. The First Generation (1945-55) vacuum tubes and plugboards.
- 2. The Second Generation (1955-65) transistors and batch systems.
- 3. The Third Generation (1965-80) integrated circuits and multiprogramming.
- 4. The Fourth Generation (1980-..) personal computers.

The First Generation (1945-55) (II)

In the 1944 John von Neuman formulated the following assumptions:

- 1. Contemporary computer should contain:
 - $\sqrt{}$ the memory consisting of elements which may have only one of the following states: 0 or 1,
 - √ arithmetic unit, which performs arithmetic, logic and other operations,
 - $\sqrt{}$ opportunity to input, output and control of data.
- 2. Activity of the computer is related to execution of some program and data, which are in the memory, processing. The program may contain *conditional operations*, which enable branches and jumps. The program may modify itself during the execution.

The Second Generation (1955-65)

- \checkmark transistors and batch systems,
- $\sqrt{}$ the epoch of so called **mainframes**,
- $\checkmark\,$ batch processing as a method of increasing the level of the utilization of the processor time,
- $\sqrt{}$ specialization of systems, exemplary assigns:
 - ★ IBM1401 for input and outpu of data,
 - * IBM7094 for numerical computations (number crunching).

Structure of a typical FMS job

Faculty of E&IT, Warsaw University of Technology

Operating Systems / Introduction - p. 13/26

Early Batch Systems

✓ FMS (ang. the Fortran Monitor System)

The Third Generation (1965-1980)

- $\checkmark~$ usage of integrated circuits (ICs) for construction of IBM 360,
- ✓ multiprogramming,
- ✓ machines like IBM 1401 eliminated by **spooling** Simultaneous Peripheral Operation On Line,

- $\sqrt{}$ **timesharing** as a variant of multiprogramming, in which users could use at the same moment different terminals,
- ✓ Compatible Time Sharing System (CTSS) as a first serious time sharing system (M.I.T., 1962),
- \checkmark batch processing and interactive processing.

Systems of the Third Generation

- MULTICS (ang. MULTiplexed Information and Computing Service) MIT, Bell Labs, General Electric - project of a single system which had to be capable of servicing with computational power all the region of Boston (www.multicians.org),
- ✓ DEC PDP PDP-1 (1961 r.) started the era of minicomputers almost as fast as IBM 7094, but for the price of 5% of 7094's; the success story of the PDP family, especially PDP-11,
- ✓ Ken Thompson from Bell Labs on his PDP-7 created limited one-person version of the Multics, which evolved into Unix system,
- $\sqrt{}$ two main branches/ lines of the Unix system: **System V** (AT&T) and **BSD**,
- ✓ POSIX (ang. Portable Operating System Interface) defined by IEEE standard of conformance with Unix system (now: with open system).

The Fourth Generation (1980-today) (II)

- $\sqrt{\text{MS DOS}}$ (ang. *MicroSoft Disk Operating System*), the new version of DOS rewritten by hired by Microsoft creator of original DOS,
- ✓ GUI (ang. Graphical User Interface) invented by Doug Engelbart in Stanford Research Institute in sixties; adopted by Xerox PARC scientists,
- ✓ Steve Jobs, Apple co-creator an attempt to build an Apple with GUI, systems Lisa and Apple Macintosh,
- √ systems Windows 3.11, Windows 95, Windows 98, Windows ME,
- ✓ system Windows NT developed in huge percentage by again hired by Microsoft developers of VAX VMS system.
- √ clone of the Unix system, **Minix**, written by **A. Tanenbaum**,
- $\sqrt{}$ a new system, with roots in the Minix, **Linux**, created by **L. Torvalds**.
- $\sqrt{}$ the time of network and network operating systems,

Faculty of E&IT, Warsaw University of Technology

Operating Systems / Introduction - p. 17/26

Faculty of E&IT, Warsaw University of Technology

Operating Systems / Introduction - p. 19/26

The Fourth Generation (1980-today) (I)

- ✓ personal computers (*microcomputers*) similar in architecture to minicomputers but definitely different in price,
- √ 1974, Intel introduces 8080, first general purpose 8-bit processor, Gary Kildall writes CP/M (Control Program for Microcomputers),
- ✓ 1977, CP/M rewritten by Digital Research for other microprocessors, 5 years of domination of CP/M,
- ✓ the beginning of eighties IBM developed IBM PC and contacted Bill Gates for licensing BASIC language interpreter,
- $\sqrt{}$ the worst decision of Digital Research lack of commitment in talks with IBM,
- $\checkmark\,$ B. Gates bought from Seattle Computer Products operating system DOS and offered tandem DOS/BASIC for IBM,

Different types of operating systems

There are different types of operating systems, although they have much in common. There are operating systems:

- $\sqrt{}$ for *mainframes*,
- ✓ for servers,
- √ for multiprocessor machines,
- √ for personal computers,
- $\sqrt{}$ real-time operating systems, with hard and soft limits (*VxWorks*, *QNX*),
- √ dedicated for embedded systems (PalmOS, Windows CE),

Review of computer architectures (I)

- √ processor: program counter, stack pointer, PSW,
- $\checkmark\,$ memory: RAM, ROM, EEPROM, flash RAM, physical and virtual addresses, MMU,
- different buses:
 - ★ IDE (ang. Integrated Drive Electronics),
 - ★ ISA (ang. Industry Standard Architecture),
 - * PCI (ang. Peripheral Component Interconnect),
 - ★ USB (ang. Universal Serial Bus),
 - ★ SCSI (ang. Small Computer System Interface),
 - ★ IEEE 1394 (FireWire)

Interrupt handling in the computer system

Faculty of E&IT, Warsaw University of Technology

Operating Systems / Introduction - p. 21/26

Review of computer architectures (II)

Structure of the computer system with the Pentium-like architecture.

Concepts related to operating systems

Faculty of E&IT, Warsaw University of Technology

- ✓ process, address space of a process, table of processes, process image, child processes, interprocess communication, signals, identifiers: of process, of group, of process' owner,
- √ deadlocks,
- ✓ memory management,
- input/ output,
- √ files, directories, access paths, root directory, current directory, file descriptor, file system, special files, block and character devices, pipes,
- √ security, **rwx** bits, access control lists,
- √ command interpreter, shell.

Operating Systems / Introduction - p. 23/26

