
Operating Systems

Processes and Threads

Tomasz Kruk, Ph.D.
Faculty of Electronics and Information Technology

Warsaw University of Technology

https://www.linkedin.com/in/tomasz-jordan-kruk

tomasz.kruk@pw.edu.pl EOPSY, 1

Warsaw University of Technology

Warsaw University of Technology

Process in the Operating System

Process - an abstraction of a running program with its computing

environment. Process is a basic dynamic object in the operating system.

Requirements to be met by the operating system with reference to processes:

√

√

√

√

interleaving the execution of multiple processes to maximize processor

utilization while providing reasonable response time,

allocating resources to processes in conformance with a specified

policy, while at the same time avoiding deadlock,

supporting interprocess communication,

supporting user creation of processes.

tomasz.kruk@pw.edu.pl EOPSY, 2Warsaw University of Technology

Multiprogramming

A

B

C

D

D

C

B

A

Process
switch

One program counter

Four program counters

P
ro

c
e

s
s

Time

B C DA

√

√

√

(a) (b) (c)

process must not be programmed with built-in assumptions about

timing,

the difference between a process and a program,

processes sequential, concurrent, parallel and distributed,

tomasz.kruk@pw.edu.pl EOPSY, 3Warsaw University of Technology

Process Creation and Termination

Four principal events that cause processes to be created:

√

√

√

√

system initialization,

execution of a process creation system call by a running process,

a user request to create a new process,

initiation of a batch job.

Process may terminate due to one of the following conditions:

√

√

√

√

normal exit (voluntary),

error exit (voluntary),

fatal error (involuntary),

killed by another process (involuntary).

tomasz.kruk@pw.edu.pl EOPSY, 4Warsaw University of Technology

Process States

1 23

4

Running

Blocked Ready

1. Process blocks for input
2. Scheduler picks another process
3. Scheduler picks this process
4. Input becomes available

The basic states of a process:

√

√

√

running - actually using the CPU at that instant,

ready - runnable, temporarily stopped to let another process run,

blocked - unable to run until some external event happens.

tomasz.kruk@pw.edu.pl EOPSY, 5Warsaw University of Technology

Process States in the Unix System

√

√

√

√

√

√

√

√

√

user running,

kernel running,

ready to run, in memory,

asleep in memory,

ready to run, swapped,

sleeping, swapped,

preempted,

created,

zombie.

tomasz.kruk@pw.edu.pl EOPSY, 6Warsaw University of Technology

Unix Process State Transition Diagram

Scheduler

0 1 n – 2 n – 1

Scheduler

Processes

The lowest layer of a process-structured operating system handles interrupts

and scheduling. Above that layer there are sequential processes.

For processor allocation for particular procesess a piece of an OS kernel

called scheduler is responsible.

Process implementation:

√ the OS maintains a table (an array of structures) called the process

table, with one entry per process. Sometimes those entries are called

process descriptors or process control blocks, PCB.

tomasz.kruk@pw.edu.pl EOPSY, 8Warsaw University of Technology

Some Fields of a Typical Process Table Entry

Process management Memory management

Registers Pointer to text segment

Program counter Pointer to data segment

Program Status Word Pointer to stack segment

Stack pointer

Process state

Priority

Scheduling parameters

Process ID

File management

root directory

Parent proces Working directory

Process group File descriptors

Signals User ID

Time when process started Group ID

CPU time used

Time of next alarm

tomasz.kruk@pw.edu.pl EOPSY, 9Warsaw University of Technology

Interrupt Revisited

√

√

√

√

√

√

√

when an I/O device has finished the work given to it, it causes an interrupt by

asserting a signal on a bus line it has been assigned,

the signal detected by the interrupt controller chip on the motherboard,

if no interrupts pending, the interrupt controller processes the interrupt

immediately - it puts a number on the address lines specifying which device

wants attention and asserts a signal that interrupts the CPU,

the CPU stops current work and uses the number on the address lines as an

index into a table called the interrupt vector to fetch a new program counter,

the counter points to the start of the corresponding interrupt service procedure,

shortly after starting running, the interrupt service procedure acknowledges the

interrupt by writing a certain value to one of the interrupt controller’s I/O ports -

the controller is now free to issue another interrupt,

the hardware always saves certain information before starting the service

procedure, at least the program counter but in some architectures all the visible

registers and a large number of internal ones.

tomasz.kruk@pw.edu.pl EOPSY, 10Warsaw University of Technology

Activities of the OS When an Interrupt Occurs

1. Save any registers (including the PSW) that have not already been saved by the

interrupt handler.

2. Set up a context for the interrupt service procedure. Doing this may involve

setting up the TLB, MMU and a page table.

3. Set up a stack for the interrupt service procedure.

4. Acknowledge the interrupt controller. If there is no centralised interrupt

controller, reenable interrupts.

5. Copy the registers from where they were saved (possibly some stack) to the

process table.

6. Run the interrupt service procedure. It will extract information from the

interrupting device controller’s registers.

7. Choose which process to run next.

8. Set up the MMU context for the process to run next. Some TLB setup may also

be needed.

9. Load the new process’ registers, including the PSW.

10. Start running the new process.

tomasz.kruk@pw.edu.pl EOPSY, 11Warsaw University of Technology

Threads of Execution

When there is a need for concurrent threads of execution organized as a

group of processes, having separated protected address spaces means:

√

√

√

√

from the point of view of protection: an advantage, but here we protect our

processes against our processes,

from the point of view of communication: a drawback,

from the point of view of the level of simplicity in sharing resources: a drawback,

from the point of view of performance: a drawback, at least if processes not

parallel,

Thus, maybe we should consider putting together cooperating threads of

execution into one shared address space, and this would meant:

√

√

√

from the point of view of protection: a drawback, but we are the author of the

cooperating threads codes and we should know what we do,

from the point of view of communication: an advantage,

from the point of view of the level of simplicity in sharing resources: an

advantage.

tomasz.kruk@pw.edu.pl EOPSY, 12Warsaw University of Technology

Processes and Threads Attributes

Per process items Per thread items

Address space Program counter

Global variables Registers

Open files Stack

Child processes State

Pending alarms

Signals and signal handlers

Accounting information

Threads of the same process may exchange information with usage of global

variables of the process.

√

√

what with threads aspects when the subprocess is created?

what is the correct layer for servicing signals?

tomasz.kruk@pw.edu.pl EOPSY, 13Warsaw University of Technology

Threads Stack

Kernel

Thread 3's stack

Process

Thread 3Thread 1

Thread 2

Thread 1's

stack

tomasz.kruk@pw.edu.pl EOPSY, 14Warsaw University of Technology

Multithreaded Server

Dispatcher thread

Worker thread

Web page cache

Kernel

Network
connection

Web server process

User
space

Kernel
space

tomasz.kruk@pw.edu.pl EOPSY, 15Warsaw University of Technology

An Outline of the Multithreaded Server

Algorithm

while (TRUE) {
get_next_request(&buf);

handoff_work(&buf);

}

(a)

while (TRUE) {

wait_for_work(&buf)
look_for_page_in_cache(&buf, &page);

if (page_not_in_cache(&page))

read_page_from_disk(&buf, &page);

return_page(&page);

}

(b)

tomasz.kruk@pw.edu.pl EOPSY, 16Warsaw University of Technology

Methods of Server Construction

Three ways to construct a server

√

√

√

threads - parallelism, blocking system calls,

single-threaded process - no parallelism, blocking system calls,

finite-state machine - parallelism, nonblocking system calls, interrupts.

tomasz.kruk@pw.edu.pl EOPSY, 17Warsaw University of Technology

Kernel-level threads and User-level Threads

Process ProcessThread Thread

Process

table

Process

table
Thread

table

Thread

table

Run-time

system

Kernel

space

User

space

KernelKernel

tomasz.kruk@pw.edu.pl EOPSY, 18Warsaw University of Technology

Threads – Hybrid Solutions

Multiple user threads

on a kernel thread

User

space

Kernel

spaceKernel threadKernel

tomasz.kruk@pw.edu.pl EOPSY, 19Warsaw University of Technology

Multithreaded Architecture under Solaris OS

Solaris makes use of four separate thread-related concepts:

√

√

Process - the normal Unix process,

User-level threads - ULTs, implemented through a threads library in the

address space of a process,

⋆ invisible to the operating system,

⋆ interface for application parallelism.

√ Lightweight processes - LWPs, a mapping between ULTs and kernel

threads,

⋆ each LWP supports one or more ULTs and maps to one kernel thread,

⋆ LWPs are scheduled by the kernel independently,

⋆ LWPs may execute in parallel on multiprocessors.

√ Kernel threads fundamental entities that can be scheduled and

dispatched to run on one of the system processors.

tomasz.kruk@pw.edu.pl EOPSY, 20Warsaw University of Technology

Threads under Solaris – an Example

WEiTI, Warsaw University of Technology Operating Systems / Processes and
Threads – p. 21/32

Migration to the Multithreaded Code

Thread 1 Thread 2

Access (errno set)

Errno inspected

Open (errno overwritten)

T
im

e

extern int * errno();

#define errno (*(errno()))

tomasz.kruk@pw.edu.pl EOPSY, 22Warsaw University of Technology

Thread 1's

code

Thread 2's

code

Thread 1's

stack

Thread 2's

stack

Thread 1's

globals

Thread 2's

globals

Private Global Variables

tomasz.kruk@pw.edu.pl EOPSY, 23Warsaw University of Technology

Processor-bound and

I/O-bound Processes

Short CPU burst

Waiting for I/O

(a)

Long CPU burst

(b)

Time

tomasz.kruk@pw.edu.pl EOPSY, 24Warsaw University of Technology

Processes Scheduling

There are two basic scheduling techniques:

√

√

nonpreemptive scheduling,

preemptive scheduling.

There are different requirements for different environments: batch systems,

interactive systems, real-time systems.

tomasz.kruk@pw.edu.pl EOPSY, 25Warsaw University of Technology

Features of

the Good Scheduling Algorithm

All systems

√

√

√

fairness - giving each process a fair share of the CPU, policy

enforcement - seeing that stated policy is carried out,

balance - keeping all parts of the system busy.

Batch systems

√

√

√

throughput - maximize jobs per hour,

turnaround time - minimize time between submisission and terminantion,

CPU utilization - keep the CPU busy all the time.

Interactive systems

√

√

response time - respond to requests quickly,

proportionality - meet users’ expectations.

Real-time systems

√

√

meeting deadlines - avoid losing data,

predictability - avoid quality degradation in mulimedia systems.

tomasz.kruk@pw.edu.pl EOPSY, 26Warsaw University of Technology

Scheduling in Batch Systems

8 4 4 4

A B C D

(b)

84 4 4

B C D A

(a)

Shortest Job First Scheduling

Scheduling in batch systems

√

√

√

√

FCFS, First-Come First-Served,

SJF, Shortest Job First,

SRTN, Shortest Remaining Time Next,

Three-Level Scheduling.

tomasz.kruk@pw.edu.pl EOPSY, 27Warsaw University of Technology

Three-Level Scheduling

CPU

Main
Memory

Arriving
job

Input
queue

Admission
scheduler

Memory
scheduler

Disk

CPU scheduler

tomasz.kruk@pw.edu.pl EOPSY, 28Warsaw University of Technology

Scheduling in Interactive

Systems

(a)

Current
process

Next
process

B F D G A

(b)

Current
process

F D G A B

Round-Robin scheduling

Scheduling in interactive systems

√

√

√

Round-Robin algorithm,

priority scheduling,

shortest process next (estimation).

tomasz.kruk@pw.edu.pl EOPSY, 29Warsaw University of Technology

Scheduling with Classes of Priorities

Priority 4

Priority 3

Priority 2

Priority 1

Queue
headers

Runable processes

tomasz.kruk@pw.edu.pl EOPSY, 30Warsaw University of Technology

Scheduling in Real-time Systems

√

√

systems with soft and hard requirements,

periodic and aperiodic events,

m

i=1

Ci

Pi
≤ 1

A real-time system that meets this criteria is said to be schedulable.

√

√

Ci time of one service of periodic event,

Pi period of periodic event occurence.

tomasz.kruk@pw.edu.pl EOPSY, 31Warsaw University of Technology

