Lecture 9 - data files
Input and output

Remark Input and output functions are not the part of the
language.

Standard input and output

In the standard input and output library a simple character mo-
del of input and output is implemented.

Stream of characters is built of strings of lines; each line is ended
with the new line character.

Reading one character from the standard input:

int getchar(void);

This function returns after each call next character from the
input or EOF, if the end of file is met.
Constant EOF is defined in the header file jstdio.h;.

Writing one character of data

int putchar(int );

This function returns value of the written character or EOF (as
an indicator of an error).

In each source file of the program that makes use of the li-
brary functions realizing input-output operations, the following
statement must appear before the first call:

#include <stdio.h>

For programs reading only one data stream and writing only
to one output stream use of getchar, putchar and printf is
sufficient.

Example:

#include <stdio.h>
#include <ctype.h>

Formatted input - function sscanf

int scanf(char *format, ... );

int sscanf
(char *string, char *format, argl, arg2, ... );

Argument format specifies format of the output; argl, arg2, etc..
must be pointers (they indicate the place of storing the input
data). The sscanf function ends its execution either after inter-
preting the whole format or if a data type is not consistent with
the specification.

It returns either the number of correctly read and stored data
or EOF character if the end of file is met.
Data files

A file may be opened by means of the library function fopen.
Below necessary declarations are given:

FILE *fp;
FILE *fopen(char *name, char *mode);

The fopen function returns a pointer to a certain structure with
composition defined in the header file jstdio.h; of name FILE,
that contains the following informations of the file:

e buffer placement,

e current character position in the buffer, type of access to
the file (reading, writind, etc.)

e signals of an error or the end of file appearance.
Call of the fopen function inside a program has the following
form:

fp=fopen(name, mode) ;

Meaning of arguments:

name - name of the file

main() /* lower: change capital letters to small */
{ mode - access type:

int c;

while ((c=getchar()) != EOF) — reading 1"

putchar (tolower(c)) ;

return 0; — writing ”w”

}

Formatted output - function printf

int printf(char *format,argl, arg2,...);

The returned value is equal to the number of successfully printed
variables.

Remark The printf has got a variable list of arguments, whose
number is determined on the basis of the first of them. Therefore:

printf(s); /* Dangereous; bad,

if there % is in s */
printf ("%s",s); /* Safe */
Function sprintf:
int sprintf
(char *string, char *format, argl, arg2,...);

— appending "a”
Some comments on the work with files:
e opening of a nonexisting file causes its creation,

e opening for writing of an existing file destroys its previous
content,

e opening of an exisitnig file to append presrves its previous
content,

e any trial to read from a nonexisting file is an error,
e if fopen cannot open a file it returns value NULL.

Reading from file and writing to file

int getc(FILE *fp); /* to read character x*/
/* returns character or EOF, if error */
int putc(FILE *fp); /* to write character */
/* returns value of the character or EOF if error */



stdin -

stdout -

stderr -

Formatted reading and writing

int fscanf (FILE * fp, char *format, ... );

int fprintf(FILE *fp, char *format, ... );

While starting execution of a program the operating system is
responsible for opening three files and giving the program their
pointers:

standard input (normallly connected with the keyboard)
standard output (normallly connected with the screen
standard errors output (also connected with screen)

Example of the program concatenating the contents of two files:

#include <stdio.h>
/* cat: concatenate the files contents; version 1 */
main (int argc, char *argv[])
{
FILE *fpstr;
void filecopy(FILE *, FILE %);
if (argc == 1) /* without arguments;
copy from stdin */
filecopy(stdin, stdout);
else
while (--argc > 0)
if ((fpstr = fopen(x++argv,"r")) == NULL) {
printf("cat: I cannot open %s\n",*argv);
return 1;
} else {
filecopy(fpstr, stdout);
fclose(fpstr);
}
return 0;
}
/* filecopy: copy content of file ifp
to file ofp */
void filecopy(FILE *ifp, FILE *ofp)

{
int c;
while ((c=getc(ifp)) != EOF)
putc(c,ofp);
}

Error service -
function exit

Corrected program cat (so that it writes signals of errors on
the screen):

file stderr and

#include <stdio.h>
#include <stdio.h>
/* cat: concatenate file content; version 2 */
main (int argc, char *argv[])
{
FILE *fpstr;
void filecopy(FILE *, FILE *);
char *prog = argv[0];
/* name of program generating signals */
if (argc == 1) /* without arguments:
copy from stdin */
filecopy(stdin, stdout);
else
while (--argc > 0)
if ((fpstr = fopen(x++argv,"r")) == NULL) {
fprintf (stderr,
"%s: I cannot open
exit(1);

%s\n" ,prog, *argv) ;

} else {
filecopy(fpstr, stdout);
fclose(fpstr);
}
if (ferror(stdout)) {
fprintf (stderr,
"%s: Writing erros to
exit(2);

stdout\n", prog);

}
exit (0);
}

Entering and outputting text

char *fgets(char *line, int maxline, FILE *fp);
char *fputs(char *line, FILE *fp);

Function fgets reads subsequent line from the file pointed by fp
(together with the newline character) and stores it in an charac-
ter array line.

Returns:

a) normally - pointer to line;

b) NULL - after detecting an error or meeting the end of
file.

Function fputs prints out an indicated text (it doesn’t need
to contain the new line character).
Normally returns 0, in the case of an error - EOF.

Realization of fgets and fputs in the standard library:

/* fgets: take at least n characters
from file iop */

char *fgets(char *s, int n, FILE *iop)

{
register int c;
register char *cs;
cs=s;
while (--n > 0 && (c=getc(iop)) !'= EOF)
if ((*cs++=c) == ’\n’)
break;
*cs="\0";
return (c==EOF && cs ==s) 7 NULL:s;
}

/* fputs: print out s to file
int fputs(char *s, FILE *iop)

iop */

{
int c;
while (c=*s++)
putc(c,iop);
return ferror(iop) ? EOF:0;
}

large Functions determining positions inside a file

int fseek(FILE *stream, long offset, int origin);

Function fseek determines position in stream stream; next
reading or writing will start from data at that new position. At
binary files new position will be at place of offset characters
distance from the reference point (origin); origin may have
values:

SEEK_SET - beginning of file,
SEEK_CUR - current position,
SEEK_END - end of file.



At text files value offset must be equal either to zero or value
returned by previously called function ftell (in that case origin
must be equal to value SEEK_SET).

Function fseek returns nonzero value when an error appears.

long ftell(FILE *stream);

Function ftell returns the current position value in the stream
or -1L in the case of an error.

void rewind (FILE *stream);

Call of the rewind(fp) function is equivalent to the following
sequence of calls

fseek(fp,OL,SEEK_SET) ; clearerr(fp);

Prototype of function storing the current position:

int fgetpos(FILE *stream, fpos_t *ptr);

Function fgetpos stores the current position in stream stream
in place pointed by *ptr. Later one may use it in function
fsetpos. Type fpos_t is an appropriate type of object used to
store such value. In the case of error function fgetpos returns
value different from zero.

int fsetpos(FILE *stream, const fpos_t *ptr);

Function fsetpos sets the current stream stream position to
value stored previously by function fgetpos in place pointed by
*ptr. In the case of an error function fsetpos returns value
different from zero.



