
Lecture 5 - Functions and the
program structure
Format of the function definition

return-type name-of-function(parameters declarations)
{
declarations and statements

}

The simplest function

dummy() {}

The return statement - tool to transfer value of a certain
expression to the calling place.

return expression;

If it is necessary the returned expression is converted to the
type of value returned by the function. Sometimes the retur-
ned expression is surrounded by the braces, although it is not
necessary.

Functions returning noninteger values

• Definition of a function - example

#include <ctype.h>

/* conversion of the string s
to a floating-point number */
double atof(char s[])
{

double val, power;
int i,sign;
for (i=0; isspace(s[i]); i++)
; /* We are omitting white characters */

sign=(s[i] == ’-’) ? -1:1;
if (s[i] == ’+’ || s[i] == ’-’)
i++;

for (val=0.0; isdigit(s[i]); i++)
val = 10.0*val +(s[i]-’0’);

if (s[i]==’.’)
i++;

for (power=1.0; isdigit(s[i]); i++) {
val=10.0*val + (s[i]-’0’);
power*=10.0;

}
return sign*val\power;

}

• Function declaration

#include <stdio.h>
#define MAXLINE 100
/* summing up the entered numbers */
main()
{

double sum=0.0, atof(char []);
char line[MAXLINE];
while (gets(line)>0) {
if (line[0] == ’\0’) break;
printf("\t%g\n",sum+=atof(line));

}
return 0;

}

External variables

• inner variables - arguments and variables defined inside
the function

• external variables - variables defined outside all func-
tions. They exist also after quitting a function.

Scope of names

• The scope of an automati8c variable declared at the be-
ginning of a function is the whole body of the function
containing the variable declaration.

• Local variables appearing in different functions are not in
any sense interconnected. Function parameters are also
local variables.

• The scope of an external variable and external function
reaches from the place of its declaration in the file till the
end of that file.

• If an external variable is used or an external function is
called before their definitions or their definition is placed
in other source file than the call then it is obligatory to
use the extern declaration.

Example (What will be the result?):

#include <stdio.h>
int n=10, q=2;

void main()
{
int fun(int);
void f(void);
int n=0, p=5;
n=fun(p);
printf("A: w main, n=%d, p=%d, q=%d\n",n,p,q);
f();

}

int fun(int p)
{
int q;
q=2*p+n;
printf ("B: w fun, n=%d, p=%d, q=%d\n", n,p,q);
return q;

}

void f(void)
{
int p=q*n;
printf ("C: w f, n=%d, p=%d, q=%d\n", n,p,q);

}

Solution:
B: w fun, n=10, p=5, q=20
A: w main, n=20, p=5, q=2
c: w f, n=10, p=20, q=2

Header files

Example (program divided between two files):

/* File 1 */
#include <stdio.h>
#include "defs.h"

int n=10, q=2;

void main()

{
int n=0, p=5;
n=fun(p);
printf("A: w main, n=%d, p=%d, q=%d\n",n,p,q);
f();

}

/* File 2 */
#include <stdio.h>
extern int n,q;

int fun(int p)
{
int q;
q=2*p+n;
printf ("B: w fun, n=%d, p=%d, q=%d\n", n,p,q);
return q;

}

void f(void)
{
int p=q*n;
printf ("C: w f, n=%d, p=%d, q=%d\n", n,p,q);

}

/* File defs.h */
extern int fun(int);
extern void f(void);

Static variables

static declaration applied to external variables and functions
limits their scope from the place of their appearance till the end
of the file. Therefore it is the way to hide their names. They
will not be recognized in other files containing the rest of the
program.

static char buf[BUFSIZE];
static int bufp=0;

static declaration with respect to the internal variables causes
that they do not disappear between the subsequent function
calls. They still remain local.

Register varaiables

register declaration informs the compiler that the variable will
be intensively used. Such variables compiler may placed directly
in the machine registers.

Possible use – exclusively with respect to automatic variables
and formal function parameters.

register int x;
register char c;

f(register unsigned m, register long n)
{
register int i;
....

}

There doesn’t exist any possibility to get the address of a register
variable.

The block structure

• It is possible to declare variables inside a block (compound
statement).

• It is forbidden to define function inside another function.

• Automatic variables inside a function (together with their
parameters) take precedence before the external variables
and functions of the same name.

if (n>0) {
int i; /* definition of a new i */
for (i=0; i<n; i++)
.....

}
/* The scope of i is the "true" branch of the if */

Initialization

• If the initial values are not given, then the external and
static variables are initialized with zeros.

• Initial values of the automatic and register variables are
not defined.

• Initial value of an external or static variable must be a
constant expression.

• Automatic and register variables are initialized after each
entrance to the function or block.

Array declaration:

int days[]={31,28,31,30,31,30,31,31,30,31,30,31};

For character arrays we may use a string constant:

char patt[]="grass";
is equivalent to:
char patt[]={’g’,’r’,’a’,’s’,’s’,’\0’};

Reccursion

Call of a function inside the same function.

Example 1:

/* 1 */
int silnia(int n)
{

int wynik=1;
while (n--)
wynik*=n;

return wynik;
}

/* 2 */
int silnia(int n)
{

if (n == 1)
return 1;

else
return n*silnia(n-1);

}

Preparing and running a
complete C Program

Planning a program
”Top-down” programming.
The overall progarm strategy should be completely mapped

out before any of the detailed programming actually begins. This
entire process may be repeated several times, with more pro-
gramming details added at each stage. When the overall stra-
tegy is set then the syntactic details of the language may be
considered.

Top-down program organization is normally carried out by
developing an informal outline consisting of phrases and senten-
ces written partly in english partly in C. This is followed by the
so called pseudocode.

Example
Determine how much money will accumulate in bank account

after n years if a known amount P is deposited initially and the
interest rate is r percent per year, compounded annually.

The program general outline is as follows:

1. Declare the required program variables.

2. Read in values for the principal P , the interest rate r and
the number of years n.

3. Calculate the the decimal representation of the interest
rate i using the formula

i =
r

100.0

4. Determine the future accumulation F using the formula

F = P (1 + i)n

5. Write out the calculated value for F

/* compound interest calculations */

main()
{

/* declare the program variables */

/* read in values for P, r and n */

/* calculate value for i */

/* calculate value for F */

/* write out the calculated value for F */
}

A more detailed version of the above outline

/* compound interest calculations */

main()
{

/* p, r, n, i and f to be
floating point variables */

/* write a prompt for p and then read its value */
/* write a prompt for r and then read its value */
/* write a prompt for n and then read its value */

/* calculate i=r/100.0 */
n

/* calculate f = p(1+i) as follows

f = p * pow((1+i),n)

where pow is a library function
for exponentiation */

/* write the value for f,
with an accompanying label */

}

Another method sometimes used when planning a C program
is the ”bottom-up” approach. It involves the detailed develop-
ment of the self-contained program modules early in the overall
planning process. The overall progarm development is then ba-
sed upon the characteristics of these available progarm modules.

Writing a C program
Inclusion of certain additional features is a good practice:

1. logical sequencing of the statements

2. the use of indentation (illustrates the subordinate nature
of individual statements within a group)

3. comments (if written properly they provide a useful ove-
rview of the general program logic).

4. ability to generate clear, legible output (Two factors con-
tribute: i) labelling the output data ii) appearance of some
of the input data together with the output to allow an
identification of the current program execution).

5. an interactive program should generate prompts at ap-
propriate times during the program execution in order to
provide the use an information, how to input the data.

Example compound interest sample program

#include <stdio.h>
#include <math.h>
/* simple compound interest problem */
void main()
{

float p,r,n,i,f;

/* read input data (include prompts) */
printf("Please enter a value "

"for the principal (P): ");
scanf("%f", &p);
printf("Please enter a value "

"for the interest rate (r): ");
scanf("%f", &r);
printf("Please enter a value "

"for the number of years (n): ");
scanf("%f", &n);

/* calculate i, then f */
i=r/100;
f=p * pow((1+i), n);

/* write output */
printf(:\nThe final value (F) is: %,2f\n",f);

}

Entering the program into the computer
Use an editor to enter the program into a text file line-by-line.

The suffix c should be attached to he file name which identifies
the file as a C program.

Compiling and executing the program

• compilation

• linking

• executing

Error diagnostics

• syntactic (grammatical) errors

Example

#include <stdio.h>
include <math.h>
/* simple compound interest problem */
void main
{

float p,r,n,i;

/* read input data (include prompts) */
printf("Please enter a value "

"for the principal (P): ");
scanf("%f", &p);
printf("Please enter a value "

"for the interest rate (r):);
scanf("%f", &r);
printf("Please enter a value "

"for the number of years (n): ");
scanf("%f", n)

/* calculate i, then f */
i=r/100
f=p * pow(1+i), n);

/* write output *
printf(:\nThe final value (F) is: %,2f\n",f);

The errors are as follows:

1. The second include statement does not begin with a
#-sign; main does not include a pair of parantheses.

2. The variable f is not declared to be a floating-point
variable.

3. the control string in the second printf statement
does not have a closing quotation mark.

4. The last scanf statement and the assignement for i
do not end with semicolons.

5. The assignement statement for f contains unbalan-
ced parantheses.

6. The last comment lacks the final slash ().

7. The program does not end with a closing brace (}
).

• execution errors

Example - real roots of a quadratic form

Calculate the real roots of the quadratic equation

ax2 + bx+ c = 0

using the quadratic formula

x =
−b±

√
b2 − 4ac

2a

Below is a sample C program

#include <stdio.h>
#include <math.h>

/* real roots of a quadratic equation */
void main()
{

float a,b,c,d,x1,x2;

/* read input data */

printf("a = ");
scanf("%f", &a);
printf("b = ");
scanf("%f", &b);
printf("c = ");
scanf("%f", &c);

/* carry out the calculations */
d=sqrt(b*b - 4*a*c);
x1=(-b+d)/(2*a);
x2=(-b-d)/(2*a);

/* write output */
printf("x1 = %e x2 = %e", x1, x2);

}

Logical debugging

• Detecting errors

The first step is to test a new program with data that will
yield a known answer.

• Correcting errors

Very seldom the source of a subtle error lies in the har-
dware or compiler. Usually it is an error in the program
logic.

