
Lecture 3 – Data Input and Out-
put

Remark Input and output functions are not the part of the
language itself.

Standard input and output

In the standard library a simple model of the character by cha-
racter input and output has been implemented.
The stream of characters consists of a sequence of lines; each line
is ended by the new line sign.

Single-character standard input:

int getchar(void);

Function getchar after each call gives the next character from the
input or EOF, when the end of the file is encountered. Constant
EOF is defined in the header file ¡stdio.h¿.

Single-character output

int putchar(int );

Function putchar returns the value of the output character or
EOF (as a message of an error appearamce).

At each source file of the program, which makes use of the
library functions realizing the input-output operations before the
first call must appear:

#include <stdio.h>

For programs reading only one input data stream and writing
to one output data stream use of functions getchar, putchar i
printf is sufficient.

Example:

#include <stdio.h>
#include <ctype.h>

main() /* lower: change capital letters to small */
{

int c;
while ((c=getchar()) != EOF)

putchar(tolower(c));
return 0;

}

Formatted output - function printf

int printf(char *format,arg1, arg2,...);

Returned value is equal to the number of printed successfully
variables.

Format includes:

• ordinary characters copied directly to the output stream

• specifications of conversions of subsequent arguments
(their beginning is marked by sign %

Between the sign % and the sign of conversion may appear in
the following order:

• minus sign, forcing shifting of the converted argument to
the left-hand border of the field

• number stating the minimal size of the field

• point character separating the size of the field from its
precision

• number determining precision (for texts - maximal number
of characters) number of digits after point for the floating
point value or minimal number of digits for the integer
value

• one of the letters h if an integer argument should be writ-
ten as short, or l (letter l) - if as long

Basic conversions of the printf function
Sign Argument type Output value
d, i int decimal number
o int octal number without sign (except

number 0)
x, X int unsigned hexadecimal number 0x

or 0X with letters abcdef or ABC-
DEF for 10,11,12,13,14,15

u int unsigned decimal number
c char single character
s char * sequence of signs written till the

meet of the end of the string cha-
racter or exhaustion of the number
of signs determined by the preci-
sion

f double [-]m.dddddd, where number of di-
gits d is determined by the preci-
sion (default value is 6)

e, E double [-]m.ddddddde+-xx or [-
]m.ddddddE+-xx, where number
of digits d is determined by the
precision (default 6)

g, G double in format %e (%E), when the po-
wer is smaller than -4, or otherwise
greater than or equal to the preci-
sion; otherwise %f; it doesn’t print
insignificant zeros and closing de-
cimal point

p void * pointer; form depends on the im-
plementation

% the argument is not converted; the
sign % is printed

The field width or the precision may be replaced in the spe-
cification by the sign *. Then the subsequent argument of the
printf replaces the value represented by the *, for exmple:

printf("%.*s", max,s);

Various conversions of the string ”ahoj, przygodo” (14 charac-
ters) in the presence of different format specifications:

%s :ahoj, przygodo:
%10s :ahoj, przygodo:
%.10s :ahoj, przy:
%-10s :ahoj, przygodo:
%.20s :ahoj, przygodo:
%-20s :ahoj, przygodo :
%20.10s : ahoj, przy:
%-20.10s :ahoj, przy :

Remark: The printf function has got a variable list of argu-
ments, whose number is determined on the basis of the first of
them. Hence:

printf(s); /* Dangerous; bad,
if s contains sign % */

printf("%s",s); /* Safe */

Funkcja sprintf:

int sprintf
(char *string, char *format, arg1, arg2,...);

Formattted input - the scanf function



int scanf(char *format, ... );

int sscanf
(char *string, char *format, arg1, arg2, ... );

Argument format specifies the input format; arg1, arg2, etc.
should be pointers (indicatiung the placement of the input data.
The scanf function closes reading either after interpreting the
whole format, or if the datum type is not in accordance with the
specification.

It returns the number of correctly read and memorized data,
or if it encounters the end of the file the EOF.

In the format argument may appear:

• spaces and the tabulators - they are ignored

• ordinary black characters (not % ), which we expect to
meet in the input data stream.

• conversions specifications consisting of the character % ,
optional character * stopping the assignement, optional
number determining the maximal field size, one of the
optional characters h, l or L determining the result size
and of the conversion sign.

Sign * indicates, that the subsequent input field should be omit-
ted (the assignement shall not take place).

Basic scanf function conversions
Sign Input datum Argument type
d integer decimal number int *
i integer number; possibly it

may appear in the octal form
(with the leading 0) or hexade-
cimal (with the leading 0x or
0X)

int *

o octal integer number (together
with the leading 0 or without
it)

int *

u unsigned integer decimal num-
ber

unsigned int *

x hexadecimal integer number
(with or without the leading 0x
or 0X, albo bez)

int *

c characters; other input charac-
ters (default 1) are placed in
the indicated array; the normal
rule of omitting the white cha-
racters is not observed; to read
the nearest black character one
should use % 1s

char *

s text (but not string, i.e. string
of characters appearing wi-
thout the quotation marks);
argument should indicate the
array of characters of the size
sufficient to accept the text to-
gether with the added at the
end end of string character

char *

e, f, g floating-point number with an
optional sign, optional decimal
point and optional exponent

float *

% exactly the sign % ; none assi-
gnement shall take place

Precising characters:

• h - with respect to the conversion signs n d,i,o,u,x it in-
forms that the argument is a pointer to an object of the
short type

• l - argument should be a pointer to an object of the long
type for the integer data; and to an object of double type
for the floating-point data.

The gets and puts functions
They facilate the transfer of strings between the computer

and the standard input/output devices.

int getchar(void)
char *gets(char *s)
int putc(int c, FILE *stream)
int putchar(int c)
int puts(const char *s)
int ungetc(int c, FILE * stream)

Example:

#include <stdio.h>

void main() /* read and write a line of text */
{

char line[80];
gets(line);
puts(line);

}


