
Lecture 1 - PRELIMINARIES
The C character set
C uses the upper case letters A to Z, lower case letters a to

z, the digits 0 to 9, and certain special characters as building
blocks to form basic program elements such as constants, varia-
bles, operators expressions.

The list of special characters

! * + \ " <
* (= | { >
%) ~ ; } /
^ - [: , ?
& _] ’ . (blank)

Special sequences – build as the combinations, e.g. \b \n \t
and so on.

Identifiers and keywords
Identifiers are names given to various program elements, such

as variables, functions and arrays.
Identifiers consist of letters, digits and eventually the under-

score sign (_) (treated as a letter) in any order, except that the
first character must be a letter.

Examples of valid identifiers:

x y12 sum_1 _temp
names area tax_rate TABLE

Keywords – certain reserved words that have standard pre-
defined meanings in C.

Standard keywords:

auto extern sizeof
break float static
case for struct
char goto switch
const if typedef
continue int union
default long unsigned
do register void
double return volatile
else short while
enum signed

Some compilers recognize some or all of the following key-
words:

ada far near
asm fortran pascal
entry huge

Data types
Typical data types

Data type Description Typical memory
requirements

int integer quantity 2 bytes or 1 word
(varies from one
compiler to another)

char single character 1 byte

float floating point number 1 word (4 bytes)

double double precision floa- 2 words (8 bytes),
ting point number (i.e.
more significant fi-
gures, and an exponent
which may be larger
in magnitude)

Constants

Example Name
1234 int
2345l long int
2345L long int
1234u unsigned int
2345U unsigned int
5678ul unsigned long int
12.34 double
1e-2 double

1.2e-2 double
2.3f float
2.3F float

3.4e-2l long double
3.4e-3L long double

Different number systems

Number system
decimal octal hexadecimal

31 037 0x1f
31 037 0X1F

Character constants
A character constant is a single character, enclosed in apstro-

phes.

’A’ ’a’ ’3’ ’$’ ’ ’

American Standard Code for Information Interchange (ASCII)
character set

Constant Value
’A’ 65
’x’ 120
’3’ 51
’$’ 36
’ ’ 32

Escape sequences

Character Escape sequence ASCII value

bell(alert) \a 007
backspace \b 008
horizontal tab \t 009
vertical tab \v 011
newline (line feed) \n 010
form feed \f 012
carriage return \r 013
quotation mark \" 034
apostrophe \’ 039
question mark \? 063
backslash \\ 092
null \0 000
octal escape seq. \ooo
hexadec. esc seq. \xoo

Constant expression – expression containing only con-
stants

#define MAXL 10000
#define VTAB ’\013’
#define VTAB ’\x7’
#define VTAB ’\X7’
#define VTAB ’\v’

String constants – string of characters enclosed in double
quottaion marks

"This is a string!"
or
"" /* empty string*/

Technically string is a table with a number of elements greater
of one than the number of charaters included. The charaters are
followed by the null character (\0).

Constant ’x’ is not equal to "x".

Character strings may be sticked together during compilation
of the program:

"Hey!" "Adventure!"
is identical with:
"Hey!Adventure!"

Enumeration constants
(List of values of integer constants)

enum boolean {NO,YES};
enum escapes {BELL=’\a’, BACKSPACE=’\b’, TAB=’\t’,

NEWLINE=’\n’, VTAB=’\v’, RETURN=’\r’};

enum months {JAN=1, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC};

/* months: february is second, march third
and so on */

Names in different enumerations must be different. At the
same enumeration values may be repeated.

Types name enum shares the same space as the names of
structure and union types.

Names of enumeration variables belongs to the same class as
the identifiers of the ordinary variables.

Declarations

int lower,upper, step;
char c,lin[1000];

int lower;
int upper;
int step;
char c;
char lin[1000];

Initial values can be assigned to variables within a type dec-
laration:

char esc=’\\’; /* \ character */
int i=0; /* iterations counter */
int limit=MAXLINE+1; /* maximal number of iterations*/
float eps=1.0e-5; /* accuracy parameter */

Default initial values of variables:

static and outer -- 0
automatic -- when the initial values are

explicitly stated the same
value with call of the
function or entry to the
block.
without explicitly stated
initial value they have
random values.

Qualifier const (constant) (may be used to declare any varia-
ble) It says that its value shall not be changed.

const double e=2.1234e-2;
const char msg[]="Uwaga";
int strlen(const char []);
/* table contents -- argument can not be

changed inside the function */

Any trial to change value of a variable declared as constant
is ended in the way depending on an implementation.

char text[]="California";

An 11 - element array.

char text[11]="California";

Size should be specified correctly.

char text[6]="California"; /* end will be lost */
char text[20]="California"; /* extra array elements

may be assigned zeros, or may be filled
with meaningless characters */

Expressions

An expression represents a single data item, such as a number
or a character. The expression may consist of a single entity,
such as a constant, a variable, an array element or a reference
to a function. It may also consist of some combinations of such
elements interconnected by one or more operators.

Expressions can also represent logical conditions (in C true is
represented by integer 1, false by 0).

Statements
A statement causes computer to carry out some action. There

are three different classes of statements in C: expression state-
ments, compound statements and control statements.

Expression statement – expression followed by a semicolon
(;).

a=3;
c=a+b;
++i;
printf("Area = %f", area);

Compound statement – several individual statements enclo-
sed within a pair of braces ({ and })

{
pi=3.141593;
circum=2. * pi * radius;
area = pi * radius * radius;

}

Control statements

while (count <= n) {
printf("x= ");
scanf("%f",&x);
sum += x;
++count;

}

