
Lecture 11 - PREPROCESSOR
Preprocessor is called in the first phase of the program trans-

lation; before starting the proper compilation.

Preprocessor processes the source text of the pro-
gram !!!

Inserting files
One or two lines of the following kind often appear at the

beginning of the program:

#include <name_of_file>
or
#include "name_of_file"

Those lines mean that the content of the file determined by
nazwa_pliku will be inserted at the position of the include sta-
tement appearance.
<name_of_file> means that the file will be searched according
to the rules holding in the implementation.
"name_of_file" means that search of the file is started there
where the source program is found and if the it doesn’t exist in
that place, then the search is continued according to the rules
holding in the implementation.

Restrictions on the use of the first form:

• Character > and the new line character could not ap-
pear in the name_of_file.

• Result of that statement is not determined if any of the
following characters appear: " ’ \ or pair of cha-
racters /* .

Restrictions on the use of the second form:

• Result of using characters ’ \ and pair of charac-
ters /* is still not determined.

• character > is allowed.

Use of a line of the following form is also allowed:

#include string_of_characters

string_of_characters is then expanded according to the usual
rules and at the end it should lead to one of the forms:
<...> albo "...".

Application of #include is a suggested way of preparing dec-
larations for a large program. It guarantees identity of the defi-
nitions and declarations of variables and functions.

Remark: Inclusion of files may be nested.

Macroexpansions – replacement of a name by string
of characters.

Scope of the statement - from the place of appearance till the
end of the file.

Control line of the form

#define identifier string_of_characters

instructs preprocessor to replace further appearances of the iden-
tifier by the indicated string of characters. Blanks surrounding
string of characters are omitted.

Remark Next appearance of #define with the same
identifier is treated as an error if the strings of characters are in
both cases identical (all white spots dividing strings of characters
are treated as equivalent).

Examples:
1)
#define YES 1
2)
#define then
#define begin {
#define end ;}

Afterwards we may write as follows:

if (i>0) then
begin
a=1;
b=2;

end

Macro with arguments

#define identifier(list_of_identifiers) \
string_of_characters

Example:

#define max(a,b) ((a)>(b)?(a):(b))

Parantheses in the definition are important since for instance:

x=max(p+q,r+s);
shall be replaced by

x=((p+q)>(r+s)?(p+q):(r+s);

Several rules:

• definition may make use of the previous definitions (nested
definition),

• macroexpansion does not take place in strings of charac-
ters surrounded by the quotation marks, e.g.

printf("YES");

prevents any replacement of YES.

Example 2:

/* macro reversing the places of arguments */
#define SWAP(x,y) { \

double tmp; \
tmp=x; \
x=y; \
y=tmp; \

}

Example 3:

#define APPEND(name,f,thing) \
{ \

FILE *out; \
out=fopen("a:\\kat\\"#name,"a");\
fprintf(out,f,thing); \
fclose(out); \

}

Remark: Expressions having some aside effects function
calls should be avoided, since after expansion of the macrodefi-
nition text may be included several times.



Examples:

#define max(x,y) ((x)>(y)?(x):(y))

maximum=max(++a,10);
/* result will be either 10 or a+2 */
/* a will be increased by 1 or 2 */

maximum=max(fgetc(file),maximum);
/* one can find in that way the neighbour

of the highest character in the file */

maximum=max(rand(),maximum);
/* !!!!!! */

Remark: Semicolon character should be used with care
within macrodefinitions.

Control line of the form

#undef identifier

orders the preprocessor to forget the identifier definition. Appli-
cation of the #undef statement to an undefined identifier is
not treated as an error.

Characters # and ##
If a paarameter is preceded by the character # then the

parameter identifier together with the # character shall be
replaced by an appropriate argument surrounded by the quota-
tion marks " .

Each character " and \ appearing at the beginning,
in the middle or at the end of the string constants and strings
of characters creating the argument shall be preceded by the
character \ .

If operator ## appears within the string of characters defi-
ning macro then after replacement of parameters by the strings
of characters – operator ## togther with surrounding it white
spots shall be removed.

If the string of characters created in that way is incorrect or
its execution depends on the order, then the result is undefined.

Independently of the macrodefinition form the replacing
string of characters is many times searched for in search for
other identifiers defined in that way. However if an identifier
replaced already in the current expansion appears again in the
next search, it will remain unchanged in the expanded text.

Macrodefinitions mechanism is useful to define ”important
constants”

Example:

#define ABSDIFF(a,b) ((a)>(b)?(a)-(b):(b)-(a))

Defines macro returning absolute value of the difference of its
arguments.
In contrary to the functions the returning value may be of any
type.

#define tempfile(dir) #dir "/%s"

Call tempfile(/usr/tmp) gives as the result

"/usr/tmp" "/%s"

that next shall be sticked together into one string of characters.
In the presence of the definition

#define cat(x,y) x ## y

call

cat(var,123)

produces string of characters

var123

Result of call

cat(cat(1,2),3)

is not determined; presence of operartor ## prevents expan-
sion of arguments of the internal call.

As the result appears cat(1,2)3 , at which string of
)3 (result of sticking the last string from the first argument

with the first string from the second argument is not correct.
After introduction of a macro of the second level

#define xcat(x,y) cat(x,y)

all works more appropriately: xcat(xcat(1,2),3) indeed cre-
ates string of characters 123, since in the xcat itself operator
## does not appear.
Similarly ABSDIFF(ABSDIFF(a,b),c) creates result fully

expanded consistently with the expectations.

Conditional compilation
Parts of program may be compiled conditionally accordingly

to the below schematic syntax:

Conditional compilation:
line-if text of the part -elif part-else #endif

line_if:
#if constant-expression
#ifdef identifier
#ifndef identifier

parts el-if:
line-elif text
parts-elif

line-elif:
#elif constant expression

part-else
line_else text

part-else:
line-else text

line-else:
#else

Several rules:

• Constant expressions appearing in #if and #elif are
calculated consecutively till the appearance of an expres-
sion with nonzero value.

• Text following expressions with zero value is omitted du-
ring compilation.

• Text appearing after expressions with positive value is in-
cluded into the program.

• After finding an expression with positive value and its se-
rvicing, the subsequent lines #elif or #else sa̧re
omitted together with their texts.

• If all expressions are equal to zero and there exists the
#else , then text following #else is serviced.



• Text appearing in inactive branches is ignored, however it
is checked first, whether there doesn’t exist nested condi-
tional constructions.

Constant expressions in #if and #elif are subject to a
standard macrodefinitions.

Expressions of the form:

defined identifier
or

defined ( identifier )

take before expansion the following values:

1L - if the identifier is defined in the preprocessor

0L - if it is not defined

All identifiers left after macroexpansions are set to 0L , and
the whole arithmetic on constants is carried out on long integer
or unsigned long integer numbers.

There exist the following restrictions on resulting constant
expressions:

• they must be integer

• they could not contain operators sizeof, casting and the
enumeration constants.

Control lines of the form:

#ifdef identifier
#indef identifier

are equivalent to:

#if defined identifier
#if ! defined identifier

Examples:

1) /* Compiling program in several versions */

#define DEMO
#ifdef DEMO
/* code exclusively for demo version */

statements

#endif

#ifndef DEMO
/* code exclusively for normal version */
#endif

2) /* To prevent multiple expansion of the same
piece of source code */

/* beginning of the header file windowws.h */
#ifndef WINDOWS
#define WINDOWS

/* content of the file */
#endif
/* End of file windows */

Lines numbering
Line numbering is introduced to fulfill the requirements of

other preprocessors generating programs in C language. It is
realized by writing line having one of the following forms:

#line constant "name_of_file"
#line constant

that instructs the compiler to assume for diagnostic purposes
that the next source line will have number determined by the
constant and that name_of_file will be the name of the cur-
rent file.

Macrosses appearing in such lines are expanded before the
statement interpretation.

Generating errors
Control line of the form

#error string_of_characters

instructs preprocessor to right diagnostic message containing the
given string_of_characters .

Instruction pragma
Control line of the form

#pragma string_of_characters

instructs preprocessor to carry out some action depending on the
implementation. Unknown action is ignored.

Empty preprocessor statement
Line containing only character # does not have any

effect.

Names defined in preprocessor
Definitions of such names and defined operator (appearing

in the preprocessor statements) could not be changed by the
programmer.

• LINE – decimal integer constant containing containing
tha number of the current line of the program

• FILE – constant string of characters containing the
name of the translated file

• DATE – constant string of characters containing
the date of the program translation stored in format –
"Mmm dd rrrr"

• TIME – constant string of characters containing time
of program translation stored in format – "gg:mm:ss"

• STDC – constant 1. The aim was that this identifier
should be set equal to 1 only in implementations fitting
the standard.


