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Introduction – predictive algorithms integrated with economic 

optimization 

• One of the methods to cope with disturbances changing quickly 

comparing to the dynamics of the control plant

• The steady–state control plant model is linearized

• The control system structure is simplified

• Only one quadratic optimization problem must be solved at each 

iteration

• The economic optimization is performed more often than in the 

classic hierarchical approach



Introduction – fault tolerance

• Continuation of the control system operation till the failure is 

fixed

• The loss of measurement means the interruption of the feedback 

loop

— unstable operating point: guide the process to the region of 

safe operation

— stable operating point: continue operation in the acceptable 

way

• Output constraints are often important for process safety and its 

economic effectiveness



The idea of the predictive control
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Fig. 1. Idea of predictive control; p – prediction horizon, s – control 

horizon, ∆uk – control signal change at current iteration



∆∆∆∆umin ≤ ∆∆∆∆u ≤ ∆∆∆∆umax,

umin ≤ u ≤ umax, 

ymin ≤ y ≤ ymax,

Numerical predictive control algorithms

Following problem is solved at each iteration:

subject to the constraints:

( ) ( )












∆⋅+−⋅= ∑∑∑∑
=

−

=
+

= =
+

uy n

j

s

i

j
kikj

n

j

p

i

j
kik

j
kjMPC uyyJ

1

1

0

2

|

1 1

2

| λκmin
u∆∆∆∆



∆∆∆∆umin ≤ ∆∆∆∆u ≤ ∆∆∆∆umax, umin ≤ u ≤ umax, ymin ≤ y ≤ ymax,

• In a nonlinear case, in order to avoid problems connected with 

general nonlinear optimization, effective algorithms with model 

linearization and quadratic optimization are used

• A few such algorithms are available, so the algorithm most 

suitable for a given nonlinear plant can be selected and

a compromise between control performance and computation

demand can be achieved

Numerical predictive control algorithms

Following problem is solved at each iteration:

subject to the constraints:
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Economic optimization problem

subject to

is a steady–state plant model (u – inputs, y –

outputs, w – disturbances)

• Precise nonlinear steady–state plant model
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Predictive algorithms integrated with economic optimization

subject to
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Basic approach to sensor fault accommodation

• Control the loop in which the fault occurred in the open–loop 

configuration (feedforward control)

— in practice: calculation of the free response using predicted 

instead of measured value of the output with damaged 

measurement 

— the problem: the disturbances acting on the control plant 

will not be compensated on the output with broken 

measurement 

• Use of the disturbance measurements is crucial



The case of constraints put on output variable values

• Change (shift) of constraints in the predictive controller

ymin + rmin ≤ y ≤ ymax – rmax
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The case of constraints put on output variable values

• Change (shift) of constraints in the predictive controller

is a free response

A is a dynamic matrix

• Problem of an empty set of admissible solutions may occur

• Mechanism of soft constraints can cause violation of the 

constraints



The case of constraints put on output variables

• Modification of the constraints influencing the set–point values:

for the lower bound:

for the upper bound:

• The values of the shift can be assessed and changed using the 

values  predicted by the controller for a given output

• The nonlinear steady–state plant model is used
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Using output prediction to shift the constraint
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Fig. 2. Idea of constraint shift calculation using output prediction 

generated by the predictive algorithm; the case of lower constraint



* R.B. Newell, P.L. Lee: Applied process control – a case study; Prentice Hall, 1989

Fig. 3. Evaporator system

Output Variables

L2 – separator level,

X2 – product composition,

P2 – operating pressure

Manipulated variables

F2 – product flowrate,

P100 – steam pressure,

F200 – cooling water flowrate

Control plant (evaporator system*)
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The MPCEO algorithm

• Based on the DMC type predictive algorithm,

• The manipulated variables are: steam pressure P100 and 

cooling water flow F200 

• The controlled variables are: product composition X2 and 

pressure in the evaporator P2 

• Measured disturbance F1 (feed flow)

F1 = F10 + F1a ⋅sin(2⋅π⋅t/To), 

F10 = 10 kg/min, F1a = 0.4 kg/min, To = 400 min 

• The step responses obtained from environs of an operating 

point P20=50.5 kPa, X20=25% 



The MPCEO algorithm

• Economic performance index (cost of production)

• Constraints put on manipulated variables:

P100 ≤ 400 kPa, F200 ≤ 400 kg/min, 

• The product should fulfill purity criteria:

25 % ≤ X2

• The appropriate soft constraints were put on the predicted X2 

composition values

• The constraint put on      set–point was as follows
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Fig. 4. Responses of the control system to the step change of F1 disturbance in the 170th minute; 

X2 sensor fault: not taken into consideration at all, taken into consideration, additionally the 

constraint was shifted; failure of the X2 sensor occurred in the 150th minute of simulation; above: 

output signals X2 and P2, below: control signals P100 and F200



Fig. 5. Responses of the control system after X2 sensor fault: not taken into consideration at all, 

taken into consideration, additionally the constraint put on X2 set–point was shifted; failure of the 

X2 sensor occurred in the 150th minute of simulation; above: output signals X2 and P2, below: 

control signals P100 and F200



Fig. 6. Responses of the control system after X2 sensor fault: not taken into consideration at all, 

taken into consideration with: manually, dynamically changing the constraint put on X2 set–

point; above: output signals X2 and P2, below: control signals P100 and F200 

JE=0.3254, JE=–0.3171, JE=–0.3471



Summary

• Effective and relatively little complicated methods of sensor 

fault toleration in control systems with predictive controllers 

integrated with economic optimization and output constraints 

were discussed

• The methods consist in modification of the constraints taken into 

consideration by the algorithm

• The methods can be used in the MPCEO algorithm with either 

linear or nonlinear dynamic control plant model

• Despite simplicity of the proposed mechanisms they can offer 

good results thanks to the usage of both models the MPCEO 

algorithm is based on to improve the control system operation


