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Introduction

DMC algorithm (C.R. Cutler and B.L. Remarker, 1979;
C.E. Garcia, A.M. Morshedi, 1984):

• a long–range horizon predictive control algorithm;

• many advantages – possibility of taking into account:
constraints, future set–point changes, anticipated
disturbance changes.

Takagi–Sugeno fuzzy models (an outline):

• division of an operational space into regions in a fuzzy
way;

• a linear model in each region;

• the output of the whole, fuzzy model is composed of the
outputs of all local models (a soft switching between
regions is assured).



Linear DMC algorithm based on analytical formulation

The basic idea of the DMC algorithm:
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A unique solution:

∆u=(AT⋅A+λ⋅I)–1⋅AT⋅(e–w),

where
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Only the first element of ∆u is used at each time step.
The structure of the controller:
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Fig. 1. Block diagram of the DMC controller



Fuzzy DMC algorithms based on analytical formulation
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Fig. 2. Block diagram of the FDMC1 controller; ∆uk
n – outputs of

sub–controllers, kn– weights, (n = 1,…, m), m – number of regions
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Fig. 3. FDMC2 algorithm structure



Linear DMC algorithm based on numerical formulation

The optimization problem solved at each time step:
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subject to the constraints:

∆umin ≤ ∆u ≤ ∆umax,

umin ≤ u ≤ umax,

ymin ≤ y ≤ ymax,

where
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Fuzzy DMC algorithms based on numerical formulation
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Fig. 4. FDMC3 algorithm structure
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Control plant
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Fig. 6. Block diagram and static characteristics of the control plant
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Fig. 8. Responses with “normal” DMC controller designed for
set–point 400 ppm; set–point change from z0 = 100 ppm to

a) zzad = 200 ppm; b) zzad = 400 ppm;
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Fig. 9. Responses with “normal” DMC controller designed for
set–point 200 ppm; set–point change from z0 = 100 ppm to

a) zzad = 200 ppm; b) zzad = 400 ppm;
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Fig. 10. Responses with fuzzy DMC controller;
set–point change from z0 = 100 ppm to

a) zzad = 200 ppm; b) zzad = 400 ppm;
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Fig. 11. Responses with fuzzy DMC controller;
set–point change from z0 = 100 ppm to zzad = 400 ppm;

a) output variable; b) manipulated variable;



Fig. 12. Responses with fuzzy DMC controller for the step change of
measurable disturbance from xf = 0,81 to xfb = 0,8;

1 – one step ahead anticipation of the disturbance change,
2 – immediate measurement,
3 – measurement with delay 2⋅Tp,
4 – measurement with delay 4⋅Tp,
5 – without disturbance measurement.



Summary

• Fuzzy DMC controllers are combination of long–range
horizon DMC predictive controller idea with the fuzzy
Takagi–Sugeno (multiregional) approach. This union
enables to include the advantages of both techniques into the
proposed controllers.

• There is a possibility to choose a controller version most
suitable for a problem at hand. Starting from the least
complicated FDMC1 through more advanced controllers
solving quadratic optimization problem with constraints and
using linear prediction (FDMC3), to controllers using
nonlinear prediction and model adaptation at each control
time step (FDMC4).

• The efficient suboptimal handling of control constraints in
the analytic approach (P. Marusak, J. Pułaczewski,
P. Tatjewski; 1999) can be immediately embedded into
fuzzy DMC formulations.


