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Introduction

• Algorithms: Model Predictive Control algorithms integrated with 

Economic Optimization (MPCEO)

• Aim: Continuation of the control system operation till the failure 

is  fixed

• Assumption: Methods of detection and isolation of actuator faults 

are available, measurement of the actuator output, in particular

• Remark: Output constraints are often important for safety and 

economic effectiveness of the process 



The idea of the predictive control
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Fig. 1. Idea of predictive control; p – prediction horizon, s – control 

horizon, ∆uk – control signal change at current iteration



∆∆∆∆umin ≤ ∆∆∆∆u ≤ ∆∆∆∆umax,

umin ≤ u ≤ umax, 

ymin ≤ y ≤ ymax,

Numerical predictive control algorithms

Following problem is solved at each iteration:

subject to the constraints:

( ) ( )












∆⋅+−⋅= ∑∑∑∑
=

−

=
+

= =
+

uy n

j

s

i

j
kikj

n

j

p

i

j
kik

j
kjMPC uyyJ

1

1

0

2

|

1 1

2

| λκmin
u∆∆∆∆



∆∆∆∆umin ≤ ∆∆∆∆u ≤ ∆∆∆∆umax, umin ≤ u ≤ umax, ymin ≤ y ≤ ymax,

• In a nonlinear case, in order to avoid problems connected with 

general nonlinear optimization, effective algorithms with model 

linearization and quadratic optimization are used

• A few such algorithms are available, so the algorithm most 

suitable for a given nonlinear plant can be selected and

a compromise between control performance and computation

demand can be achieved

Numerical predictive control algorithms

Following problem is solved at each iteration:

subject to the constraints:
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Economic optimization problem

subject to

is a steady–state plant model (u – inputs, 

y – outputs, w – disturbances)

• Precise nonlinear steady–state plant model
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Fig. 2. Hierarchical control system structure with MPC advanced control layer

Classical multilayer control system structure
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MPC Integrated with Economic Optimization (MPCEO)
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Fig. 3. Control system structure with MPC integrated with economic optimisation 



MPC Integrated with Economic Optimization (MPCEO)

• One of the methods to cope with disturbances changing quickly 

comparing to the dynamics of the control plant

• The steady–state control plant model is linearized

• Only one quadratic optimization problem must be solved at each 

iteration

• The control system structure is simplified

• The economic optimization is performed more often than in the 

classic hierarchical approach



MPC Integrated with Economic Optimization (MPCEO)
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Actuator faults handling

• A set of equality constraints is added to the algorithm after fault 

detection

m – number of control signal affected by the failure

• Application is relatively easy

• Elimination of some decision variables
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Actuator faults handling

• Equality constraint is added

m – number of control signal affected by the failure

– output of the actuator

• Easy application

• The steady–state model is in practice modified

• Measurement of the actuator output is often available
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* R.B. Newell, P.L. Lee: Applied process control – a case study; Prentice Hall, 1989

Fig. 4. Evaporator system

Output Variables
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The MPCEO algorithm

• The manipulated variables are: steam pressure P100 and 

cooling water flow F200 

• The controlled variables are: product composition X2 and 

pressure in the evaporator P2 

• Measured disturbance F1 (feed flow)

• Based on the fuzzy DMC predictive algorithm,



The MPCEO algorithm

Fig. 5. Membership functions of the fuzzy MPCEO controller 

Parameters:

κP2=κX2=1,

λP100= λF200=λF3=0.1

p=100, s=10
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The MPCEO algorithm

• Economic performance index (cost of production)

• Constraints put on manipulated variables:

0 kPa ≤ P100 ≤ 400 kPa, 0 kg/min ≤ F200 ≤ 400 kg/min, 

• The product should fulfill purity criteria:

25 % ≤ X2

• The appropriate soft constraints were put on the predicted X2 

composition values

• The constraint put on      set–point was as follows
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Fig. 6. Responses of the control system to a step decrease of F1 disturbance in the 100th minute; 

F200 actuator fault: not taken into consideration at all, 

taken into consideration, additionally the equality constraint put on X2 set-point was added;

above: output signals X2 and P2, below: control signals P100 and F200



P100 actuator blockade

• Optimizing procedure returned the message that there is no 

admissible solution 

• Why there is no solution found?

• In order to answer this question steady–state characteristics 

should be analyzed



Fig. 7. Steady–state characteristics a) X2(F200) i P2(F200), b) X2(P100) i P2(P100), 

of the plant with blocked actuator of the manipulated variable a) P100, b) F200 

a) b)



Fig. 8. Responses of the control system obtained for blockade of the P100 actuator: not taken into 

consideration, taken into consideration in the control system with additional manipulated variable

above: output signals X2 and P2, below: control signals F3 and F200



Summary

• Effective and relatively little complicated method of actuator 

fault toleration in control systems with MPCEO algorithms and 

output constraints

• The method: equality constraints added to the optimization 

problem solved by the algorithm

• The method can be used in the MPCEO algorithm with either 

linear or nonlinear dynamic control plant model 

• Further improvement of control system operation can be obtained,

when the additional manipulated variable is available


