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Introduction
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Fig. 1. Idea of predictive control p — prediction horizon, s — control
horizon, Au, — control signal change at current iteration

Predictive control advantages:

* Possibility of taking into account:
— constraints,
— future set—point changes,
— anticipated disturbance changes;

* Multidimensional controllers can be designed relatively
easy



Introduction

Predictive control with general nonlinear optimization:

* Huge computational burden
* Time needed cannot be anticipated

* The optimization routine may terminate in a local
minimum

FDMC controllers:
* Combination of two ideas:
— long-range horizon DMC predictive controller,
— fuzzy Takagi—Sugeno approach
* The advantages of both techniques are included
* Only a convex quadratic programming problem is solved
* In the nonlinear case:

— lead to better performance than algorithms based on
linear models,

— the performance is comparable to that obtained when
algorithms with nonlinear optimization are used

* Stabilizing mechanism is available



Conventional

DMC algorithm based on analytical
formulation

The basic idea of the DMC algorithm:
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Au = [Auk|k,...,Auk+S_l|k]T, y? =[y2”,---,yip]T

A unique solution:

Au=(A"-A+n-1) A" -(y7 - p")

Only the first element of Au 1s used at each time step.

The structure of the controller
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Fig. 2. Block diagram of the DMC controller



Fuzzy DMC algorithm based on analytical formulation
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Fig. 3. Block diagram of the analytical version of the FDMC
controller

* The controller is a combination of many sub—controllers.
* Parameters of sub—controllers are derived beforehand.

* Output value of the whole controller is a sum of weighted
outputs of local controllers.

* Stability can be checked using appropriate transformation
and Tanaka—Sugeno criterion.

* Stability is investigated by solving LMI system:

P>0, A/ PA;,~P<0 dlaij=1,..,]1
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Conventional DMC algorithm based on numerical
formulation

Following problem is solved at each iteration:
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subject to the constraints:
Au,,;, < Au < Au,,,,,
Upin = U = Upgy,

Ymin =Y = Vmax

Fuzzy DMC algorithms based on numerical formulation

* A few algorithms are available

* Algorithm most suitable for a given nonlinear plant can be
selected

* Compromise  between control performance and
computation demand can be achieved



FDMC-SL (Single Linearization)
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Fig. 4. Block diagram of the FDMC—-SL algorithm



FDMC-SLRN (Single Linearization and Response obtained using Nonlinear model)
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Fig. 5. Block diagram of the FDMC-SLRN (and FDMC—SL) algorithm



Stable fuzzy DMC algorithms based on numerical
formulation

A X2 numerical predictive
algorithm is used
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Fig. 6. The idea of dual-mode approach

The 1dea of dual-mode approach:

* In the set W that contains equilibrium point a stabilizing
controller 1s used (it could be analytical FDMC controller)

* Outside the set W numerical predictive algorithm
appropriately modified is used

Properties of the set WV:

* Any trajectory of the control system starting in this set
remains there

* The control system is asymptotically stable in this set

e The set W 1s inside the admissible set



Nonlinear optimization problem in dual-mode approach
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Problem no. 1

Stabilizing constraint x,, , € is nonlinear.

Problem no. 1 solution

Following constraint can be introduced to FDMC algorithms:

s—1
Ug =U;_, + Z(Auk+i|k)2
i=0
* Constraint relatively simple to impose

* In the case of stable control plant the state will approach
the set W



Problem no. 2

In the standard approach nonlinear optimization is used to find
the set I.

Problem no. 2 solution

Only a set of problems of the following type is solved

min(¥] P¥, )

subject to the linear equalityk constraint.

Then: if the solution fulfills *; PX, <o then o is decreased
otherwise, next problem from the set is solved
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Fig. 7. Illustration of problem no. 2 solution
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Summary

* Effective and relatively little complicated FDMC
algorithms with stabilizing mechanism were presented

* Introduced stabilization mechanism is simple and easy to
implement

* The stabilization mechanism can be used in any FDMC
algorithm variant

* The most suitable algorithm can be selected depending on
the nonlinearity of the plant



