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Introduction
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Fig. 1. Idea of predictive control p – prediction horizon, s – control
horizon, ∆uk – control signal change at current iteration

Predictive control advantages:

• Possibility of taking into account:

— constraints,

— future set–point changes,

— anticipated disturbance changes;

• Multidimensional controllers can be designed relatively
easy



Introduction

Predictive control with general nonlinear optimization:

• Huge computational burden

• Time needed cannot be anticipated

• The optimization routine may terminate in a local
minimum

FDMC controllers:

• Combination of two ideas:

— long–range horizon DMC predictive controller,

— fuzzy Takagi–Sugeno approach

• The advantages of both techniques are included

• Only a convex quadratic programming problem is solved

• In the nonlinear case:

— lead to better performance than algorithms based on
linear models,

— the performance is comparable to that obtained when
algorithms with nonlinear optimization are used

• Stabilizing mechanism is available



Conventional DMC algorithm based on analytical
formulation

The basic idea of the DMC algorithm:
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A unique solution:
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Only the first element of ∆u is used at each time step.

The structure of the controller
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Fig. 2. Block diagram of the DMC controller



Fuzzy DMC algorithm based on analytical formulation
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Fig. 3. Block diagram of the analytical version of the FDMC
controller

• The controller is a combination of many sub–controllers.

• Parameters of sub–controllers are derived beforehand.

• Output value of the whole controller is a sum of weighted
outputs of local controllers.

• Stability can be checked using appropriate transformation
and Tanaka–Sugeno criterion.

• Stability is investigated by solving LMI system:

P > 0,  Aij
T P Aij – P < 0  dla i,j = 1,..., l
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Conventional DMC algorithm based on numerical
formulation

Following problem is solved at each iteration:
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subject to the constraints:

∆umin ≤ ∆u ≤ ∆umax,

umin ≤ u ≤ umax,

ymin ≤ y ≤ ymax

Fuzzy DMC algorithms based on numerical formulation

• A few algorithms are available

• Algorithm most suitable for a given nonlinear plant can be
selected

• Compromise between control performance and
computation demand can be achieved



FDMC–SL (Single Linearization)
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Fig. 4. Block diagram of the FDMC–SL algorithm



FDMC–SLRN (Single Linearization and Response obtained using Nonlinear model)
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Fig. 5. Block diagram of the FDMC–SLRN (and FDMC–SL) algorithm



Stable fuzzy DMC algorithms based on numerical
formulation
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Fig. 6. The idea of dual–mode approach

The idea of dual–mode approach:

• In the set W that contains equilibrium point a stabilizing
controller is used (it could be analytical FDMC controller)

• Outside the set W numerical predictive algorithm
appropriately modified is used

Properties of the set W:

• Any trajectory of the control system starting in this set
remains there

• The control system is asymptotically stable in this set

• The set W is inside the admissible set



Nonlinear optimization problem in dual–mode approach
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Problem no. 1
Stabilizing constraint Wpk ∈+x  is nonlinear.

Problem no. 1 solution
Following constraint can be introduced to FDMC algorithms:
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• Constraint relatively simple to impose

• In the case of stable control plant the state will approach
the set W



Problem no. 2

In the standard approach nonlinear optimization is used to find
the set W.

Problem no. 2 solution

Only a set of problems of the following type is solved
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subject to the linear equality constraint.

Then: if the solution fulfills k
T
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Fig. 7. Illustration of problem no. 2 solution
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Control plant

statics
f(u,xf) 1150s

1
+ e–80s

u yz

Fig. 9. Block diagram of the control plant model; u– manipulated
variable, xf – measurable disturbance, y – output variable

Fig. 10. Static characteristics of the control plant
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Fig. 11. Membership functions in controllers



Fig. 12. Responses of the control systems with FDMC–SLRN
algorithms with and without stabilizing modification

to set–point change from z0 = 100 ppm to
zsp = 300 ppm; above output signal, below control signal



Fig. 13. Responses of the control systems with FDMC–SL and
FDMC–SLRN algorithms to set–point changes from z0 = 100 ppm;

above output signal, below control signal



Fig. 14. Responses of the control systems with FDMC–SL and
FDMC–SLRN algorithms to set–point changes from z0 = 400 ppm;

above output signal, below control signal



Summary

• Effective and relatively little complicated FDMC
algorithms with stabilizing mechanism were presented

• Introduced stabilization mechanism is simple and easy to
implement

• The stabilization mechanism can be used in any FDMC
algorithm variant

• The most suitable algorithm can be selected depending on
the nonlinearity of the plant


