
�������������	����
��
����������������
���������
�����

� �� ��������������

Przemysław Miazga∗ , Mariusz Kamola ∗∗

Warsaw University of Technology
Faculty of Electronics and Information Technology

ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

∗ Institute of Radioelectronics, e-mail: ���������	��

��������
����������
∗∗ Institute of Control and Computation Engineering, e-mail: ����������������������������
����������

An automated CAD design problem is presented. The automation is achieved
by embedding simulation software in two optimization routines of different na-
ture. The paper presents first the optimization problem, the optimization algo-
rithms and sample results obtained. The discussion on algorithms’ accuracy
and effectiveness is given. The example problem presented here, namely opti-
mization of waveguide bend, is one of the highly important design tasks in the
telecommunication networks.

1. Introduction
Let us consider a problem of automated CAD design. The system being designed has cer-

tain parameters that determine it completely. These are the decision variables. Having decided
up to their values, the rest of system parameters can be calculated by dedicated simulation
software. Design automation is accomplished by embedding the simulation software in an
optimization routine and letting some overall performance function be subject to optimization
with respect to the decision variables.

In the most of automated CAD processes the problems encountered are basically of two
kinds:

• A simulation in which parameters of a newly designed structure are computed is a
long-lasting procedure. Too much time spent on simulation may sometimes not satisfy
solution promptness required on the market.

• There are many, sometimes contradictory, optimality criteria (e.g. price of materials,
structure performance). Even if one manages finally to combine them in one scalar ob-
jective function, its shape is so complicated that involving standard optimization rou-
tines in the design phase does not suffice.

Therefore, the optimization procedure must benefit advantages of parallel computing in
order to find the optimal design quickly. At the same time it should be able to manage objec-
tive function specifics (e.g. multimodality, undifferentiability). An example of such procedure
application will be presented in this paper. In section 2 the problem of microwave circuit de-
sign is presented and the optimization problem is formulated. The section 3 contains descrip-
tion of the optimization routine that was in use formerly and description of the new optimiza-
tion routine that conforms to the two postulates expressed above. The two routines have been
tested in practice and a short discussion of results is given in section 4. Section 5 contains
conclusions.

2. Objective function
Optimization subject is the design of microwave rectangular waveguide bend presented in

fig.1. Waveguide is a kind of transmission line, which is frequently used in giga-hertz fre-
quency band. The rectangular waveguide is in fact a metal pipe with rectangular cross-section.

Fig. 1 General layout of the considered waveguide bend (left) and top (right)
view of the shape of the waveguide bend with its parameterization.

Air inside the pipe is a media, which guides the wave trough. Arrows in fig.1 show direc-

tion of wave propagation.
For optimization purposes, two of circuit dimensions are used as decision variables,

namely: length of external edge cut - ems and its depth of mcp (see fig.1 right). Third parame-
ter ims shown on fig. 1 defines a chamfer used for compensation of so-called fringing field
effects [2] which occur on sharp edges of metal. Its value has been calculated from theoretical
formulas and mainly was not subject for optimization. However, several experiments were
also made with ims as the decision variable as well. Their purpose was to check how the op-
timization routines behave when the problem dimension grows. The results can be found in
section 4.

The aim is to make the bend frequency characteristics lie within specified bounds. Charac-
teristics discrepancy is calculated using pL norm and is the objective function ()⋅f being
minimized:

Find ()x
x

f
D∈

min , [] []max
2

min
2

max
1

min
1 ,, xxxxD ×= ,

emsx ≡1 and mcpx ≡2 .
Here, D is the optimization domain.

The surface plots of objective function are presented in fig.2.

10
15

20
25

30

-5

0

5

0

0.2

0.4

0.6

0.8

1

Fig. 2 Objective function plots — general (left) and zoom of the optima neigh-
borhood (right).

To evaluate objective function the simulator splits the circuit into cells and performs cal-

culations for each cell separately. Each cell may be filled either fully by air, or partly by a
combination of air and metal. Simulator uses different models for calculating an air and metal
filled parts of the cell. Such internal model switching is inevitable and causes occasional sharp
slopes on the objective function plot, as shown in fig. 2 and fig. 3. Steepness of the slopes
depends considerably on the metric parameter c (namely cell size): the greater c the more
accurate discrepancy measuring but also the more vertical canyon walls. Therefore, choosing
the value of c is a matter of compromise between optimization simplicity and simulation ac-
curacy.

22 22.5 23 23.5 24
0.01

0.015

0.02

0.025

0.03

0.035

mcpmcpmcpmcp

Expected
optimal
point

Fig. 3 Cross-section trough objective function (see fig. 2) in the optima
neighborhood. Chart presents reflection coefficient vs. ems for mcp=4.96.

Simulator errors disturb shape of the circuit response forming a canyon-like landscape.

We must notice that real (not affected by “canyon noise”) optimum lies inside the hill.

3. Optimization methods

3.1 Powell algorithm
Powell algorithm follows the idea of subsequent directional minimizations in order to

find optimization problem solution. Once the starting point sx is chosen, there is always the

dilemma how to generate directions for the line search subroutine. Iterating though a set of
versors is mathematically correct as they span the optimization domain but can turn out to be
strikingly ineffective if the objective function forms narrow curving valleys. The improve-
ment would be to choose the next direction so that while optimizing along it the gradient stays
perpendicular to the current direction. Such a pair of directions is called conjugate.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

 1

 1 2

2x

x

1x

x
Fig. 4 Directional optimization along versors and conjugate directions

Directional optimization along versors vs. conjugate vectors is shown on figure 4. The

first two steps (black arrows) are done in the direction of versors. The third, fourth, fifth and
sixth can be done also along versors (black zigzag) but it is much better to perform it using
conjugate vectors (gray arrows nearby) that are created utilizing experience from the previous
steps. The steps taken along conjugate vectors lead immediately to the function minimum.

Usually to make a new conjugate direction it is needed to have Hessian matrix (or its
approximation) of the function being optimized. Powell suggested a routine in which to make
next direction one utilizes solely the data form the last N line searches. The routine preserves
algorithm’s quadratic convergence rate but its drawback is that directions tend to be linearly
dependent. This can be omitted in several ways: one of them is to give up the direction set
periodically and to start over with a set of versors. Therefore, the algorithm shape (based on
the description given in [7]) is like below:

• Step 0. Let sxx =0 , where sx is the starting point chosen arbitrarily.

• Step1. Create the direction set { }nR dd ,...,1= . Initialize its components to the search

space versors: ii ed = .

• Step 2. Perform n line searches: for a single line search { }ni ,...,1∈ start the optimiza-

tion from the point 1−ix along id and call the result ix . Stop either if the maximum

number of function evaluations has been reached or if () () ()11 −−> ii ff xx ε , ε being

the relative value improvement.
• Step 3. Remove 1d and shift the remaining directions (1: += ii dd). Complete the set

with 0xxd −= nn .

• Step 4. Perform additional minimization along nd and call the result 0x . Stop if the

stop criterion (like in step 2) is satisfied; else return to step 2.
A single line search has two phases. The first phase is minimum bracketing routine: the

algorithm tries to find a , b , c such that cba << , () ()iiii bfaf dxdx +>+ −− 11 and

() ()iiii bfcf dxdx +>+ −− 11 . The second phase is actual rough minimization. Golden parti-

tion and quadratic extrapolation/interpolation are utilized in both phases.
The domain boundedness is introduced via penalty functions: if during the line search the

constraint is being crossed at, say, ici e dx + , then for cee > the objective function changes its

form to: () ()2
cici ccMcf −++ dx , where M is a sufficiently large constant.

3.2 Parallel controlled random search algorithm
The idea of the Controlled Random Search (CRS) algorithm was developed by W. L.

Price in [5]. The algorithm requires minimal preparation of data to operate, and can be appli-
cable to constrained as well as to unconstrained optimization problems where objective func-
tion gradient is unavailable. In the preliminary stage a pool of randomly selected points is
generated and the function values are calculated for each point. Then the main routine starts
which computes subsequent trial points and updates the pool accordingly.

CRS, although simple, has several disadvantages in its initial form. Primarily, the conver-
gence rate worsens while approaching neighborhood of the solution. Secondary, the uncondi-
tional rejection of a trial point that falls off the constraints makes it difficult to find optimal
points that are located on the optimization domain boundaries. The first of the above draw-
backs has not turned out to be dangerous for the specific problem. On the contrary, the second
one did spoil convergence, and certain algorithm updates were necessary, which led to its
final shape as presented below:
• Step 0. Let k be the step counter; set 0:=k . Choose at random N points from D ; the

points constitute the initial pool { }NkP xx ,...,1= . The pool size should be sufficiently

large, usually ()110 += nN . Calculate ()if x , Ni ..1= .

• Step 1. Find in the current pool kP point lk ,x that has the lowest objective function value,

and point hk ,x which has the highest objective function value.

• Step 2. Make 1+n -dimensional subset of kP , called simplex kS . The simplex must con-

tain lk ,x . The remaining n points are chosen at random from kP (without duplications;

choosing hk ,x is allowed). Compute center of the simplex by the formula:

()1/ += �
∈

n
ki S

ik
x

xc .

• Step 3. Compute a trial point tx by reflecting the current worst simplex element hk,x by

the simplex center ks : hkkt ,2 xcx −= .

• Step 4. If any coordinate of tx violates constraints, bounce the point back into the domain

using the following scheme:

��

��
�

��
��
�

>−
<−

=
else

if2

if2

:

,

max
,,

max

min
,,

min

,

it

iititi

iititi

it

x

xxxx

xxxx

x

• Step 5. If the test point is better than the worst point in the pool, i.e. if () ()hkt ff ,xx < ,

then make new pool 1+kP that is kP with hk,x replaced by tx and increase step counter.

Else go to step 2 to try once more with a different simplex.
• Step 6. Stop if the stop criterion is satisfied, i.e. if the best objective function value has not

decreased more than ε in a certain number of steps h :
() () ε<−− lklhk ff ,, xx , () ()llhk ff ,0, xx =− if 0<− hk .

• Step 7. Go to step 1.

)1(
tx

2x

0 min
1x max

1x

min
2x

max
2x

)2(
tx

hx

lx

sx

D

1x

Fig. 5 Computing a new trial point in CRS

The procedure of choosing a simplex and computing a trial point is illustrated on figure 5.

The simplex is a triangle in a two-dimensional case. Also, the trial point adjustment operation
is shown there, initial and adjusted points being marked)1(

tx and)2(
tx , respectively.

An additional stop criterion is the total number of function evaluations made. It has been
introduced for two reasons: to have general control of costly (in terms of time) function
evaluations, and to prevent the algorithm from falling accidentally into infinite loops.

Parallel implementation of CRS concerns two its parts: pool initialization and trial point
computation. In the initialization phase, index of the first point in 0P that has not been yet

processed is available for all threads. A single thread starts to process the point (i.e. starts to
compute objective function value) and increases the index by one. Therefore, the pool is not
divided between threads in advance, but processed accordingly to a thread computation capa-
bility.

When the initialization is done, each thread enters its own trial point computation loop.
There are several possibilities of interactions between loops in order to improve convergence.
W. L. Price in [5] proposes that all threads operate on the same pool that is updated as soon as

a better point is found. In this scheme, all threads reflect the same point hx , but with regard to

various simplex centers. For the specific problem another approach has been applied: a single
thread operates on a subset kP′ , which is kP deprived of points that are being reflected by the

other threads. All the other details of the routine are like in the basic algorithm: hx′ is found in

kP′ , then a reflection is made. After the replacement of hx′ by tx′ the algorithm makes tx′

available to use for the other threads; then the control goes back to step 1. This way, not only
reflection centers vary but so do the points being reflected. Obviously, one has to balance the
pool size against the number of threads so that sufficient number of points will remain in kP′ .

4. Results

4.1 Typical solution characteristics
Both methods have been run a number of times from various starting points. A typical his-

tory of Powell and CRS operation is shown in fig.6.

10 15 20 25 30 -5

0

5

mcp

ems

10 15 20 25 30 -5

0

5

ems

mcp

Fig. 6 Comparison of Powell (left) and CRS (right) run path. Subsequent evalua-
tion points are marked with circles. The true optimal point (i.e. not dis-
torted by numerical errors in simulation) is marked with a triangle.

Both methods have been started from the domain center []0,20 (for CRS, it was actually a

centrally placed square of size 55×). One can clearly see the first two line searches done by
Powell (first, in the direction of ems, then along mcp parameter). Next steps, although taken in
conjugate directions, do not lead straight to the solution. This is because of noise (cf. fig. 3)
that deceives the method. Moreover, it must be stressed that not all Powell method runs lead
safely to the optimum neighborhood. Here, a didactic example has been chosen just to present
all optimization phases, but one must realize that a slight change of the starting point or algo-
rithm parameters may cause dramatic performance decrease. This is why the algorithm can be
operated successfully only by experts.

CRS histogram does not look strikingly more effective. In fact, the number of function
evaluations made to achieve a solution comparable with Powell’s is about only one third
smaller. But the method is less prone to simulation noise and samples the domain more exten-
sively than just along some directions. It results in method robustness, as it is shown in the
next section.

4.2 Performance comparison
A series of optimizations has been performed using both algorithms with various start

conditions. The results are presented on fig. 7.

22 22.5 23 23.5 24
4.6

4.65

4.7

4.75

4.8

4.85

4.9

4.95

Fig. 7 Results from several optimization runs. Circles and a rectangle represent
CRS final points and the best Powell solutions, respectively. A triangle
denotes a “ real” (physical) optimal point. (The axes refer to the same deci-
sion variables as in fig. 6.)

The figure focuses only on the closest neighborhood of the “ true” optimum. One can no-

tice that level lines fold occasionally indicating canyon walls. The “ true” minimum lies just
below such a steep-sloped wedge and is, obviously, inaccessible. However great majority* of
CRS solutions approach this solution (or another good one, in the figure center). Powell
reaches it too, provided good starting point (i.e. located far enough from the optimum) and
parameter values.

4.3 Three-dimensional search space
The case is considered where ims parameter is also a decision variable. Therefore the

search space grows and becomes three-dimensional. Both optimization routines have been
invoked many times, with randomly generated starting point, to see how the additional degree
of freedom influences their performance.

A series of some 100 runs of Powell and CRS algorithms has been made. The optimal ob-
jective function values are grouped and are presented by the histogram in fig. 8.

* Results for 38 out of 40 simulation sessions were satisfactory. The typical simulation time oscillated between
25 and 60 min.

0

5

10

15

20

25

30

35

40

0,0115 0,012 0,013 0,015 0,019 0,027 0,043 0,075 0,139 0,267 0,523 1,035

Objective function value

N
u

m
b

er
 o

f
o

p
ti

m
iz

at
io

n
 r

u
n

s

Fig. 8 Histogram presenting number of optimization runs in which objective
function value within an interval was reached. Numbers below pairs of
bars denote interval upper values. Lighter bars stand for Powell routine,
darker — for CRS.

The observation is that CRS performs much better than Powell algorithm. Most of CRS

invocations gave results close to the optimum (0,0011), while Powell routine usually ended
with much worse outcome, within the interval 0,019-0,267. The interval attracts some part of
CRS solutions, too. This may indicate that alternative, non-global minima sometimes trap
both algorithms.

The average number of objective function evaluations in a single optimization run, neces-
sary to locate optima, is 34 for Powell and 264 for CRS. However total number of objective
function evaluations was almost the same for both methods. Considered that it may be no sur-
prise that the latter performs better. Having the same computation budget one could think of
running Powell not 100 but 750 times, and would possibly have more hits within the first in-
terval than for CRS. However, this strategy of attacking the problem by sheer force would not
improve the algorithm itself — the fraction of poor solutions would remain the same.

Another interesting issue is the comparison of the results obtained in 2-D and in 3-D do-
main. Locations of several best solutions are shown in fig. 9. All the 15 best CRS solutions
are located compactly and nearly form a line. Powell solutions follow roughly the same
scheme, except from some scattered ones. Such collinear location preserves the shape of the
external edge cut, necessary for proper wave propagation.

Another curiosity is the distant location of the best solution found in the case where ems
and mcp were the only decision variables, and ims remained fixed. This is because for 2-D
case ims parameter had value of 6. Now, for 3-D case this parameter value is one tenth or
even less. Therefore, mcp and ems had to be reduced in order to preserve the same width of
the waveguide at its bend. This means that there can be many almost equally good designs of
the waveguide.

20 20.5 21 21.5 22 22.5 23 23.5
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

Fig. 9 Best results obtained in 2-D and 3-D domains. Circles and triangles repre-
sent solutions find in 3-D domain by Powell and CRS, respectively. The
diamond (on the upper-right side) denotes the best solution found in 2-D
domain. (The axes refer to the same decision variables as in fig. 6.)

5. Conclusions
It is apparent from the above results that CRS surpasses Powell algorithm in accuracy.

CRS solutions are better and less dependent on the area the initial pool is located in. There-
fore, there is no need for a specialist that would look after the optimization process. Gener-
ally, even if the majority of CRS solutions are not globally optimal, they differ from the
minimum negligibly and they are acceptable from the practical engineering point of view.

Another advantage of CRS method is its speed. Even on a single processor machine the
average number of objective function calculations the method uses to find the solution in the
2-D case is 30% less than that of Powell, not mentioning benefits from parallelization. The
algorithm can be distributed easily and without significant synchronization or communication
overhead onto nN − processors, giving virtually linear computation speed-up.

On transition to 3-D problems CRS efficiency drops suddenly, yet it is able to find in
a single run better solution than Powell method.

Naturally, CRS has also its drawbacks. Its effectiveness drops rapidly as the problem di-
mension grows: it has been observed in [8] that for as few as 6 decision variables the number
of necessary function evaluations that CRS requires reaches thousands, while Powell routine
does well with as little as hundreds. Nevertheless, it is reasonable to employ CRS also in this
case just in order to find a good starting point for Powell, which will do the rest of the work.
Hopefully, as it was stated in [1], the typical number of decision variables for problems of this
type does not exceed three.

The work has proved that while dealing with treachery, simulation-driven objective func-
tion it is always worthy to start off with a global optimization routine and to stick with it as
long as improves the solution at acceptable rate; then to switch over to some local method in
hope to extort anything better.

The problem of how to filter out wedges and canyons on function graph caused by simu-
lator internal switching remains still a question to be solved.

6. Acknowledgments
The work reported in this paper was supported by the State Committee for Scientific Re-

search under grant 7 T11A 022 20.

7. Bibliography
1. J.W.Bandler et al., Electromagnetic optimization of 3D structures, IEEE Trans on MTT,

vol 45, May 1997, pp. 770—779
2. W.Gwarek, P.Miazga, Improved design of coaxial impedance transformers using electro-

magnetic 2-D solver in an optimization loop, MIKON 96, Warszawa, May 27-30, 1996,
pp. 433—437

3. P.Miazga, W.Gwarek, Improved Design of Passive Coaxial Components Using Electro-
magnetic 2-D Solver in an Optimization Loop, IEEE Trans on MTT, vol 45, May, 1997,
pp. 858—860

4. QuickWave 3D electromagnetic simulator users manual, „Qwed” sp. z o. o. Warszawa
5. W. L. Price, Global Optimization Algorithms for a CAD Workstation, Journal of Optimi-

zation Theory and Applications, 1987, Vol. 55, No. 1, pp. 133-146
6. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C,

Cambridge University Press, 1992
7. W. Findeisen, J. Szymanowski, A. Wierzbicki, Teoria i metody obliczeniowe optymaliza-

cji, PWN, Warszawa 1980
8. P. Miazga, Optimization of the microstrip to waveguide transiton, Application note, Insti-

tute of Radioelectronics, Warszawa 2001 (to be published).

